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Executive Summary

This deliverable D4.1 — Investigative overview of targeted architecture and algorithms - is the
first outcome of WPA4. It includes a technical report with the state of art of privacy preserving
machine learning and the technical description of the different Privacy Operation Modes
(POMs) that will be implemented in the MUSKETEER platform. This deliverable also contains
examples about how machine learning algorithms can be implemented on top of every POM.
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1 Introduction

1.1 Purpose

This deliverable includes a technical report with the description of the different Privacy Oper-
ation Modes (POMs), their related state-of-art and shows how machine learning algorithms
can be implemented on top of every POM.

1.2 Related Documents

D4.1 will serve as a basis for D3.1 Architecture design — Initial version. The machine learning
algorithms description and the POM communications schemas will set the groundwork for the
architecture definition, to be provided in D3.1. D4.1 will also be taken into consideration for
D4.2, D4.4 and D4.6.

1.3 Document Structure

This document is organized as follows. In Section 2, we briefly revisit the concepts of Machine
Learning. Section 3 summarizes the motivations and current barriers encountered in data
sharing. The description of some cryptographic and privacy preserving concepts is described
in section 4. In section 5 we introduce the POMs and also describe how ML algorithms can be
implemented over them. Finally, we provide some conclusions obtained during the develop-
ment of this document.

2 Machine Learning concepts

2.1 Machine Learning ‘task’ definition

As a previous step, before running a privacy preserving distributed training procedure in
MUSKETEER, we need to define a Machine Learning (ML) task, which is one of the basic ele-
ments in MUSKETEER. It can be considered as a problem statement that feeds from data and

produces a trained machine learning model as an outcome. Any end user can create one or

more new tasks with an associated unique task identifier (task_id), such that many of them
can be run in parallel. The definition step requires the specification of the main task charac-

teristics:

General description: a high level description of the task (the problem to be solved) is neces-

sary for a rapid identification of existing tasks by other users, to ascertain if they can contrib-
ute/enhance it or not with more data.
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Data: it is recommended (but not mandatory?) to facilitate an initial dataset, i.e., some data
illustrating the task to be solved. Without loss of generality we will assume that the data com-
prises input feature vectors (x) (for non-supervised tasks) and pairs of input feature vectors
and target values (x, t) (for supervised tasks).

Input features description: a general description of the input features (like defining the fields

in a Table) is necessary to unify the data representation among users and finally being able to
combine all the contributed data during the learning stage. In the above-mentioned general
case where input data is represented as a vector, the meaning of every field in such a vector
must be explicitly described, for compatibility purposes. One feature vector could comprise,
for instance: gender (man/woman), study_level (primary/graduate/phd) and age (years). Two
sample instances of that feature vector could be: [man, graduate, 47] and [woman, phd, 36].
After some preprocessing (with common parameters to all end users), the features must even-
tually be converted into a numerical vector. More details about the preprocessing options will
be given in Section 1.4.

Target values: the problem to be solved is defined by the target values (at least in supervised
tasks). For instance, given the above described features, the target could be to estimate the
annual income in euros, or to estimate if that person is unemployed or not. The definition and
nature of the target must also be shared among all the participants during the task definition
such that they can contribute with new pairs (x, t) to the training process.

Privacy requirements: it is important that the end user determines which are the privacy re-

strictions that apply to his/her data, because those restrictions will determine the kind of op-
erations that can be used. It is more operative that every user declares the privacy restrictions
that apply to his/her data and then the platform offers the available mechanisms to solve the
ML task. The data_privacy parameter can be chosen among several options, described in nat-
ural language to facilitate the specification of the task to the end user, for example, one end
user may adhere to some of the following statements:

e my datais open and can be freely distributed

e my data can be shared after anonymization

1 One end user may want to obtain a model but has no data for training it. Just having a task definition in mind
it would possible to ask MUSKETEER to find other users with data that want to contribute to that task, expect-
ing to obtain some reward.

D4.1 Investigative overview of targeted architecture and algorithms 8
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e my data can be shared only with the MUSKETEER platform under some confidentiality
agreement with the platform

e my data can be shared with other end users under some confidentiality agreement
with the end users

e my raw data cannot leave my facilities (only the MUSKETEER client can see it and ob-
tain some operations on it: gradients, dot products, etc., but never reveal individual
data points.)

e my data can be used for a given task, but not for other tasks

2.2 Pre-processing, normalization and data alignment:

Prior to the training process itself, sometimes it is necessary/convenient to perform some sort
of data normalization or pre-processing. We will distinguish between the pre-processing tasks
that can be locally done at every end user without information from other end users, and data
pre-processing that requires global information about all the end users (to be secretly shared).

