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Executive Summary 
This deliverable D5.1 – Threat analysis for federated machine learning algorithms – is the 
first outcome of WP5 under task T5.1. It includes a technical report describing the threat 
model and the vulnerabilities of federated machine learning algorithms both at training and 
test time. It also contains the analysis of the threats across the different Privacy Operation 
Modes (POMs) to be implemented for MUSKETEER platform. 
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1 Introduction 

1.1 Purpose 

Machine learning systems are vulnerable and can be the objective of attackers who can ex-
ploit these vulnerabilities to conduct illicit and highly profitable activities [Huang et al. 2011], 
[Muñoz-González, Lupu 2019]. The main objective in WP5 is to provide mechanisms to ana-
lyse and enhance the security of the machine learning algorithms used in MUSKETEER under 
the different POMs. 

This deliverable, D5.1, includes a technical report describing the taxonomy and the threat 
model to characterise the possible vulnerabilities of machine learning algorithms in federat-
ed environments, considering both attacks at training and run-time. This threat model is 
useful to define requirements for the design, deployment and testing of federated machine 
learning algorithms. In this report we consider the security threats that involve the machine 
learning models in MUSKETEER, both at training and test time, and the manipulation of the 
data or the information used to train the machine learning algorithms in the platform. In 
some of these scenarios, the attacker may require exploiting software vulnerabilities in the 
system, which is out of the scope of this report. The aspects related to software security in 
MUSKETEER are covered in WP3 (especially in task T3.4) and WP7. Nevertheless, in our re-
port we also describe those scenarios where attacks against the machine learning models 
are possible by exploiting these software vulnerabilities.  

 

1.2 Related Documents 

This deliverable will serve as a reference framework for the rest of the deliverables in WP5: 
D5.2- D5.6, where the taxonomy and attacker’s models defined here can be used to define 
different attack strategies to test the security of the algorithms used in MUSKETEER, as well 
as to define and prioritise defensive strategies capable of mitigating the effect of such at-
tacks.  

D5.1 will also serve as a reference in tasks T6.1 and T6.3 in WP6. Thus, D5.1 will provide a 
reference to design an assessment framework of the algorithms used in the platform taking 
their security into account, which is relevant to deliverables D6.1 and D6.3.  

Some of the threats described in this document require the attacker to first exploit software 
vulnerability in the platform. Thus, this document can also help to characterise the implica-
tions and the software security requirements of MUSKETEER in WP3 (deliverables D3.3 and 
D3.4).  
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1.3 Document Structure 

The rest of the document is organised as follows: In Section 2 we provide the taxonomy of 
the threats and possible attacks against machine learning systems. In Section 3 we introduce 
evasion attacks, those where the attacker aims to produce errors at test time, when the al-
gorithm is deployed. Section 4 describes poisoning attacks, i.e. those produced at training 
time. In Section 5 we describe backdoor attacks, where the attacker aims to manipulate the 
model to produce misbehaviour for specific data points. In Section 6 we will describe coordi-
nated attacks where a group of malicious users aim to manipulate the behaviour of the algo-
rithms used in the platform. In Section 7 we analyse the different threats for the different 
POMs in MUSKETEER. Finally, Section 8 concludes the report.  

2 Taxonomy of Threats and Attacks 

Machine learning is at the core of many modern applications, extracting valuable infor-
mation from the data gathered from many different sources and allowing the automation of 
many tasks. Machine learning has been successfully applied in many different application 
domains, including health, manufacturing, industrial control systems, or computer and sys-
tem security, to cite some.  

Despite their benefits, machine learning algorithms can be abused, providing new opportu-
nities to cyber-criminals to compromise systems by exploiting the vulnerabilities of machine 
learning algorithms. In fact, machine learning itself can be the weakest link in the security 
chain, as often, the learning algorithms are not design with security in mind.  Far from a the-
oretical hypothesis, these attacks have been already reported in the wild against anti-virus 
engines, spam filters, or fake news and profile detection, among others [Muñoz-González, 
Lupu 2018].  

As in any other traditional security context, for understanding the vulnerabilities and to pro-
vide a systematic framework to analyse the security aspects of machine learning, we need to 
define an appropriate threat model. In this section we propose a threat model based on the 
frameworks originally proposed in [Barreno et al. 2010], [Huang et al. 2011] and extended in 
[Biggio et al. 2014], [Muñoz-González et al. 2017], [Muñoz-González, Lupu 2019], taking spe-
cial consideration to the federated machine learning scenarios we have in MUSKETEER.  

The threat model characterises the attacks according to the attacker’s goal, capabilities to 
manipulate the data and to influence the learning system, knowledge of the system and the 
data used to train the algorithms, and the attacker’s strategy.  

This framework encompasses the different attack scenarios described in Sections 3-6, i.e. 
poisoning attacks (or attacks at training time), evasion attacks at run-time, backdoor attacks 
or coordinated attacks with users’ collusion.  
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2.1 Types of Attackers 

Before introducing the threat model according to the attacker’s goal, capabilities, 
knowledge, and strategy, we need to define the types of attackers that we can consider in 
federated machine learning scenarios. In non-distributed machine learning algorithms, the 
attacker is considered as someone external to the system that aims to degrade system’s per-
formance, to produce some intentional error or to leak information from the targeted sys-
tem. However, in federated machine learning algorithms, some of the users of the platform 
can also behave maliciously.  

For the federated machine learning algorithms that we are using in MUSKETEER we can cat-
egorise the attackers as: 

• Outsiders: this includes attackers that are not users of the platform. 
These attackers can compromise the performance of the system at 
run-time, by exploiting the weaknesses and blind spots of the algo-
rithms, or at training time, where attackers can compromise the da-
tasets of some of the users of the platform. This could include also 
cases where the attacker is capable of intercepting and tampering with 
the communications between the central node and some of the users. 

• Insiders: this includes cases where one of some of the users of the 
platform are malicious and aim to degrade the system performance to 
take some advantage with respect to other users or aim to leak infor-
mation from the datasets used by the other users. In the case of sev-
eral insiders we can consider cases where each attacker works in isola-
tion or scenarios where several malicious users collude towards the 
same malicious objective.  

 

2.2 Attacker’s Capabilities 

We can define the capabilities of the attacker to compromise a machine learning system 
from the attacker’s influence on the data used by the learning algorithms and on the con-
straints to manipulate the data. 

Attack influence 

According to this aspect, the attack can be classified as: 

• Causative: if the attacker can influence the learning algorithm by in-
jecting or manipulating the data used to train the learning algorithms 
or providing malicious information to manipulate the parameters of 
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the system. These attacks are commonly referred to as poisoning at-
tacks. 

• Exploratory: the attacker cannot influence the training process but can 
attempt to exploit the weaknesses or blind spots in the system at test 
time.  These attacks are usually known as evasion attacks. 

 

Poisoning attacks are possible in scenarios where the data collected to train the learning 
algorithms is untrusted. For example, this can happen if the data is collected from sensors 
that can be compromised, people that can lie or can deliberately label the data incorrectly, 
or other devices whose integrity can be at risk. In the case of MUSKETEER, in this sense, we 
can also consider cases where some of the users of the platform are malicious and aim to 
degrade the system’s performance, providing malicious data or sending wrong information 
to update the model’s parameters.  

