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Abstract. Machine learning systems are vulnerable to data poisoning, a
coordinated attack where a fraction of the training dataset is manipulated
by an attacker to subvert learning. In this paper we first formulate an op-
timal attack strategy against online learning classifiers to assess worst-case
scenarios. We also propose two defence mechanisms to mitigate the effect
of online poisoning attacks by analysing the impact of the data points in
the classifier and by means of an adaptive combination of machine learn-
ing classifiers with different learning rates. Our experimental evaluation
supports the usefulness of our proposed defences to mitigate the effect of
poisoning attacks in online learning settings.

1 Introduction

Despite the advancements of machine learning and their effectiveness to auto-
mate many tasks, it has been shown that learning algorithms are vulnerable and
can be compromised by attackers both at training and test time [1]. Poisoning
attacks, i.e. those produced at training time, are considered one of the most
relevant and emerging threats for data-driven technologies, especially in appli-
cations that rely on the collection of untrusted data [2]. Different poisoning
attack strategies have shown the sensitivity of machine learning algorithms to
this threat, including Support Vector Machines (SVMs) [3], logistic regression
[4], or neural networks and deep learning [5, 6], among others. In standard
(offline) settings, optimal attack strategies can be modelled as a bi-level op-
timization problem [3, 4, 5], where the attacker aims to optimise a particular
objective (typically to maximise the error of the system) by injecting a set of
malicious data points in the training set. On the other side the defender aims
to minimise some loss function on a training set that includes these poisoning
points. In contrast, optimal poisoning attacks against online learning algorithms
just require to solve a (single-level) optimisation problem [7]. In this paper we
present a novel poisoning attack against online learning classifiers with a com-
pounding strategy that prevents overfitting on the attacker’s side, maximising
the impact of the attack at test time. We also propose two different defensive
mechanisms to mitigate the effect of such attacks: First, inspired by the defence
in [8], we propose a mechanism to reject samples that are suspicious to be ma-
licious, not using them to update the parameters of the system. Second, we
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propose an adaptive combination of learning algorithms with different learning
rates, which allows to delay the effect of the attack on the overall system and
to speed-up recovery after the attack. Our preliminary experiments in MNIST
dataset show the benefits of our proposed defences.

2 Attack

In online learning settings the attacker’s objective is to alter the state of the ex-
isting trained model when poisoning points are injected into the flow of training
data to degrade system’s performance on a targeted or an indiscriminate way.
Thus, at iteration n, given the attacker’s utility function A (typically a cost
function) evaluated on a target dataset Dy, the attacker’s objective is to inject
a poisoning point (x,,y,), defined within a feasible domain ¢(x,), so that:!

X;, € argmaxy e (x,) APt Wnt1) (1)

where A is evaluated on the parameters of the classifier at iteration n + 1.
These parameters can be computed with stochastic gradient descent as w1 =
Wy, —NVw, L(Xp, Wy), where L is the loss function used by the defender to train
the algorithm, and 7 is the learning rate. We can solve (1) following a gradient
ascent strategy with the update equation given by:

Xp, i1 = Xp, T O‘vxpn A(D¢, Wiy1) (2)

where « is the learning rate for the attacker’s problem in (1). We can compute
the gradient in (2) by applying the chain rule:

vXpn, A(Dt ) W"+1) = —vapn Vwn K(X;D ) Wn)vwn+1 A(Dt ) Wn-‘rl) (3)

Direct computation of (3) is inefficient, but we can use the fast Hessian-vector
product approximation in [9] to avoid the computation of the Hessian.