2.2.1 Data merging and scaling algorithms

The most straightforward pre-processing is what we can describe as an “Ad hoc” local pre-
processing algorithm. In such cases the feature vector is the result of applying some (possibly
complex) pre-processing to a raw piece of information (for instance an image, a text, a voice
recording, etc.). We assume that in those cases a “item-wise” pre-processing algorithm exists
and is able to transform such a raw data into a useful numerical vector. By “item-wise” we
mean that the pre-processing algorithm can be applied to a single input data without
knowledge of the other input elements (either in the same end user or in other end users). In
those cases, assuming that the raw data cannot be transmitted to a central location and batch
processed in a single place due to privacy restrictions, it is necessary to share the pre-pro-
cessing algorithm such that every end user is able to transform its own raw data into a com-
mon representation (the feature vector x). For instance, in the case where input data are im-
ages, some transformations can be applied to every image before feeding it into a machine
learning model, such as high pass filtering followed by an edge detection, textures parameter-
ization, a specific feature extraction, etc. In the case of texts, the pre-processing could be a
bag of words with TFIDF weighting, etc. The casuistic can be extremely large and problem
dependant, so it is important to guarantee that the pre-processing module always produces
an output vector with the expected content and format and it is recommended that the “ad
hoc” (non-standard) pre-processing algorithms be defined and implemented by the end users
that define a specific task, such that the algorithm can be shared with other users contributing
to the task as a “pre-processing object”.

D4.1 Investigative overview of targeted architecture and algorithms 9
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Once the input data has been transformed into a manageable feature vector, it could be nec-
essary to apply a second level of pre-processing/normalization, this time taking into account
all the data from all the users. For instance, it is common to feed a machine learning algorithm
with zero mean, unit standard deviation data. Obviously, the global mean depends on all the
patterns from all users, and therefore, privacy preserving mechanisms such as Secure Sum
Protocols (SSP) are needed to estimate such global mean values without revealing individual
values of a particular end user to the others. Secure Multiparty Computing protocols for im-
plementing secure sums are available in the literature and can thus be used for this normali-
zation purpose [Zhu_2011] [Mehnaz_2017].

2.2.2 Data alignment

The data alignment process aims at detecting if all the contributing users are providing data
that serve to the same machine learning task. This is a preliminary check before proceeding
with the full training process, possibly by means of a fast evaluation of a linear model. It would
be a waste of time to deploy a -possibly costly- training procedure without a minimal verifica-
tion of the suitability of the available data for a given task. At this stage, only very clear devi-
ations from the common objective can be detected, more subtle data perturbations will be
detected in the “attack detection” modules.

One possible way of detecting such data misalignment is to evaluate if the gradients obtained
by a given user are minimally correlated with the gradients of the other (specially with respect
to the gradients of the user that has defined the task). Under POMS, it is possible to evaluate
the data alignment by means of the correlation analysis among the exchanged covariance ma-
trices.

Finally, a more general approach is to evaluate performance of a locally trained model on data
provided by other users. If the expected merit figures largely deviate from the local results,
possibly a task misalignment is present.

2.3 Supervised Learning

This is the area of learning a function that maps an input to an output based on training ex-
ample pairs. It can also be subdivided into classification (the output variable takes categorical
values) and regression (the output variable takes continuous values). The library will contain
algorithms capable to infer functions of different nature.

D4.1 Investigative overview of targeted architecture and algorithms 10
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2.3.1 Linear models

A simple but widely used class of Machine Learning models, able to make a prediction by using
a linear combination of the input features. We will include alternatives for classification (lo-
gistic classifier) and regression (linear regression) with different regularization alternatives
and cost functions.

Figure 1 A linear classifier in a 3 dimensions dataset

2.3.2 Kernel methods

They comprise a very popular family of Machine Learning models. The main reason of their
success is their ability to easily adapt linear models to create non-linear solutions by trans-
forming the input data space onto a high dimensional one where the inner product between
projected vectors can be computed using a kernel function. We will provide solutions for clas-
sification (SVMs) and regression (Gaussian Processes), possibly under model complexity re-
strictions (budgeted models).

Figure 2 Non linear classification using a kernel method

2.3.3 Trees

They can be used for decision support while allowing a visual representation and explicit in-
terpretation of the results. As the name goes, they use a tree-like model of decisions. They are
a commonly used tool in machine learning when some model interpretation is needed. They
can be used for both classification and regression problems.

D4.1 Investigative overview of targeted architecture and algorithms 11
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Figure 3 A decision tree classification

2.3.4 Deep Neural Networks

Deep learning architectures such as recurrent neural networks or convolutional neural net-
works are currently the state of art over a wide variety of fields including computer vision,
speech recognition, natural language processing, audio recognition, machine translation, bio-
informatics and drug design, where they have produced results comparable to and in some
cases superior to human experts.

Convolutions Pooling Convolutions Pooling  Full-connection

Full-connection
\ -
N Output

Intervention

1 [ [N

‘ F6 layer
C1 feature maps : F5 layer

S2 feature maps S4 feature maps
C3 feature maps

Figure 4 A convolutional neural network for medical images

2.4 Unsupervised Learning

This is the machine learning task of inferring a function to describe hidden structure from
"unlabeled" data. The library will include algorithms for clustering and input space component
decomposition.
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2.4.1 Clustering

Is the task of dividing the population or data into a number of groups such that data points in
the same groups are more similar to other data points in the same group than those in other
groups. In simple words, the aim is to segregate groups with similar characteristics and assign
them into clusters. The library will include general purpose clustering algorithms such as k-
means.

Original unclustered data Clustered data

Figure 5 Example of data clustering

2.4.2 Component Decomposition

Is the task of dividing a single data into different subcomponents. The library will include al-
gorithms such as Principal Component Analysis (PCA).