In evasion attacks, even if the data used for training the algorithm is trusted, attackers can 
probe the system to learn and exploit its weaknesses to produce intentional errors at run-
time. It has been shown that learning algorithms are vulnerable to adversarial examples, 
inputs that are indistinguishable to genuine data points but that, when used to test the 
learning algorithms, produce unexpected outcomes. Exploratory attacks can also include 
other scenarios where the objective of the attacker is to obtain information about the ma-
chine learning model deployed or the data used for training which constitutes a privacy vio-
lation. Recently, it has been shown that even federated machine learning algorithms can be 
vulnerable to information leakage [Melis et al. 2019]. Thus, attackers can infer properties 
from the training data used by other users in a federated machine learning platform by look-
ing at the model updates during training. However, some of the POMs used in MUSKETEER 
can prevent or mitigate these attacks, as the users do not have access to the model’s up-
dates at training time.  

 

Data Manipulation Constraints 

The attacker’s capabilities may also be limited by the possible presence of constraints for the 
manipulation of the data to craft the attacks. This is strongly related to the particular appli-
cation domain. For example, in malware classification task where the attacker aims to evade 
detection, the manipulation of the attacker’s malware to achieve her/his goal needs to pre-
serve the malicious functionality of the program. In contrast, in a computer vision tasks, it is 
reasonable to assume that the attacker can manipulate every pixel in an image or every 
frame in a video.  
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In data poisoning scenarios, the attacker may be in control of the labelling process. Thus, 
she/he can control the labels assigned to the poisoning points injected. In other cases, even 
if the attacker is not in control of the labelling process, she/he can figure out the possible 
label that will be assigned to the injected malicious points. For example, in a spam filtering 
application, it is reasonable to assume for the attacker that her/his malicious email injected 
in the system will be labelled as spam. In other settings, the attacker can include self-
imposed constraints to evade detection. For example, in poisoning attacks, if the attacker is 
sloppy and the malicious points injected in the training data are very different from the gen-
uine data points, we can use pre-filtering techniques, such as outlier detection [Paudice et al. 
2018a] or label sanitisation [Paudice et al. 2018b], to mitigate the effect of such attacks.  

Modelling realistic data constraints is necessary to characterise reasonable worst-case sce-
narios through optimal attack strategies, where the attacker aims to maximise the damage 
on the system but remaining undetected. In MUSKETEER these analyses will be part of tasks 
T5.2, T5.3, and T5.4. 

MUSKETEER provides some data manipulation constraints defined by the task owner, who 
can define a set of valid values for the different features that describe the data points to be 
used in the learning task. However, these constraints can be loose to limit the effect of pos-
sible attacks against MUSKETEER’s algorithms. However, in WP5 we will investigate and pro-
pose mechanisms to limit the attacker’s capabilities to manipulate the data through data 
pre-filtering and outlier detection.  

In MUSKETEER, in scenarios where some of the users are malicious, the attacker’s con-
straints can be loose for some of the POMs. Thus, in these cases, the malicious users can 
manipulate directly the information sent to the central node to update the model’s parame-
ters (for example by sending gradients). Then, data manipulation constraints are not really 
applicable here, as the user can have more degrees of freedom to send (malicious) updates 
to the central node. In contrast, in other POMs the users are not involved in this exchange of 
information, as their data is securely stored in a trusted server. Then, in these cases, the at-
tackers can only manipulate the model through manipulation of their datasets. 

 

2.3 Attacker’s Goal 

The goal of the attacker can be categorised according to the intended security violation and 
the specificity of the attack. Additionally, in some tasks, such as in multi-class classification, 
the attacker’s goal can also be described in terms of the specificity of the errors to be pro-
duced in the system.  
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Security Violation 

According to this aspect, we can distinguish three different security violations against ma-
chine learning systems: 

• Integrity violation: this happens when the attack evades detection 
without compromising system’s normal operation. 

• Availability violation: this includes scenarios where the attacker aims 
to compromise the functionality of the system.  

• Privacy violation: this occurs when the attacker obtains private infor-
mation about the machine learning system, the data used for training, 
or the users of the system.  

Integrity and availability violations depend upon the application to be deployed and the at-
tacker’s capabilities to influence or not the training of the learning algorithm. On the privacy 
side, MUSKETEER provides different POMs that can prevent some privacy violations, as in 
cases where some users aim to infer properties of the datasets provided by the other users. 
However, when the model is deployed, if privacy-preserving algorithms are not used, attack-
ers can infer some properties of the data used for training by probing the system.  

 

Attack Specificity  

This characteristic defines a continuum spectrum that describes the specificity of the attack-
er’s intention ranging from targeted to indiscriminate attack scenarios: 

• Targeted attacks: if the attacker aims to degrade the performance of 
the system or to produce errors for a reduced set of data points / cas-
es. 

• Indiscriminate attacks: if the attacker aims to produce errors or de-
grade system’s performance for a broad set of cases or data points, i.e. 
in an indiscriminate fashion. 

The federated algorithms used in MUSKETEER can be vulnerable to both, indiscriminate and 
targeted attacks.  

 

Error Specificity  

Depending on the nature of the errors the attacker wants to produce in the system, we can 
categorise the attacks as: 
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• Error-generic: when the attacker aims to produce errors in the system 
regardless of the type of error to be produced. For example, in a facial 
recognition system the attacker wants subject A not to be recognised 
by the system, regardless if the system misrecognised this subject as 
subject B, C, etc. 

• Error-specific: when the attacker wants to produce specific errors in 
the system. Following the previous example, in an error-specific attack 
the attacker may want subject A to be recognised as subject B.  

Error-specificity is application dependant. Actually, depending on the attacker’s capabilities 
the attacker can be constrained on the kind of errors to be produced in the system. In 
MUSKETEER, the error-specificity of possible attacks will depend on the definition of the 
task.  

 

2.4 Attacker’s Knowledge 

The knowledge of the attacker about the target machine learning system includes the fol-
lowing aspects: 

• The dataset used for training the learning algorithm. 

• The features used to train the learning algorithm and their range of 
valid values. 

• The learning algorithm and the objective function to be optimised by 
the learning algorithm. 

• The parameters of the machine learning algorithm. 

Considering these aspects, typically we can consider two different scenarios: perfect and 
limited knowledge attacks. 

 

Perfect Knowledge Attacks 

Although unrealistic in most cases, perfect knowledge attack scenarios assume that the at-
tacker knows everything about the targeted system. However, perfect knowledge attacks 
allow to evaluate the security of machine learning algorithms in worst-case scenarios. These 
attacks can help to estimate the degradation of the system when it is under attack, which 
can be useful for model selection, comparing the robustness and performance of different 
machine learning algorithms when tested against perfect knowledge attacks.  
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Limited Knowledge Attacks 

Although these scenarios include a broad range of possibilities, typically, in the research lit-
erature, two main cases are considered: 

• Limited knowledge attacks with surrogate data: this includes scenari-
os where the attacker knows the model used for the learning algo-
rithm, the feature representation, or the objective function optimised 
by the learning algorithm. However, the attacker does not have access 
to the training data, although she/he has access to a surrogate dataset 
with similar characteristics to the dataset used in the targeted system. 
Then, the attacker can estimate the parameters of the targeted model 
by using this surrogate dataset, which can enable quite successful at-
tacks (depending on the similarity between the two datasets). 

• Limited knowledge attacks with surrogate models: this includes sce-
narios where the attacker have access to the dataset and the feature 
representation used in the targeted system, but she/he does not have 
access to the machine learning model and the objective function to be 
optimised by the learning algorithm. In these cases, the attacker can 
train a surrogate model to estimate the behaviour of the targeted sys-
tem, crafting attacks against this surrogate model. Then, the resulting 
malicious data points targeting this surrogate model are tested against 
the real model. It has been shown that this strategy can be effective to 
achieve successful attacks, especially if the targeted and the surrogate 
models are similar. This is known as attack transferability [Papernot et 
al. 2016a].  