Assuming that the attacker can inject a concentration of poisoning points p,
which are randomly distributed between genuine data points, the direct applica-
tion of the greedy strategy in (3) may lead to poor results, as the attack depends
on a specific parameter state. The attacker may not know the whole system’s
state when interleaving the poisoning points with (unknown) genuine points. In
Alg. 1 we propose a compounding strategy to enhance the effectiveness of the
attack and reduce overfitting on the attacker’s side. First, we train the learning
algorithm using the whole training set for IV iterations.? Then, for each poison-
ing point we use a random subset of the training data (with ng samples) and the
poisoning points crafted in previous iterations. We run gradient descent for 1
epoch to update the state of the learning algorithm and compute the poisoning
point using (3). The size of the random subset n can be set according to the
number of poisoning points n,, so that p = n,/(n,+ns), as a guide to a suitable
value for developing an attack aimed at a specific concentration p.

'In line with most related work we assume that the label of the poisoning point is defined
a priori and cannot change.

2To model worst-case scenarios we assume that the attacker has access to the defender’s
training set.



Input: Training data Dy, attacker’s target data Dy, training subset
size ns, initial training epochs N, number of poisoning points n,,
initial set of parameters wq

D,, < 0, Initialize set to store poisoning points;

w < Gradient_Descent(wq, Dy, N);

for i <1 to n, do

D; « random_subset(Dy,., ns);

w; < Gradient_Descent(w, D; UD,, 1);

(Xp, Yp) < compute_poisoning_point(w;,D; U D,,D;) (use eq. (3));
Dy < Dp U (Xp, Yp);

end

Output: D,

Algorithm 1: Online attack compounding strategy

3 Defences

In this section we present two different defensive mechanisms to mitigate the
effect of the online poisoning attacks described in previous section.

3.1 Rejection of samples

If the attacker does not impose appropriate constraints to craft the attack points,
it has been shown that outlier detection can effectively detect malicious sam-
ples [10]. In online learning settings, assuming that the learning algorithm has
reached a relative stable state we can apply a rejection mechanism to exclude
from training unexpected data points to ignore suspicious poisoning points or
points that have a strong negative impact on the learning algorithm at its cur-
rent state. In multi-class classification we need to include one rejection mecha-
nism for each class: Targeted attacks against particular classes may be difficult
to detect as the overall effect in the error of the classifier can be relatively small.
Thus, for a sample arriving at instant n, (X, yn), given the state of the learning
algorithm in w,,_;, we reject the sample if:

fyn(xnawn—l) <p (4)

where fy, (X5, W,—_1) is the element of the soft output of the classifier for the
sample x,,, with class label y,,, evaluated on w,_1, and § < 1 is the threshold of
the rejection mechanism. If the sample is rejected, then w,, = w,—1. If 8 is too
low more poisoning points will be admitted, whereas if it is too high the ability
of the learning algorithm to adapt to natural distribution drifts will be reduced.

3.2 Adaptive Combination of Machine Learning Models

Following a different approach, we also propose to defend against online poison-
ing attacks with a convex combination of two classifiers with different learning
rates 11 and 1o where 1; > 1. We can expect higher learning rate classifiers to



adapt more quickly to natural distribution drifts, providing high accuracy when
the system is not under attack, whereas the latter is more resilient to burst at-
tacks due to being slower to react to changes. We can leverage the advantages
of each classifier depending on the situation (attack/no attack) by an adaptive
combination of the classifiers’ output. This scheme has been successfully applied
in the context of adaptive filtering in non-stationary environments [11]. The soft
output of the combination can be written as:

fnfl(xn> = A1 éljl(xn) + (1 - Anfl)fr(i)l(xn)v 0 <A1 <1, (5>

where félzl(xn) and ffi)l(xn) are the soft outputs of the two classifiers for x,.
Similar to the parameters of the two models, the parameter that controls the
adaptive combination, A\,_1 can be updated using a gradient descent approach:

An = Ane1 — aVa,  L(Dpar, w W A1) (6)

n—1 "Yn—-1»

where « is the learning rate and £(Dyai, wfllzl, Wfﬁh An—1) is the loss function

evaluated on a separate validation set D,, with the parameters of the two
classifiers, wglll and Wf}h and A,_1. As suggested in [11] we can use a sigmoid
parametrization of A, to provide smoother updates, and reduce the effective
range of A\, from [0, 1] to [0,1 — 4] (being J a small positive constant) to avoid
saturation and improve responsiveness when conditions change. For D, we
can follow different strategies such as evaluating the performance on a rolling
window containing the last samples in the training set or using a clean validation

dataset. In our experiments we used the latter approach.