12

10-

Figure 6 Main components of a 2 dimensional dataset
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3 Data sharing motivation and barriers

3.1 Motivation to Share Data

Machine learning algorithms create predictive models using training datasets composed of
historical records. In general, complex tasks require complex models. Since creating complex
models requires large datasets, one common barrier to use advanced machine learning tech-
niques is the amount of data needed to train a model. With insufficient training data, the
models fail to correctly generalize from training data to unseen data (a problem called over-
fitting), and they achieve poor accuracy.

1.00 -

.85

Test Accuracy
o

——Memory-Based

0.75 | ——Winnow
—A— Perceptron

—8—Naive Bayes

0.1 1 10 100 1000
Millions of Words

Figure 7 Accuracy as a function of the number of training data from [Banko_2001]

One approach to mitigate overfitting is to limit the complexity of the models by using regular-
ization techniques. A more favourable approach is to increase the amount of training data.
This is illustrated by a famous quote of Google’s Research Director Peter Norvig: “We don’t
have better algorithms. We just have more data.” The effect described by Norvig had been
known in the literature for a long time; it is illustrated e.g. in [Banko_2001], where it is shown
that for a given problem, adding more examples to the training set increases the accuracy of
the model (see Figure 7).

Generally speaking, the larger the amount of accurately labelled training data, the better the
performance of the machine learning models and hence the quality of the data-driven busi-
ness insights. This need for huge volumes of data has driven over the past two decades the
emergence of so-called “Big Data Platforms”, which are especially designed (typically distrib-
uted) databases capable of storing and efficiently indexing tera- or even petabytes of raw data
in various formats (e.g. columnar, image/video, text).
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In practice, however, compiling large high-quality datasets is labour intensive and time con-
suming. One problem is the accurate labelling of the data, which often requires manual data
inspection, cleansing and tagging by domain experts. Another problem, particularly when
dealing with sensor data, is the limited availability of historical records. Therefore, we can
identify two main scenarios where partners in a data economy can benefit from sharing or
acquiring datasets in order to improve the quality of their own respective machine learning
models. The first one is increasing the number of data samples, since a machine learning
model can improve its accuracy if different datasets are merged into a bigger one (horizontal
partition). The second one is increasing the number of variables, in case different partners
own complementary information to solve a single problem (vertical partition). A machine
learning model that can use all the variables collected by different partners can arrive at a
better capturing of the problem to be solved.

3.2 Main Barriers

How to train machine learning algorithms using data collected from different data providers
while mitigating privacy concerns is a challenging problem. Indeed, data sharing and trading
are seen by the Big Data Value Association (BDVA) as important ecosystem enablers in the
data economy in its Strategic Research and Innovation Agenda?.

We can find different barriers that limit the free flow of data3:

e Legal barriers: Data localisation stems from legal rules or administrative guidelines or
practices that dictate or influence the localisation of data for its storage or processing.
Such requirements restrict the free flow of data between regions or countries.

e Data ownership: Information stored in digital form can be easily copied and redistrib-

uted. The main concern of data providers when they provide access to their datasets
is how to avoid that digital copies could be re-distributed.
e Data confidentiality: Although a company can benefit from common predictive mod-

els joining efforts with another company in creating the dataset, these data may con-
tain confidential information about internal industrial processes that cannot be
exposed publicly without revealing business secrets that would benefit competitors
and put the company itself into a disadvantage.

e Personal Information leakage: Many data sources contain personal information (e.g.

images from cameras, client records) which raises concerns and fears in the popula-
tion about possible information leakages.
e Different Privacy Policies: Different partners may have different privacy policies, and

they may not be willing (or allowed) to explicitly and publicly share their data, even

2 http://www.bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf
3 http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017SC0002&from=EN
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though a great benefit in terms of improving business processes could be obtained by
sharing the data among them.

In MUSKETEER different Privacy Operation Modes (POMs) will be implemented and over them
we are going to develop the machine learning algorithms. These POMs have been designed to
remove some of these barriers. Each one describing a potential scenario with different privacy
preserving demands, but also with different computational, communication, storage and ac-
countability features.

4 Cryptographic concepts

4.1 Concepts

In this section we introduce some concepts that are needed to understand the privacy opera-
tion modes included in MUSKETEER.

4.1.1 Public key cryptography

It is a cryptographic system that uses pairs of keys: public keys which may be disseminated
widely, and private keys which are known only to the owner. The generation of such keys
depends on cryptographic algorithms based on mathematical problems to produce one-way
functions. Effective security only requires keeping the private key private; the public key can
be openly distributed without compromising security.

In such a system, any person can encrypt a message using the receiver's public key, but that
encrypted message can only be decrypted with the receiver's private key.

S Plaintext Ciphertext Plaintext .
. > > g

Sender Encrypt Decrypt Recipient

T

Different keys are used to
encrypt and decrypt message

| |

Recipient’s Recipient’s
Public Private
Key Key

Figure 8 Public key encryption and decryption schema
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4.1.2 Homomorphic encryption

Homomorphic encryption can be viewed as an extension of public-key cryptography with an
additional evaluation capability for computing over encrypted data without access to the se-
cret key. The result of such a computation remains encrypted. The word homomorphic refers
to homomorphism in algebra: the encryption and decryption functions can be thought as ho-
momorphisms between plaintext and ciphertext spaces.

This encryption includes multiple types of encryption schemes that can perform different clas-
ses of computations over encrypted data. [Armknecht_2015] Some common types of homo-
morphic encryption are partially homomorphic, somewhat homomorphic, levelled fully ho-
momorphic, and fully homomorphic encryption.