Although perfect knowledge attacks can allow to model worst-case scenarios, in the case of 
federated machine learning algorithms, this may not be the best strategy to test the robust-
ness of the algorithms against different attacks. Thus, it can be more interesting to test fed-
erated machine learning algorithms using limited knowledge attacks where we assume that 
the attacker (or attackers) are in control of part of the dataset used in to train the algo-
rithms, i.e. one or some of the users of the platform are malicious or their data have been 
compromised. This strategy can be especially relevant to test the security of the algorithms 
used in MUSKETEER against coordinated attacks with users’ collusion.  

2.5 Attack Strategy 

Attack strategies can be formulated as an optimisation problem that captures different as-
pects of the threat model. Then, given the attacker’s knowledge and the set of samples that 
the attacker aims to inject in the training dataset or for which the attacker aims to produce 
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some (specific or non-specific) errors, the attacker’s goal can be characterised as an objec-
tive function evaluated in this specific set of samples. This objective function helps to assess 
the effectiveness of the attack strategy with respect to this set of malicious points. This for-
mulation is valid for both attacks at training and test time (i.e. poisoning and evasion at-
tacks). 

For poisoning attacks, in MUSKETEER we also need to consider attack strategies where the 
attacker is capable of manipulating the parameters of the model directly (for example by 
sending wrong parameter updates to the central node). In this case, the attacker needs a 
test set to evaluate the effectiveness of the attack, as the attacker is not necessarily manipu-
lating a subset of the dataset used to train the learning algorithms.  

In Table 1 we summarise the threat model described in this section. 
Table 1 Threat Model 

  
Attacker’s Capa-
bility 

Attack Influence:  
1) Causative attacks: the attacker can influence the learning algo-

rithm. 
2) Exploratory attacks: attacker can only manipulate data at run-time. 
Data Manipulation Constraints: application dependant. Attackers may 
be limited to manipulate the features or the labels of the data. Addi-
tional constraints can be self-imposed by the attacker to evade detec-
tion.  

Attacker’s Goal Security Violation: 
1) Integrity attacks 
2) Availability attacks 
3) Privacy violation 
Attack Specificity: 
1) Targeted attacks: focused on specific data points.  
2) Indiscriminate attacks:  targeted on a broad set of data points.  
Error Specificity:  
1) Error-generic attacks: the attacker does not care about the type of 
errors to be produced in the system. 
2) Error-specific attacks: the attacker aims to produce specific types of 
errors.  

Attacker’s 
Knowledge 

Perfect Knowledge: the attacker knows both the dataset and the 
model used in the targeted system. 
Limited Knowledge:  
1) Surrogate data: the attacker knows the model of the targeted sys-
tem but not the training dataset. 
2) Surrogate model: the attacker knows the training dataset but not 
the model.  
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3 Attacks at Run-time 

For some tasks, machine learning systems can outperform humans when tested on naturally 
occurring data. However, it has been shown that, at run-time, these systems fail considera-
bly when considering the presence of an attacker [Szegedy et al. 2013]. In other words, ma-
chine learning works well when things go as expected, but the algorithms are brittle and can 
be easily broken by smart adversaries [Papernot, Goodfellow 2016]. 

At run-time, when the machine learning system has already been trained and deployed, at-
tackers can look for the blind spots or the weaknesses of the system to produce intentional 
errors. As defined in Section 2, these attacks are often referred to as evasion attacks. It has 
been shown that many learning algorithms, especially deep networks, are vulnerable to ad-
versarial examples [Szegedy et al. 2013], [Biggio et al. 2013], i.e. inputs indistinguishable 
from genuine data points that are designed to produce errors at test-time. As the perturba-
tion that the attacker needs to introduce to create successful adversarial examples is very 
small, it is very difficult to automatically distinguish between malicious and benign examples.  

 

 

Figure 1 Adversarial example in a computer vision problem 

 

In Figure 1 we show an adversarial example in a computer vision application [Co et al. 2019], 
where a deep neural network is designed to classify images amongst 1,000 different catego-
ries. The left picture shows a tabby cat that is correctly classified by the system. However, 
after adding the malicious perturbation shown in the centre of the figure, the resulting ad-
versarial example on the right is classified as a shower curtain by the machine learning sys-
tem. For the human eye the cat is clearly visible in the adversarial example and there is no 
element that suggests that there is a shower curtain in the image. This example is analogous 
to optical illusions, designed to deceive the human brain. However, from this simple picture 
we can observe that it is easier to fool a machine learning algorithm than a human. 
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Other types of attacks at run-time are those that aim at extracting private, confidential or 
proprietary information about the training data from a trained model. For example, [Fredrik-
son et al. 2015] demonstrate a model inversion attack which allows them to detect whether 
the image of a particular individual was included in the training data set for a face recogni-
tion system. [Carlini et al. 2019] demonstrate a similar attack strategy against generative 
sequence models, allowing them to extract sensitive personal information, such as Social 
Security Numbers, from training data used to train text classifiers. Recently, [Melis et al. 
2019] showed that such type of information leakage can also occur for machine learning 
models trained in a federated fashion. 

 

3.1 Attack Scenarios 

Broadly we can differentiate two different scenarios where attackers can exploit vulnerabili-
ties at test time: 

• On one side, attackers can leverage regions of the feature space that 
are not supported by the training data, i.e. the resulting attack points 
are quite different from the points used to train the machine learning 
algorithm. Thus, in these regions, machine learning systems can pro-
duce quite unexpected predictions. However, these attacks can be eas-
ier to detect and mitigate by adequate data pre-filtering or by using 
outlier detection. Thus, points that are suspicious can be rejected by 
the system, for example. To illustrate these scenarios, in Figure 2 we 
show and example from [Nguyen et al. 2015] using a state-of-the-art 
deep neural network for an image classification task. All the patterns 
showed in Figure 2 are recognised by the machine learning system as 
concrete objects (see the labels below each picture) with more than 
99% confidence. However, none of the patterns has any resemblance 
with objects from the category assigned by the machine learning sys-
tem.  

• On the other side, smart adversaries can leverage regions of the fea-
ture space for which the learned model differs from the true model 
that we would learn if we could characterise completely the underly-
ing data distribution or, in other words, if we had an infinite number of 
data points for training the machine learning algorithm. This vulnera-
bility occurs because the number of data points used for training the 
algorithms is limited and/or the learning algorithms have limited ca-
pacity to solve the tasks their aiming to solve (for example, when using 
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a linear classifier to solve a non-linear classification problem or when 
using a small neural network with limited expressive power). Apart 
from this, the presence of noise in the data can make impossible to 
solve perfectly a specific task, i.e. the system will naturally produce er-
rors. Then, attackers can also leverage regions where these errors are 
more frequent. The adversarial example depicted in Figure 1 belongs 
to this category. In Figure 3 we show an example to explain this sce-
nario for a binary classification problem, where a learning algorithm 
aims to classify the red dots and the yellow stars. The blue line depicts 
the true model we would learn if we had an infinite number of training 
points, and the red line represent the model learned based on the 
stars and dots represented in the figure. The grey areas are the regions 
for which the true and the learned model differ. These regions can be 
leveraged by attackers to craft successful attacks by slightly modifying 
the features of genuine data points (as shown in the example).   