4 Experiments

To assess the validity of our attack and defence strategies we performed two
experiments with MNIST dataset. In the first experiment we crafted an error-
specific attack [5], which aims to increase the error rate between digits 6 and 9
(6v9) for a multi-class logistic regression classifier, trained online using a mini-
batch size of 32 samples. The poisoning attack was crafted using Alg. 1 with a
concentration parameter p = 0.1. We compared the performance of the system
when applying the rejection mechanism described in Sect. 3.1 (with 8 = 0.1)
and when no defence is applied. The results in Fig. 1 show the effectiveness of
the attack to increase the error between digits 6 and 9 from 12% up to 25%.
The overall effect on the classifier is reduced, as only two digits are involved
in this error-specific attack. We can also observe that the rejection strategy
completely mitigates the effect of the attack, not affecting the performance of
the classifier when the attacker is not present. Despite the simplicity of this
approach, in practice, this strategy can be effective in cases where the attacker
uses aggressive strategies for poisoning the system, forcing his/her to craft more
subtle and persistent attacks to successfully degrade the system’s performance.

In the second experiment we evaluated the performance of the adaptive com-
bination of two logistic regression classifiers, with 7; = 0.1 and 7, = 1074,



0.2 .FA. = Normal training

0.24 o8 * Filtering
=] FIR
& 0.22 H
)
‘@ 0.2
§ 0.18
S 0.16
So014
<
=012 -

Sy
01
700 800 900 1000 1100 1200 1300 1400 1500
N
0.15
+ Normal training
: * Filtering

© 0.14 -:
a 1
S 013 3
@
©
5 0.12
c
[}
0]

0.11 Mw@\

01

700 800 900 1000 1100 1200 1300 1400 1500

N
Fig. 1: Poisoning attack against (online) logistic regression, comparing the re-
jection mechanism in Sect. 3.1 to the case where no defence is applied. N is the
cumulative number of mini-batched trained on and the red box depicts the in-
terval where the attacker is present. The top figure represents the specific errors
between digits 6 and 9. The bottom plot shows the overall classification error.

against the poisoning attack in Alg. 1 with p = 0.17. We performed an error-
generic attack [5], aiming to maximally increase the overall classification error.
We constrained A to the interval [0.08,0.92]. For the loss function in (6) we
used a separated validation set with 200 samples. The classifiers were trained
online with a mini-batch size of 32. The results in Fig. 2 show that the adaptive
combination effectively mitigates the poisoning attack. Before the attack, the
fast classifier dominates the output of the combined scheme, with A = 0.92.
However, when the attack started A gradually shifted to 0.08, so that the slow
classifier became dominant in the combination, reducing the overall impact of
the attack. Although not shown in Fig. 2, when the fast classifier recovered from
the attack, A increased again to 0.92.

5 Conclusion

In this paper we proposed a new poisoning attack against online learning algo-
rithms with a compounding strategy that prevents overfitting. We also devel-
oped two defensive mechanisms to mitigate the effect of such attacks by rejecting
samples that are suspicious to be malicious and with an adaptive combination
of classifiers with different learning rates. The preliminary experimental results
on MNIST show the effectiveness of these defences to mitigate poisoning attacks
and to recover faster to the system’s original state after the attack.
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2: (Top) Overall test error for the adaptive combination of two logistic

regression classifiers. The combination was initially trained with 10,000 samples
followed by an error-generic attack. The red box represents the interval where

the
batc

attack is present (with p = 0.17). N is the cumulative number of mini-
hed trained on. (Bottom) Evolution of A.
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