4.1.3 Paillier Cryptosystem

The Paillier cryptosystem [Paillier_1999] [San_2016] is a probabilistic asymmetric algorithm
for public key cryptography. The scheme is an additive homomorphic cryptosystem; this
means that, given only the public key and the encryption of m1 and m2, one can compute the
encryption of m1+m2.

An additive homomorphic operation allows the computation of the linear combination of two
plaintexts through ciphertext manipulation:

[lam; + pm,]] = [[my]]* * [[m,]]1

where m, and m, are plaintext signed integer constants, [[m;]]% is the modular exponential,
and [[m,]]7! is the modular multiplicative inverse: [[m;]]! * [[m;]]* = 1 mod N.

4.1.4 Proxy Re-Encryption

Proxy re-encryption (PRE) is a special type of public-key encryption that permits a “proxy” (or
a user) to transform ciphertexts from one public key to another, without the proxy being able
to learn any information about the original message. In more detail, PRE enables us to convert
a ciphertext under public key PKy (“f” denotes “from”) into another ciphertext under public
key PK; (“t” denotes “to”) by using a re-encryption key RK  ¢_, ;without decrypting the orig-
inal ciphertext by the secret key SK;.

E_pubA E_pubB
(M) (M)

Proxy

Alice

\ 4

\ 4

Bob

Figure 9 Proxy Re-Encryption schema
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[Blaze_1998] proposed the first PRE scheme in such a semi-honest framework. This one is
based on the ElGamal cryptosystem and on a set of secret pieces of information, referred as
secret re-encryption key, entity A has to send to the proxy so as to make possible the change
of the public key encryption (i.e., re-encrypt data with entity B’s public key). One main issue
of this proposal is that this scheme is inherently bidirectional, that is to say that the re-encryp-
tion key which allows transferring cipher-texts from A to B, enables the proxy to convert all
B’s cipher-texts under A’s public key. There are also unidirectional approaches. In
[Dodis_2003] the re-encryption key provided by A is split into two parts, one for the proxy and
the other for B. [Deng_2008] proposed an asymmetric cross cryptosystem re-encryption
scheme instead of pairing. Beyond, if the above approaches allow one user to share data with
another one, they do not make possible the processing of encrypted data by the cloud or
proxy. This capacity is usually achieved with the help of homomorphic cryptosystems. The first
homomorphic based PRE attempt has been proposed by [Bresson_2003], using the Paillier
cryptosystem. However, even though their solution makes possible data sharing, it cannot be
seen as a pure proxy re-encryption scheme. Indeed, data are not re-encrypted with the public
key of the delegate. If this one wants to ask the cloud to process the data he receives from A,
he has: i) first to download A data, ii) decrypt them based on some secret pieces of information
provided by A; iii) re-encrypt them with his public key and send them back to the cloud. Re-
cently, in [Bellafgira_2017], it has been proposed the first homomorphic based proxy re-en-
cryption (HPRE) solution that allows different users to share data they outsourced homomor-
phically encrypted using their respective public keys with the possibility to process such data
remotely.

5 Privacy Operation Modes

5.1 Federated Collaborative Privacy Operation Modes

Under these modes, data never leaves the data owners’ facilities, since training takes place
under the Federated Machine Learning paradigm, where the model is transferred among the
users, and everyone contributes by locally updating the model, using their data. The resulting
model is unique, common to all the users and at the end all users get access to the trained
model in unencrypted form.

5.1.1 POM1 (ARAMIS)

Recently, Federated Machine Learning (FML) (and other related decentralized approaches)
[McMahan_2017][Konecny_2016][Shokri_2015] have been proposed as an alternative to a
traditional local or cloud computing for training predictive models using machine learning.
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Under this paradigm, a shared global model is trained under the coordination of a central
node, from a federation of participating devices.

FML enables different devices to collaboratively learn a shared prediction model while keep-
ing all the training data on device, decoupling the ability to perform machine learning from
the need to store the data in the cloud.

Using this approach, data owners can offer their data to train a predictive model without being
exposed to data leakage or data attacks. In addition, since the model updates are specific to
improving the current model, there is no reason to store them on the server once they have
been applied.

FML turns the update of Machine Learning models upside-down by allowing the devices with
data on the edge to participate in the training. Instead of sending the data in the client to a
centralised location, Federated Learning sends the model to the devices participating in the
federation. The model is then improved with the local data. And the data never leaves the
local device. After that, the clients send updates to the model to the central node that can
aggregate the different partial updates to globally update the model.

The following figure shows the iterative process that is needed to train a model.

Local optimization

Central model sharing

= s

— 71

ﬁ e
2\

v Local model sharing
Eﬁ

Figure 10 FML schema

A simple implementation requires that each client sends a full model (or a full model update)
back to the server in each round. For large models, this step is likely to be the bottleneck of
Federated Learning due to multiple factors.

To reduce the bottleneck, there are some model compressions schemes such as
[Han_2015][Lin_2017] that can reduce the bandwidth necessary to download the current
model. In [Konecny_2016], to reduce the communication costs they propose two alternatives:
structured updates, where we directly learn an update from a restricted space parametrized
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using a smaller number of variables; and sketched updates, where we learn a full model up-
date and then compress it using a combination of quantization, random rotations, and sub-
sampling before sending it to the server.