 

 

Figure 2 Noise patterns incorrectly identified by a machine learning system 
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Figure 3 Explaining adversarial examples 

 

Different white-box (such as [Szegedy et al. 2013], [Goodfellow et al. 2014] [Papernot et al. 
2016b], [Carlini, Wagner 2017]) and black-box (such as [Chen et al. 2017], [Ilyias et al. 2019], 
[Co et al. 2019]) attacks have been proposed in the research literature, showing that ma-
chine learning algorithms are very sensitive to this threat, especially in some application 
domains.  

 

3.2 Intriguing Properties of Adversarial Examples 

There are two interesting and intriguing properties that can help to understand the underly-
ing weaknesses of learning algorithms against adversarial examples. First, we have attacks 
transferability [Papernot et al., 2016]: vulnerabilities are shared across different learning 
algorithms. In other words, adversarial examples that are successful against a particular 
learning algorithm are often successful to deceive other learning algorithms, especially if 
they are similar. This enables black-box attacks, as the attacker can build a surrogate model 
to craft adversarial examples using white-box attack strategies, and then perform quite suc-
cessful black-box attacks in the target system with these examples.  

The second property of interest for the analysis of these vulnerabilities is the universal char-
acter of some adversarial perturbations. For example, [Moosavi-Dezfooli et al. 2017] showed 
that deep networks are vulnerable to universal adversarial perturbations, such that one ma-
licious perturbation added to a large set of genuine examples is capable of producing errors 
in the learning algorithm for a large fraction of these examples. Thus, the attacker does not 
need to craft specific adversarial perturbations for each input; the same perturbation pro-
duces adversarial examples with a high probability. Universal adversarial perturbations sug-
gest the existence of systemic vulnerabilities in the learning algorithms. 

 



 

 

 

 D5.1 Threat analysis for federated machine learning algorithms 19 

Machine Learning to Augment Shared Knowledge in 
Federated Privacy-Preserving Scenarios (MUSKETEER) 

3.3 Attacks at Run-time in MUSKETEER 

In federated machine learning scenarios, once the system is deployed the vulnerabilities at 
run-time are the same as in a standard (non-distributed) machine learning algorithms, i.e. 
there will exists the same weaknesses and blind spots that can be leveraged by the attacker 
to produce errors in the system by crafting adversarial examples.  

Depending on the POM and the availability of the model after training, white-box attack may 
not be possible against MUSKETEER trained models, but there still exists the vulnerability of 
the system against black-box attacks, who can be perform both, by querying the target sys-
tem or by crafting attack points through a surrogate model.  

In MUSKETEER project, in task T5.3 (WP5) we will investigate and develop techniques to mit-
igate this threat by, first, testing the algorithms’ robustness against different evasion attack 
strategies (deliverable D5.3) and, second, by developing mechanisms to enhance the robust-
ness of the algorithms used in MUSKETEER platform against these attacks (deliverable D5.5).    

4 Poisoning Attacks  

Many machine learning systems rely on untrusted data collected from different data sources 
that may not be reliable or the integrity of the data can be compromised, such as humans, 
machines, sensors or IoT devices, to cite some. In many cases, data curation or cleaning is 
not always possible, and then, learning algorithms are trained using untrusted data. It is 
clear that this offers cyber criminals an opportunity to compromise the integrity of machine 
learning systems by performing poisoning attacks. Thus, attackers can subvert the learning 
process to manipulate and damage the system by injecting malicious data into the training 
set used by the learning algorithms. Data poisoning is one of the emerging and most relevant 
threats for data-driven technologies [Joseph et al., 2013]. Some of the attacker’s goals in 
these scenarios can include: 

• Reducing the overall system’s performance. 

• Produce specific types of errors over particular sets of instances (tar-
geted attacks). 

• Facilitate subsequent evasion attacks. 

• Create backdoors (see Section 5). 

For some applications, the learning algorithms are regularly re-trained to adapt to changes in 
the data distribution or to offer a more personalised service to new users. In these cases, the 
stream of new data collected is used to update the parameters of the system. Malicious us-
ers can take advantage of this to gradually poison and manipulate the system while still 
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evading detection. In many cases, even if the malicious data injected is correctly identified 
by the system, its performance is still degraded when this malicious data is used to train or 
re-train the algorithms. For example, in spam filtering applications, learning algorithms typi-
cally aim to classify emails as spam or ham (good emails) based on the words contained in 
the header and the body of the emails (among other features). Attackers can poison these 
systems by sending spam emails that contain words typical of both, good and spam emails. 
Then, when the system is re-trained, to learn new forms of spam or to personalise the ser-
vice, including these malicious emails in the training dataset, some of the words that were 
previously considered by the system as indicative of good emails will now be considered as 
typical of spam. Hence, after re-training possibly some good emails containing those words 
will be incorrectly classified as spam. 

In Figure 4 we show a synthetic example with a poisoning attack on a binary classification 
task, where the learning algorithm aims to classify the red and the blue dots. The blue solid 
line depicts the decision boundary that the model would learn in the absence of attack. But, 
if the attacker injects a few poisoning red points (depicted as a red star) in the training set, 
the decision boundary learned, represented by a red solid line, is significantly different from 
the previous one. Comparing this scenario with the one in Figure 3, we can observe that af-
ter injecting a few poisoning points the attacker can facilitate evasion attacks at test time in 
this case, leveraging regions where the two models differ. 

 

 
Figure 4 Example of data poisoning in a binary classification task 

 

Different poisoning attacks have been shown in the research literature targeting different 
machine learning algorithms. First reported attacks relied on simple heuristics capable of 
compromising spam filtering applications trained with Naïve Bayes [Lowd, Meek 2005], [Bar-
reno et al. 2010]. More systematic approaches have been described later in the literature 
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targeting well-known machine learning algorithms, including SVMs [Biggio et al. 2012], linear 
classifiers [Mei, Zhu 2015], and neural networks and deep learning systems [Koh et al. 2017], 
[Muñoz-González et al. 2017], to cite some. Although most of these attacks are white-box, 
i.e. the attacker is assumed to know the details and dataset used in the targeted system, 
black-box attacks are also possible by using a surrogate model or a surrogate dataset. In this 
sense, [Muñoz-González et al. 2017] showed empirically that, as in the case of evasion, at-
tacks are transferable, i.e. attacks that are effective against one model are often effective 
when tested against similar models. Recent work in [Demontis et al. 2019] provided further 
evidence of attack’s transferability.  

 

4.1 Attack Scenarios 

Different poisoning attack scenarios can be considered according to the capabilities of the 
attacker to manipulate the data and the ultimate objective of the attacks. It is clear that the 
attacker’s capabilities and the specific application settings can limit the goal of the attack.  

 

Manipulation of labels 

Some applications rely on labelled datasets, where the labels need to be manually annotat-
ed. Typically, a set of (untrusted) annotators labels the data, so that each data point is la-
belled by more than one annotator. Then, crowdsourcing techniques are usually applied to 
automatically aggregate the information by considering the annotators’ skills, which are also 
learned by the crowdsourcing algorithm. Although some crowdsourcing algorithms, such as 
[Raykar, Yu 2012], allow for the detection of spammers (annotators that label data at ran-
dom) or biased annotators, attackers can perform crowdturfing attacks, where malicious 
users collude to deceive the crowdsourcing algorithm [Yao et al. 2017]. These attacks are 
also referred to as label flipping attacks [Xiao et al. 2012], [Paudice et al. 2018b], where the 
features of the data remain intact and only their labels are altered. This can affect super-
vised and semi-supervised learning tasks, such as classification or regression. Other forms of 
crowdturfing are also possible in unsupervised learning algorithms, as for example, in rec-
ommender systems or social networks, where the users’ reputation or items’ ratings can be 
manipulated from the feedback provided by malicious colluding users.  