Federated learning can be seen as an operating system for edge computing, as it provides the
learning protocol for coordination and security. In [Wang_2018], authors considered generic
class of machine learning models that are trained using gradient-descent based approaches.
They analyze the convergence bound of distributed gradient descent from a theoretical point
of view, based on which they propose a control algorithm that determines the best trade-off
between local update and global parameter aggregation to minimize the loss function under
a given resource budget.

Central Node

Merger
=
<M

\

Data Owner Node Data Owner Node

Figure 11 POM1 communication schema

Machine learning algorithms over this POM:

Linear models and neural networks:

Linear models and neural networks can be trained using Stochastic Gradient Descent (SGD)
variants. This POM is a good scenario for linear models such as logistic regression or linear
regression and also for neural networks that are trained obtaining the gradients of all the
weights

To illustrate the concept of SGD, Machine learning considers the problem of minimizing an
objective function that has the form of a sum:

Q) = =3 Qiw),

=1
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where the parameter w that minimizes Q(w) is to be estimated. w is the set of weights of a
linear model or a neural network and Q(w) is typically the error obtained with the model over
a data.

Since we want to obtain the w that obtains the minimum error, a standard (or "batch") gradi-
ent descent method would perform the following update of w in an iterative process:

w:=w-nVQ(w) = w — nz VQi(w)/n,

=1

For example, if we want to fit a straight line y=w1+w2x to a training set with observations {
x_1,x_2,...,x_n} and their corresponding correct predictions are {y_1, y_2,...,y_n} using least
squares, the objective function to be minimized is:

7

Qw) = ZQi(w) - Z(ﬁi - yi)2 = Z(wl +waT; — yi)Q-

i=1 i=1
Then, to improve the model we must perform the following update of the weights iteratively:

P
wi] _ [w By (W1 W2T0 — i)
= | ,

wo wo

B ['w,] —"7[ 2(wy + waz; — y;)

(')u_).'o('lb‘l + waz; — y;i)? wy 2z; (wy + waz; — y;)

This is a good training procedure for a federated environment since the gradients are com-
puted over individual data and can be computed in the edge. Then they can be sent to a cen-
tral server that can average them and update the model.

Clustering algorithms:

Some clustering algorithms are also easy to implement over this POM. For example, K-means.
In this algorithm, given a dataset (x1, x2, ..., xn), k-means creates k sets of data (k < n) by
minimizing the following function.

A.
a-rgsminz 0% = il

2;:1 XJ‘":S,‘
Where pi is the average of the data that belongs to the set Si.

The most common algorithm uses an iterative refinement technique. Due to its ubiquity, it is
often called the k-means algorithm; it is also referred to as Lloyd's algorithm, particularly in
the computer science community.

Given aninitial set of k means m1(1), ..., mk(1), the algorithm proceeds by alternating between
two steps:
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e Assignment step: Assign each observation to the cluster whose mean has the least
squared Euclidean distance; this is intuitively the "nearest" mean.

S,ft) = {z : ||z, — m_{itJ ||2 < ||ap — my)“? Vi, 1< j <k},

o Update step: Calculate the new means of the observations in the new clusters.

(t+1) L .
m; o ‘Sm Z Lj

1

o att)
T;ES;

Over this POM every data owner can compute partial averages and the central server can
merge them.

Kernel methods:

In the kernel methods such as SVMs, a predictive model contains training data (e.g. support
vectors in the SVM algorithm). To keep training data privacy, we will make use of semipara-
metric approximations [Diaz_2016][Diaz_2017][Diaz_2018], where a group of centroids are
selected (for example using the previous k-means algorithm to ensure privacy) and, after that,
the weights are obtained using an stochastic gradient descent procedure.

5.1.2 POM2 (ATHOS)

In POM1 data information may be leaked to an honest-but-curious server since the server has
access to the predictive model. In some use cases, data owners belong to the same company
(e.g. different factories of the same company) and the server that orchestrates the training is
in the cloud.

POM?2 fixes that problem with two properties:

e No information is leaked to the server: POM2 leaks no information of participants to
the honest-but-curious cloud server.

e The accuracy is kept intact compared to POM1: Achieves identical accuracy to a corre-
sponding system trained using stochastic gradient descent.

The work proposed in [Aono_2018] shows that having access to the predictive model and to
the gradients it is possible to leak information. Since the orchestrator has access to this infor-
mation in POM1, if is not completely under our control (e.g. Azure or AWS cloud), POM2 solves
the problem by protecting the gradients over the honest-but-curious cloud server.

POM2, as proposed in [Aono_2018] uses additively homomorphic encryption. All gradients
are encrypted and stored on the cloud server and the additive property enables the compu-
tation across the gradients.
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This protection of gradients against the server comes with the cost of increased computational
and communication between the learning participants and the server.

POM?2 operation description:

The different data owners jointly set up the public key pk and the secret key for an additively
homomorphic encryption scheme (e.g. using the Paillier cryptosystem). The secret key sk is
kept confidential from the server, but is known to all learning participants (e.g. manufacturing
robots that belongs to the same company).

Every participant:
e Locally holds her/his datasets.
® Runs a replica of the predictive model.
e Establishes a secure channel to communicate the encrypted gradients to the server.

The server:

Recursively update the encrypted weight parameters in the encrypted domain. Since the op-
eration that needs to be used to update the model is an addition, as in the case of the sto-
chastic gradient descent, it can be done directly over the encrypted Paillier domain.

wi=w - VQw) = w -y VQi(w)/n,
i=1
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Homomorphic
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Figure 12 POM2 communication schema

Machine learning algorithms over this POM:

As in POML1 the function of the server is to compute the addition of the data set by the differ-
ent data owners, and homomorphic encryption allow the addition operation, the ML algo-
rithms described in POM1 can be directly implemented here.
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5.1.3 POM3 (PORTHOS)

In POM2, every data owner trusts each other and they can share the private key of the homo-
morphic encryption (e.g. different servers with data that belongs to the same owner). Using
the same key, every data owner uses the same encrypted domain. In many situations it is not
possible to transfer the private key in a safe way.

POM3 is an extension of POM2 that makes use of a proxy re-encryption protocol to allow that
every data owner can handle her/his own private key.

~
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/ Central Node \ 0\ Node q’\
Merager %_
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e-Encryptor ( \
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Figure 13 POM3 communication schema

5.2 Privacy Operation Modes in a Semi-Honest scenario

The main Machine Learning activity takes place on the central node side, and the protection
of the resulting model is at a maximum. The server may ask the clients to compute some spe-
cific operations to complete the model estimation, but the end users never see the complete
model during training (only at the end of the process if they ask or pay for it). The three POMs
devised under this scheme are POM4 (Rochefort), POM5 (deWinter) and POM6 (Richelieu).

5.2.1 POM4 (ROCHEFORT)
Under this scheme, the IDP provides, what we call, Secure Cloud Services.

First, the IDP acts as a trusted generator of public parameters (PP) for multiple (public and
secret) key encryption. From these PP, each participant (Users and Application) runs a Key-
Gen() algorithm that outputs the corresponding pair of public and secret keys. The IDP also
generates a secret “master key”, MK, and a global public key PK under which Applications
perform the operations corresponding to a given Machine Learning Algorithm.
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Second, the IDP offers private and secure storage services to Users. Additionally, the IDP
transforms the Users’ data (encrypted under their respective public-keys) into encryptions
under the global public key PK without disclosing nor changing the underlying cleartext infor-
mation (ReEncrypt()).

And third, the IDP assists Applications in those operations not supported by the homomorphic
property of the cryptosystem. In order to protect the privacy of the encrypted operands, cryp-
tographic blinding is applied before any outsourced computation. The following Figure illus-
trates the expected interactions.
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Figure 14 POM4 Communication schema

Regarding the security model, we will consider that POM4 and POMS5 operate under the semi-
honest adversarial model (honest-but-curious) [Goldreich_2004], meaning that all partici-
pants agree to follow a given protocol/algorithm, but trying to gather information about other
parties' inputs, intermediate results, or overall outputs. This model uses blinding and random-
ization techniques to assure privacy protection and it is widely used in the privacy protection
community. Nevertheless, if more aggressive attackers (malicious adversaries) participating in
the computation are considered, any secure protocol in the semi-honest model can be trans-
formed into a secure one against malicious adversaries using commitment schemes and zero-
knowledge proofs. However, these techniques increase the interactions between the partici-
pants making slower the protocol (up to an order of ten [Lagendijk_2013]).

The POM4 description

In the POM4 we suggest using the BCP cryptosystem, by Bresson, Catalano and Pointcheval
[Bresson_2013]. The BCP is additively homomorphic (i.e., it allows the addition of plaintexts
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in the encrypted domain), and offers two independent decryption mechanisms: the first one
depends on the secret key of each User and the second decryption mechanism depends on a
master secret key, MK, that is stored on the IDP.

The Bresson, Catalano and Pointcheval (BCP) cryptosystem involves four algorithms:

1. KeyGen(N). Let N be a product of two primes p and q of same bitlength, where
p=2p" +1 and q = 2q' + 1, for distinct primes p’ and q'. Choose a random
integer g € Z,. of order p - p - q - ¢’ such that g?""mod N* = 1 + kN, with k €
[1,N — 1]. The master secret key is MK = (p’; q¢'), and the public parameters for
user's key generation are given by the triplet PP = (N; k; g). With these public
parameters, each participant runs a private KeyGen() algorithm that outputs the

public key PK; = g% mod N?, where the random integer a; € Z,. is the secret
key SK; (Z,. is the set of integers modulo N* and Z,;. is the group of invertible

integers modulo N?).
2. Enc(m, PP, PK;). Given a plaintext m € Zy, the encryption algorithm outputs the

ciphertext (4;,B;) = (9" mod N?,h;*(1 + m - N) mod N?), where = 1; € Zj..
3. User decryption Dec(4;, B;, PP, SK;). The plaintext message m is computed as

m= <Bi/Aai — 1 mod N2> /N.
i

4. Master decryption mDec(4;, B; PK;, MK). First, compute @; = k! -
(hf"q'—1 mod NZ) (A’i’""’—1 mod NZ)

mod N, Second, obtain 7, = k1 - mod N. Then,

N
compute D; = Bi/(gyi) mod N?, where y; = @; - ; mod N. Finally, the plaintext

N

message ism =6 (Di”"q' — 1 mod NZ) /N.where § = (p’ - ¢')"* mod N.