 

Manipulation of features 

In other applications it is also reasonable to assume that the attacker can manipulate differ-
ent features of the data used to train the learning algorithms. Although in some cases, the 
attacker may not be in control of the label assigned to the malicious data points, they can 
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infer the labels that will be possibly assigned to them. For example, in the spam filtering ap-
plication described before, the attacker can reasonably assume that poisoning emails will be 
labelled as spam.  

Depending on the attacker’s capabilities we can consider three scenarios or models for the 
attacker: 

• Insertion model: the attacker can add malicious samples to the train-
ing dataset but cannot modify genuine data. 

• Edition model: the attacker can edit/manipulate the features and la-
bels of genuine data points.  

• Deletion model: the attacker can remove genuine data points from 
the training dataset that can be relevant to achieve the attacker’s goal. 

 

Manipulation of model updates 

In federated machine learning scenarios there is a different possibility for performing poi-
soning attacks in the case of insider attackers. In these cases, the users do not share the da-
ta, but compute internally some operations that allow the central node, which coordinates 
the learning process, to update the parameters of the learning algorithm. For example, each 
user can send to the central node the gradients of the model’s parameters computed on a 
subset (batch) of their training data. Thus, the central node (and the other users) is not 
aware of the training data from each user. Insider attackers can, then, manipulate the be-
haviour of the learning algorithm by sending malicious updates to the central node, which 
does not necessarily imply to modify the training dataset. In fact, these attacks provide more 
flexibility to the adversary to achieve her/his goal as it is possible to target specific compo-
nents of the learning algorithm. For example, in deep networks, the attacker may perform 
attacks aiming to influence the latter layers in the network. It is clear that the effectiveness 
of the attack will be determined by the number of users in the platform. For example, if the 
number of malicious users is reduced compared to the total number of users, attacks aiming 
to degrade the overall system’s performance will have a limited effect. However, even in 
these situations, successful targeted attacks are still possible.  

If the communication link between the users and the central node is vulnerable, outsiders 
can also perform these poisoning attacks by intercepting the communication between some 
of the users and the central nodes. Then, the attacker can send malicious model updates to 
the central node on behalf of legitimate users. This can be seen as a man-in-the-middle at-
tack.  
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4.2 Poisoning Attacks in MUSKETEER 

In MUSKETEER, we need to differentiate two scenarios for data poisoning depending on the 
type of the attacker: insider or outsider.  

 

Outsider attackers 

In this case, the federated machine learning algorithms in MUSKETEER can be vulnerable to 
data poisoning in cases or applications where the data used to train the algorithms is un-
trusted or can be compromised. The strength of the attack will be determined by the frac-
tion of users whose data has been compromised. For example, if only a small fraction of us-
ers has been compromised (i.e. their datasets have been compromised), indiscriminate at-
tacks aiming to degrade the overall performance of the system will have a very limited ef-
fect. Moreover, in this case, attacks can be easier to detect, as the model updates provided 
by the compromised users can be significantly different compared to the ones from the non-
compromised users. However, subtler (targeted) attacks are still possible and can be more 
difficult to detect by analysing and comparing the model updates provided by all the users in 
the platform.  

Although the man-in-the-middle attacks described before are possible in federated machine 
learning scenarios, MUSKETEER platform provides security mechanisms to protect and guar-
antee the confidentiality in the communications between the central node and the platform 
users (these aspects are covered in WP3 and WP7). Thus, unless these security mechanisms 
are bypassed, these attacks will not be possible in MUSKETEER. Moreover, in some of the 
POMs, there is no communication between the users and the central node at training time 
(see Section 7), which removes completely the possibility of a man-in-the-middle attack.  

 

Insider attackers 

According to the number and the coordination between the insider attackers we can consid-
er different scenarios: 

• A single malicious user: in this case the attacker can either manipulate 
its own training dataset or the model updates it sends to the central 
node. This also depends on the MUSKETEER’s POM used to perform 
the task, as for some of the POMs, only data manipulation is possible 
(see Section 7). The effectiveness of some attacks can be limited, alt-
hough targeted attacks can be successful (see for example backdoor 
attacks in Section 5). If the attacker is sloppy and does not self-impose 
appropriate detectability constraints to perform the attack, in this sce-
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nario, attacks can be easier to detect by, for example, analysing the 
statistical properties of the model updates sent by all the users. Some 
of these attacks can be filtered-out, for example, with the data align-
ment techniques proposed and implemented in WP4 (see for example 
deliverable D4.2).  

• A subset of uncoordinated malicious users: this is an extension of the 
previous case, where, in this case, several attackers aim to manipulate 
the performance of the system, but each attacker may have a different 
objective and the attack is not coordinated. Depending on the fraction 
of attackers compared to the total number of users and the alignment 
of the different attacker’s goals, it may be more or less difficult to de-
tect attacks based on the statistical analysis of the model updates. As 
before, depending on the POMs attackers can manipulate their da-
tasets or the model updates sent to the central node.  

• Groups of coordinated malicious users: this scenario will be analysed 
more carefully in Section 7. This can include two possibilities: a subset 
of malicious users that perform a coordinated attack or different 
groups of coordinated malicious users with aligned or competing ob-
jectives.  

In MUSKETEER project, in task T5.2 we will investigate the vulnerabilities of the algorithms 
used in the platform against poisoning attacks (deliverable D5.2), as well as defensive strate-
gies that can help to detect and mitigate the effect of such attacks (deliverable D5.4).  

 

5 Backdoors  

Similar to other settings in traditional system’s security, machine learning algorithms can 
also be vulnerable to backdoors or trojan attacks that compromise the integrity of the learn-
ing algorithm. This can happen in scenarios where the data used to train the learning algo-
rithms is untrusted (as in poisoning attacks) or where the machine learning model deployed 
cannot be trusted.   

Training large machine learning algorithms, such as DNNs or CNNs, can be computationally 
very intensive, as they require using a large amount of training data and millions of parame-
ters to be tuned to achieve good performance. This has opened different possibilities to train 
and deploy machine learning systems at a reduced cost, such as: 
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• Machine Learning as a Service (MLaaS): some computing providers 
like Google, Microsoft or Amazon offer services to outsource the train-
ing of machine learning models to the cloud. Thus, if the service pro-
vider is compromised, the integrity of the model can also be compro-
mised.  

• Federated machine learning systems: if some of several users are ma-
licious or the integrity of their data is compromised, then the machine 
learning system can be compromised (as explained in previous sec-
tions for the case of poisoning and evasion attacks). 

• Transfer learning: machine learning developers can use pre-trained 
models designed to solve some specific tasks. These pre-trained mod-
els can be fine-tuned to solve a different (but similar) task requiring 
less training data and less computation. If the integrity of the pre-
trained model is compromised, then, performance of the final model 
can also be affected. 

• Model outsourcing: some companies or public organisations rely on 
proprietary models developed by external companies. In some cases, 
access to the training datasets used by these external companies may 
not be possible due to intellectual property limitations. This can hinder 
the detection of malicious behaviour in the learning algorithms, for ex-
ample, if the dataset used to train the system is compromised. On the 
other side, if the external company is dishonest, the outsourced model 
can also be manipulated to create backdoors.  

 

All these scenarios introduce new security risks and models can be compromised by 1) poi-
soning the datasets used for training or 2) directly manipulating the models. Backdoor at-
tacks can be performed by exploiting any of these two possibilities.   

More concretely, in a backdoor or trojan attack against a machine learning system, an adver-
sary can create a maliciously trained model which has a good performance when evaluated 
on regular inputs or datasets, but which behaves badly when tested on specific attacker-
chosen inputs [Gu et al. 2017], [Liu et al. 2017]. To achieve this goal, attackers can: 

• Perform a targeted poisoning attack, aiming to produce errors only for 
a reduced (and specific) set of inputs. 

• Directly manipulate the parameters of the model to introduce back-
doors with the desired behavior for a specific set of inputs.  
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5.1 Triggering Backdoors 

Backdoors are usually activated through a trigger, i.e. a specific pattern that, when added to 
a genuine data point, produces the (incorrect) behaviour desired by the attacker. For effec-
tive backdoor attacks, this trigger must contain a pattern that is rare amongst genuine data 
points, so that the backdoor is not activated when tested on genuine inputs. At the same 
time, the trigger should be a pattern that can be easily included by the attacker when the 
system is in operation to activate the backdoors. Attackers may also want to introduce sub-
tle triggers to remain undetected.  

At the moment, most of the research literature on backdoors has focused on computer vi-
sion problems [Gu et al. 2017], [Liu et al. 2017], [Wang et al. 2019], where the triggers pro-
posed to generate backdoors are usually specific geometric forms that are added to genuine 
objects or specific patterns that are added in features that provide little information for the 
task to be solved.  

In Figure 5 we show an example for a traffic sign recognition system. Here, the attacker uses 
a yellow sticker as a trigger to activate the backdoor. Then, when the yellow sticker is added 
to a stop sign, the system misclassifies it as a speed limit sign.  

 

 
Figure 5 Example of a backdoor attack 
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In Figure 6, we have two examples of possible triggers in a handwritten digit recognition 
task, using MNIST, a well-known benchmark in computer vision. In the centre of the figure 
the attacker just needs to manipulate a single pixel in the image to trigger the backdoor. This 
trigger is located in a region where, in most cases, the represented hand-written digit is not 
present (i.e. the selected pixel for the trigger is always black in the genuine dataset). Howev-
er, as the trigger is very simple, there is a possibility that the backdoor can be activated unin-
tendedly, for example if the image has some salt and pepper noise. To avoid this, more elab-
orated patterns can be preferred, as the one shown on the right plot in Figure 6. In this case, 
the trigger can be easily detected, as it also leverages a region of the image where there is 
usually no relevant information, but it is more difficult to trigger the backdoor accidentally. 

 

 

 
Figure 6 Two different triggers to generate a backdoor 

 

In both Figures 5 and 6, the proposed patterns to trigger the backdoors only affect a reduced 
set of features, so that the objects or digits represented in the images are preserved. For 
example, humans can recognise the stop sign in the malicious example in Figure 5. However, 
the features modified by the trigger stand out when compared to genuine examples: it is not 
usual to have yellow stickers on stop signs.  

The attacker uses these patterns to increase the effectiveness to activate the backdoor, 
however, these patterns can also be easier to detect. Hence, we can expect a trade-off for 
the attacker between the effectiveness of activating the backdoor and its detectability. It is 
reasonable to think that future sophisticated backdoor attacks will include subtler patterns 
that cannot be easily distinguished from genuine data.  
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5.2 Backdoor Attack Scenarios 

On the attacker’s side, we can consider two different mechanisms to create backdoors, 
which are intrinsically related to the attacker’s capabilities to influence or manipulate the 
model: 

• On one side, attackers can create backdoors by performing targeted 
poisoning attacks, where the adversary injects malicious data in the 
training set. In this case, the attacker needs to be in control of the la-
bel assigned to the malicious examples and to be able to modify the 
features of these examples to include the desired trigger. In federated 
machine learning scenarios, insider attackers can also create back-
doors by sending malicious model updates to the central node. 

• On the other hand, in some cases attackers can manipulate directly 
the parameters of the model to create the backdoors. This can happen 
if the integrity of the model can be compromised by an attacker 
(someone illicitly access and manipulates the model) or in cases where 
machine learning developers behave in a malicious way (dishonest de-
velopers).   

On the defender’s side, we can also consider two different scenarios that can lead the de-
fender to use different strategies to try to detect and “close” backdoors:  

• The defender has access to both the machine learning model and the 
training dataset (or, at least, to a fraction of the training dataset). This 
includes scenarios where the user (defender) trains a machine learning 
model relying on untrusted datasets or in cases where both, the integ-
rity of the model and the training dataset can be compromised (e.g. if 
the attacker can access the machines where the model is stored). This 
can also include federated machine learning deployments, where us-
ers can have access to the shared machine learning model and to a 
fraction of the training data. In other words, the users have access to 
their own training dataset but not to the training data from the other 
users. 

• The defender has only access to the trained model. This includes cases 
where the user outsources the model to an external company that 
trains the learning algorithm using their own (proprietary) dataset, 
which is not shared with the user. This scenario also encompasses cas-
es where the user relies on external pre-trained models (like in trans-
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fer-learning approaches) to fine-tune or deploy, the user’s machine 
learning system.  

 

5.3 Backdoor Attacks in MUSKETEER 

Backdoor attack scenarios on MUSKETEER platform relate to those cases where attackers 
can only create the backdoor by poisoning the machine learning model, assuming that the 
attacker has not access and the possibility to directly edit or manipulate the parameters of 
the model after training (which would require exploiting software vulnerabilities of the ma-
chines where the machine learning models are stored). 

 

Outsider attackers 

In the case of outsider attackers, the main mechanism to create backdoors is to compromise 
the dataset of some of the platform users, and then, perform a targeted poisoning attack. In 
some of the POMs, in the remote case the attacker performs a man-in-the-middle attack and 
compromises the communication between some of the users and the central node, there is 
a possibility to create backdoors by sending malicious model updates to the central node.  

 

Insider attackers 

For insider attackers, similar to poisoning attacks, there are also two possibilities to perform 
backdoor attacks: 1) to manipulate the training dataset or 2) to send malicious model up-
dates to the central node. For some of the MUSKETEER’s POMs (as we will discuss in Section 
7) backdoors can only be created by manipulating the training dataset, as the user has not 
access to the training process.  

On the other side, we can also consider different scenarios according to the number of at-
tackers and their intentions: 

• Single attacker. 

• Uncoordinated set of attackers where each attacker aims to create 
her/his own backdoor. 

• Coordinated groups of attackers. 

 

As described before, the ways to create backdoors in MUSKETEER are very similar to those 
required to perform poisoning attacks. Thus, in task T5.2 we will also include the investiga-
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tion of the mechanisms that can allow sophisticated attackers to create backdoors (delivera-
ble D5.2) and defensive mechanisms to detect and close them (deliverable D5.4). 

 

6 Users’ Colluding Attacks 

In this section we introduce users’ colluding attacks, which can be seen as a particular case 
of data poisoning where a group (or different groups) of malicious user aim to manipulate 
the model in a coordinated way. In Figure 7 we show different attack scenarios to clarify the 
difference between standard data poisoning and users’ colluding attacks: 

 

              (a)                                                                      (b) 

  
 (c)                                                                        (d) 

 

Figure 7 Colluding vs non-colluding attacks 
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• In Figure 7(a) we show a typical scenario for a poisoning attack where 
one malicious user aims to compromise the performance of the sys-
tem (or the data from that user has been manipulated by an external 
adversary). 

• Figure 7(b) represent a poisoning attack scenario with two uncoordi-
nated attackers, i.e. each attacker has her/his own goal. 