Detailed Operation

Set up

The IDP sets up the selected cryptosystem and distributes the public encryption parameters
PP to Users and Application. Users, with their KeyGen() primitives, generate their respective
public and secret keys PK; and SK;. Then, they encrypt the data, and send the encrypted in-
formation to the IDP’s Cloud Store.

The Application is considered as another user, having its own pair of public and secret keys
(PKy, SKp).

Re-encryption
After collecting the multiple key encrypted data, the IDP runs a Secure Protocol to re-encrypt
the data into new encryptions under the global public key PK=[[;  PK;. The re-encryption

under PK is performed without disclosing nor changing the underlying information [Pe-
ter_2013].
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Secure Learning

The IDP will assist the Application, with no collusion between them, in a limited set of (previ-
ously agreed) secure computations on encrypted data not supported by the partially homo-
morphic cryptosystem.

In particular, we propose to use a minimal set of instructions that includes the other operation
that preserves the ring structure of input plaintexts, which in the case under consideration
(BCP cryptosystem) is the modular multiplication (a - b mod N), a few basic logical (bit-shift-
ing) and conditional branching instructions (comparison).

This tightly limited set of instructions could be executed directly on the special-purpose hard-
ware that implements the encryption/decryption operations (CryptoProcessor [Bos-
suet_2013, Sakiyama_2007]).

With these transformed ciphertexts (under the same public key), and making use of the ho-
momorphic property and the reduced set of instructions available at the CryptoProcessor, it
is possible to design a secure protocol that encodes a given high-level cleartext machine learn-
ing algorithm into the adequate sequence of low-level instructions in the encrypted domain
for the particular cryptographic hardware.

Result Retrieval

Once the secure learning phase is completed, the output of the function (encrypted under PK)
is ready to be sent back to the Application. And to do this, the Application runs a final SMC
protocol with IDP in order to transform the output back into encryptions under the Applica-
tion's public key PK,.

5.2.2 POMS5 (deWINTER)

In POMS5 the sensitive data is encrypted, stored and processed in the users’ facilities. In order
to deal with the processing of multiple-key encrypted data, we will borrow some ideas from
what is known as “proxy re-encryption”.

Proxy re-encryption (PRE) is a special type of public-key encryption that permits a “proxy” (or
a user) to transform ciphertexts from one public key to another, without the proxy being able
to learn any information about the original message. In more detail, PRE enables us to convert
a ciphertext under public key PKy (“f” denotes “from”) into another ciphertext under public
key PK; (“t” denotes “to”) by using a re-encryption key RK  ¢_, ;without decrypting the orig-
inal ciphertext by the secret key SK¢. PRE is a very useful cryptographic primitive that has been
used to achieve encrypted email forwarding [Blaze_1998], encrypted file storage
[Ateniese_2005], and secure payment systems for credit cards [Gaddam_2019].
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In our POMS5 scenario, the re-encryption keys would permit to implement a Machine Learning
algorithm in a sequential way: first, the Application adjusts the parameters of its model inter-
acting with the first user (user #1); once the full dataset of user #1 has been processed, he/she
issues a re-encryption key to the Application, which obtains the cleartext version of the par-
tially updated model; then, the Application interacts with user #2 to update again its model;
etc...

The POM5 cryptosystem

The cryptosystem suggested for POM5 combines elements taken from the well-known El-
Gamal cipher [ElGamal_1985], and from Bilinear Maps on Elliptic Curves [Joux_ 2000,
Ateniese_2005].

The security of the ElGamal cryptosystem comes from the fact of the difficulty of finding the
discrete logarithm in a cyclic group. The discrete logarithm problem (DLOG) can be stated as
follows: it is very easy to compute h=g”x for a given x, but very hard to find x given h.

Basically, EIGamal cryptosystem takes a large prime p (preferably of the form 1+2q where q is
also prime), a generator g of Z_q, and randomly choose x, 1 < x < p - 1, and calculate y = g"x
mod p. The public parameters (or Public Key) is the triplet y, p, and g, and the Secret Key is x.

For the encryption, EIGamal cipher picks a random r and let o = g*r mod p, and B = m - y*r
mod p, where m is the cleartext message. The ciphertext is given by [[m]] = (a, B).

Decryption can be done if the Secret Key x is known (in addition to [[m]] =(a,B)) as follows:
B/(a™x) = m - yAr /(ghr)*x = m - (g”x)*r/(g r)x = m - g (rx)/g”(rx) = m, where all operations
are taking modulo p.

Bilinear Maps gained great popularity in cryptography in 2001 when Boneh and Franklin used
them for Identity-Based Encryption [Boneh_2001]. A bilinear map can be defined as follows.

Let G_1, G_2, G_3 be cyclic groups of prime order g. The function e:G_1xG_2-> G_3isa
bilinear map if forallg_1€G_1,g 2C,and a, b€EZ g, e(g_1"a, g_2"b) = [e(g_1,g_2)] ab.

POMS5 Operation

The basic cryptographic primitives required for the POMS5 operation can be summarized as
follows:

D4.1 Investigative overview of targeted architecture and algorithms 28



Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

e IDP: Generation of Public Parameters
< g >= G of prime order q.
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SK,=ac€ Z?'-;,'I. randomly selected. SKj=0b¢€ 3‘3,', ., randomly selected.
PK, = ¢“ PK, = _:/"

e Encryption:
m € Go. random r € 53,'1

Co=(Z"-m, qg"")

e Decryption (Alice):
Y Ad m_ - /7:n

e(gma gl/a)

m =

e Re-encryption:

=(Z"-m, g")
Cp,=(Z"-m,e(qg.RKx_.p))
=(Z" -m, ¢ (y/"".y/" “))
= (Z"-m. Z"'J

e Decryption (Bob):
AR
m= ,Z.t,,xl b

Taking into account the previous operations, the final block diagram for POMS5 is represented
in the next Figure.