• A coordinated attack is shown in Figure 7(c), where a group of 3 mali-
cious users collude to manipulate the model, i.e. they craft a poisoning 
attack with the same goal.  

• A more complex scenario is depicted in Figure 7(d) where two differ-
ent groups of adversaries perform poisoning attacks with separate 
goals.  

 

Standard poisoning attacks with uncoordinated attackers can be easier to detect, especially 
if the attacker is sloppy and does not consider appropriate detectability constraints to craft 
the poisoning points. On the other hand, the attacker’s capabilities to influence the model 
can be limited (e.g. in the case of indiscriminate poisoning attacks) and inversely proportion-
al to the number of users in the platform. On the other hand, colluding attacks involving a 
reasonable number of malicious users can achieve a more significant damage in the target 
system and, at the same time, they can be more difficult to detect.  

 

6.1 Attack Scenarios 

The goal of users’ colluding attacks comprises a set of different scenarios, including: 

• Indiscriminate attacks aiming at reducing the overall performance of 
the machine learning system.  

• Targeted attacks (both error-generic and error-specific) against specif-
ic subset of inputs, e.g. possible inputs from genuine users of the plat-
form. 

• Creation of backdoors (see Section 5).  

 

In the case of indiscriminate and targeted attacks, we can have the same attack scenarios as 
those described in Section 4.1 for data poisoning. In these cases attackers can also (at least 
partially) reverse engineer the malicious changes they introduced in the model to recover a 
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model with a better performance whereas the rest of the (benign) users get a degraded 
model.  

For creation of backdoors through colluding attacks we can have the same scenarios as 
those described in Section 5.2.  

In the research literature some approaches have already been proposed for Byzantine toler-
ant federated machine learning algorithms [Blanchard et al. 2017], [El Mhamdi et al. 2018], 
describing robust mechanisms to aggregate model updates in scenarios where some of the 
users send faulty or malicious updates. However, [Bhagoji et al. 2019] have shown that these 
defensive mechanisms can be bypassed even by a single malicious user at least in the case of 
targeted poisoning attacks. Then, it is reasonable to think that smart colluding attacks can 
also deceive these defences for more greedy goals (such as indiscriminate attacks).  

 

6.2 Users’ Colluding Attacks in MUSKETEER 

In MUSKETEER users’ colluding attacks follow similar considerations to those described both 
for backdoors and poisoning attacks. Although both insider and outsider attackers are possi-
ble, in this case it is more reasonable (and plausible) to consider insider attackers aiming to 
degrade or manipulate the performance of the system for the rest of the non-colluding us-
ers.  

Outsider attackers may be possible, but in this case the attackers would require compromis-
ing the datasets of several users and/or intercepting the communication between the cen-
tral node and these target users. Compared to standard poisoning, evasion or backdoor at-
tacks this could require a more significant effort on the attacker’s side.  

For insider attackers, there are two mechanisms to craft these attacks: 

• Manipulating directly the model updates sent to the central node. This 
option could only be possible for some of the POMs where the mali-
cious users interchange directly information with the central node. 

• Manipulating their own training datasets to perform coordinated poi-
soning attacks. This option enables to perform attacks against all the 
POMs in the platform.  

In MUSKETEER, in Task T5.4 we will investigate thoroughly how colluding users can manipu-
late the federated machine learning algorithms used in the platform. In T5.5 we will investi-
gate and develop mechanisms to detect and mitigate these coordinated attacks.  
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7 Threat Model across MUSKETEER’s POMs 

In this section we describe the different attack scenarios that are possible across the differ-
ent POMs in MUSKETEER platform. For the sake of clarity, first, we will describe briefly how 
federated machine learning systems are trained.  

In Figure 8 we show an example of a typical setting on a federated machine learning plat-
form, where several users want to build a shared machine learning model without sharing 
explicitly their datasets. For this, there is a central node responsible for aggregating the in-
formation sent by all the users to build the model. The procedure to do this is as follows: 

• The central node sends the current parameters of the model to all the 
users in the platform. 

• The users compute locally model updates to improve the performance 
of the system based on their own datasets. Then, these model updates 
are sent to the central node. Note that the users do not need to ex-
change their data, but they just send information about the parame-
ters of the model, which helps to preserve the privacy or their data. 

• The central node updates the parameters of the shared model using 
the information sent by (all or part of) the users. 

• The process is repeated until the training of the machine learning 
model is completed.  

• When training is finished, the model can be shared across the users. 

 
Figure 8 Training in federated machine learning 
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In MUSKETEER we provide variations of this standard approach to cope with different sce-
narios with different privacy-preserving demands. We refer to them as Privacy Operating 
Modes (POMs). In the remainder of this section, we will describe the possible attacks for 
these POMs. 

As mentioned in the introduction, here we describe all possible scenarios that can let an at-
tacker compromise the integrity of the machine learning models. Some of these attacks may 
require exploiting previously software vulnerabilities. These aspects are out of the scope of 
WP5, but are covered in WP3 (see for example T3.4) and WP7. 

 

7.1 Federated Collaborative Privacy Operation Modes 

These privacy operation modes are similar to the standard scenario described previously, 
where the data never leaves the data owner’s facilities. Then, the shared machine learning 
model is shared between the central node and the users, who locally compute the model 
updates to be sent to the central node update the model’s parameters. Figure 9 shows the 
communication scheme in these settings (for POM 1) in a case with two users and the cen-
tral node.  

In MUSKETEER we have 3 different POMs following this paradigm:  

• POM 1 (Aramis): Here, data cannot leave the facilities of each data 
owner, and the predictive models are transferred without encryption. 
It is intended for partners who want to collaborate to create a predic-
tive model that will be public.  

• POM 2 (Athos): The same schema as Aramis but using homomorphic 
encryption with a single private key in every client. The server can op-
erate in the encrypted domain without having access to the unen-
crypted model. In this case the predictive model can be private. 

• POM 3 (Porthos): Extension of Athos, where different data owners 
use different private keys for homomorphic encryption. The central 
node can transform encrypted models among different private keys. 

 

Attacks at Training Time 

In these POMs the users participate in the training process, i.e. the computation of the mod-
el updates is done on the user’s side. Then, the users can manipulate not only the training 
data, but also the model updates they send to the central node. Then, insider attackers have 
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more flexibility to perform poisoning attacks. This also includes scenarios with coordinated 
attacks with colluding users.  

In the cases where the model is made available to the final users, the attackers can possibly 
reverse engineer the malicious changes they have produced in the system and recover the 
good model once training has finished. Then, the benign users will get a degraded version of 
the model, whereas the malicious users can get a better model.  

 

 

 
 

Figure 9 Communication scheme for POM 1 (Aramis) 

 

Similar to standard poisoning attacks, backdoors are also possible both, by performing tar-
geted poisoning attacks or by manipulating the model updates.  

In the case of insider attackers, these POMs enable the possibility of having dynamic at-
tacks, i.e. attackers can adapt their strategy and measure their success as they regularly re-
ceive the model updates from the central node, so they can monitor the training process. 

Outsiders can perform attacks at training time by: 

• Compromising the dataset of one or several users. 

• Performing a man-in-the-middle attack, intercepting the communica-
tions between one or several users and the central node. In this case, 
the attacker can also adopt dynamic strategies, as she/he can monitor 
the training process. 
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Attacks at Run Time 

Evasion attacks at run-time are always possible, although the ability of the attacker to suc-
ceed on her/his attack can be different depending on whether the attacker can have access 
to the final model or not.  

If the attacker has access to the trained model, she/he can perform white-box evasion at-
tacks, i.e. the attacker knows the parameters and the architecture of the final model. This 
can happen for insider attackers that can have access to this model (in the case it is dis-
closed) or for outsider attackers that steal the model by exploiting a software vulnerability in 
the system (in the central node or for some of the users).   

If the attacker cannot access the final model, different black-box evasion attacks can also be 
possible. In these cases the attacker can: 

• Build a surrogate model with a surrogate dataset and exploit attacks 
transferability to succeed on her/his goal. 

• Query the model to look for the blind spots and craft successful adver-
sarial examples. 

Obviously the effectiveness of the black-box attacks is expected to be reduced compared to 
white-box settings. However, research works in adversarial machine learning have shown 
that even black box attacks can still be very effective, e.g. [Co et al. 2019].  

 

7.2 Privacy Operation Modes in a Semi-Honest Scenario 

In these settings, the training of the machine learning models takes place on the server side 
and the protection of the resulting model is at maximum. In some cases the datasets from 
the different users may need to leave users’ facilities and be stored in a trusted external 
server (POM 4). The server may ask the users to compute some specific operations to com-
plete the training model, but they never see the complete model during training. Users can 
only access the machine learning model when training is completed (if the model is dis-
closed). 

In Figure 10 we show the communication schema for POM 4, where the users’ data is en-
crypted and stored in a separate cloud server. Then, the server uses this encrypted data to 
train the model with no further interaction with the users. 
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Figure 10 Communication scheme for POM 4 (Rochefort) 

 

Following this scheme we have 3 different POMs in MUSKETEER: 

• POM 4 (Rochefort): In this case the platform acts as a trusted crypto-
graphic service provider (or master authority) that issues the public 
parameters for the generation of multiple (public and secret) key. This 
POM uses a homomorphic cryptosystem with a double trapdoor de-
cryption mechanism. The first decryption procedure allows a given us-
er to decrypt cipher texts encrypted with a specific public key (local se-
cret key), and the second one provides a master key for decrypting any 
cipher text, whatever its key is. To reduce the user involvement in the 
process, the platform also offers private cloud storage for users’ en-
crypted data. Then, even if the data leaves users’ facilities, it is secure-
ly encrypted in the cloud server. 

• POM 5 (de Winter): In this case a partially homomorphic cryptography 
method is also used, but data does not leave the users’ local storage 
databases and data is never decrypted outside users’ facilities. A proxy 
re-encryption process is used to avoid using the Crypto Processor de-
scribed in POM 4, but now the users have to provide the result of 
some operations not supported by the homomorphic encryption. On 
the positive side, any training algorithm that can be decomposed into 
basic operations can be adapted to this scheme. 
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• POM 6 (Richelieu): This setting does not require the use of encryption. 
Data never leaves the users’ facilities, and the full model is never sent 
to users during training, therefore it provides a high degree of privacy. 
Data is processed on the client side to obtain a compact representa-
tion of information that preserves privacy according to k-anonymity 
concepts (privacy induced by averaging the operations of many users).  

 

Attacks at Training Time 

These POMs reduce the adversary’s capabilities to perform (coordinated/uncoordinated) 
poisoning and backdoor attacks. Thus, both insider and outsider attackers can only manipu-
late the training data to manipulate the machine learning model. Manipulation of the model 
updates sent to the central node is not possible unless the cloud server is compromised.  

As the attacker’s cannot directly manipulate directly the model updates, the attackers can-
not perform dynamic attacker, i.e. they cannot adapt their strategies during training time.  

User collusion is also possible by manipulating the users’ training dataset before training. As 
the users cannot monitor the training progress and only can access the machine learning 
model after training is completed (if the model is disclosed), reverse engineering the mali-
cious changes in the final model may be more challenging than in the case for POMs 1-3, 
where the malicious users can get more information about the manipulation of the model 
during training.  

 

Attacks at Run Time 

For evasion attacks at run-time, for these POMs we have the same scenarios and considera-
tions as in the case for POMs 1 - 3. 

 

7.3 Unrestricted Data-Sharing Privacy Operation Modes 

These POMs include more traditional approaches to train machine learning models for sce-
narios where the users do not have any privacy restriction concerning data sharing. This in-
cludes modes where data can leave the users’ facilities using secure communication proto-
cols (WP3) and remain unencrypted in the cloud and on the client side.  

In MUSKETEER we have two POMs with unrestricted data-sharing operation: 

• POM 7 (Planchet): In this case the users store their datasets in an ex-
ternal cloud server and the machine learning models are trained on 
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that external server without data encryption. The model can be shared 
with the users after training is completed. Figure 11 shows the com-
munication scheme for this POM in a scenario with 3 users and the 
central node (server). 

 

 
Figure 11 Communication scheme for POM 7 (Planchet) 

 

• POM 8 (Dartagnan): under this operation mode users can download 
different datasets and train their own machine learning models locally. 
In Figure 12 we show an example of this POM where 3 users share 
their datasets through the cloud server and one of them uses the 
shared dataset to build locally a machine learning model. 

 

 
Figure 12 Communication scheme for POM 8 (Dartagnan) 
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Attacks at Training Time 

• POM 7 (Planchet): As the machine learning model is computed on the 
external cloud and the users do not have access to the model until 
training is completed, manipulation of the model updates during train-
ing are not possible (unless the integrity of the cloud server is com-
promised and attackers can manipulate the model directly on the 
server). Then, poisoning and backdoor attacks are only possible by 
manipulating directly the training datasets provided by the users. In 
this case, both insider and outsider attackers are possible. As the users 
do not compute the model locally and cannot influence the training 
process (once started), then, dynamic/adaptive attack strategies are 
not possible. Similar restrictions apply for users’ colluding attacks.  

 

• POM 8 (Dartagnan):In this case only one user trains her/his own ma-
chine learning model, leveraging the data from other users. Insider at-
tackers can include other users that may want to provide wrong or ma-
licious data to degrade the performance of the system trained by the 
interested user (to perform both poisoning and backdoor attacks). 
Then, insiders can only influence the learning algorithm by manipulat-
ing the datasets they provide to the platform, but they cannot influ-
ence the model once the training starts, as the model is computed lo-
cally in the user’s facilities. Similarly, users’ colluding attacks are only 
possible through the manipulation of the datasets provided to the user 
building the machine learning model. Outsider attackers can perform 
both poisoning and backdoor attacks by manipulating the data or in-
jecting poisoning points in the data sets for any of the platform users.  

 

Attacks at Run Time 

For evasion attacks at run-time, for these two POMs we have the same scenarios and con-
siderations as in the previous cases. 

 

8 Conclusion  

We have shown that machine learning systems can be vulnerable to both attacks at training 
and test time. In this report, we have provided a comprehensive description of such threats 
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including poisoning, evasion and backdoor attacks. We have also focused on specific cases 
that can compromise the security of federated machine learning algorithms, as it is the case 
of insider attackers that can collude to degrade or manipulate system’s performance at 
training time. We have also introduced a threat model to formalise the different attack sce-
narios against machine learning systems, including the cases relevant to MUSKETEER. Finally, 
we have also described the different threats and vulnerabilities for the different POMs pro-
posed in MUSKETEER.  

This report will serve as a reference for the rest of the work in WP5, which aims to investi-
gate and develop mechanisms to test the security of the learning algorithms to be used in 
MUSKETEER, as well as to propose defensive mechanisms to defend against possible attacks 
and mitigate the vulnerabilities of the learning algorithms.  
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