As in POM4, POMS5 has three participants: the Users, which own private encrypted data, the
Application, which owns the ML model, and the IDP Server, which issues the Public Parameters
(PP) of the (multiplicative homomorphic) ElGamal Cryptosystems, and gives support to the
non-homomorphic operation (which in this case is the Sum).

Initially, the IDP outputs the PP (generator g, bilinear map e, and Z=e(g,g)).

Then, the Application, Users and the IDP itself generate the Public and Secret Keys of their
respective cryptosystems (Application, (PK_M, SK_M); Users, (PK_i,SK_i), i=1,..., N; IDP Server,
(PK_S, SK_S)).

In the first place, the Application interacts with User 1. First, it requests a re-encryption key
(RK_{M—1}} to operate under PK_1. Then, it sends to User 1 the ML algorithm as a sequence
of basic arithmetic operations: in the case of the multiplications, they can be performed using
the homomorphic property of the EIGamal cryptosystem; but in the case of additions, a Secure
Sum protocol must be implemented with the assistance of the IDP (which also request a re-
encryption key from User 1, RK_{S—1}, to produce a blinding factor under PK_1). Once the
ML code has been completed, the Application deciphers the parameters of its partially ad-
justed model by using the re-encrypting key RK_{1—-M}.

This protocol is repeated N times, where N is the number of participant Users.
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Figure 15 POM5 Communication schema

5.2.3 POMS6 (RICHELIEU)

Privacy Preserving Machine Learning (PPML) is always under a trade-off between acceptable
privacy level and computational/communication cost (which ultimately determines its real-
world applicability). The ideal scenario is that of fully outsourcing all of the computations to a
cloud service, such that users, after protecting their data (by means of encryption, for in-
stance) they can relax and even go offline while a cloud service carries out all of the computa-
tions before producing the final model. This described behaviour is the “holy grail” of the dis-
tributed private machine learning but, unfortunately, it has not been implemented yet to a
practical level. Outsourcing the whole raw dataset requires higher security measures than
strictly needed (since in the fully outsourced data scenario many attacks are possible) and
compromises the viability of the ML task due to the increased computational cost.

A feasible and practical alternative to data encryption is that provided by the Differential Pri-
vacy approaches, that rely on modifications of the raw data (by transformations or noise ad-
dition) before outsourcing them such that no information is revealed about every pattern
from a statistical point of view [Dinur_2003][Dwork_2006]. The most obvious limitation of this
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approach is that it modifies the original data and, therefore, the expected final performance
of the model can be reduced.

As an alternative, we can resort to distribute computations over several participating nodes,
such that only when all the partial computations are combined in every node, the final result
is obtained. This is the approach proposed by the Secure Multiparty Computing (SMC) in its
Information Theoretic instantiation. One of the best-known implementations relies on the
Shamir Secret Sharing approach [Shamir_1979]. The main drawback of this approach is that
we have to control the level of end user collusion, i.e., always verify that the end users do not
communicate any extra information than the required by the SMC protocol, otherwise, the
private information could be revealed. This assumption is not always easy to hold/guarantee.
Also, the required protocols are very communication intensive.

Another SMC approach relying on encryption is stated as Secure Function Evaluation (SFE),
where data is encrypted by the owner, and high privacy restrictions are imposed such that no
intermediate result can be revealed apart from the output of the function itself. This approach
has been inspired by the work of Yao on garbled circuits [Yao_1986], that allow to securely
compute any function that can be represented as a boolean circuit, usually consisting of XOR
and AND gates. The transformation of any function into suitable circuits is not a trivial task,
and the associated computational and communication costs are usually high.

Another perspective on SMC is that of Fully Homomorphic Encryption (FHE). Such relationship
has been established in [Choudhury_2013], where it is shown that both schemes tend to be
equivalent by exchanging communication steps by computation. If we adopt a Homomorphic
Encryption (HE) scheme, then (some) operations can be directly obtained on encrypted data
[Rivest_1978]. In the Partial Homomorphic Encryption (PHE) schemes, the operation on en-
crypted data is usually restricted to the operations supported by the homomorphic scheme
(unlimited number of operations: either sum or multiplication, but not both simultaneously).
More elaborated schemes exist that provide unlimited operations of one type (sums) and a
limited number of operations of the other type (products), which are known as SomeWhat
Homomorphic Encryption (SWHE). The ideal approach is that of Fully Homomorphic Encryp-
tion (FHE), that allows an unlimited number of operations thanks to the bootstrapping opera-
tion [Gentry_2009]. Unfortunately, this approach implies a huge amount of extra computation
and increased code lengths that hamper its use in many practical applications. Although im-
pressive advances have been achieved in this direction during the last years, the state-of-the-
art techniques are far from being practical in real world scenarios.

It is not easy to find a good equilibrium point among all the possibilities in the PPML ecosys-
tem. Under POM6 we propose to achieve a reasonable compromise solution between data
outsourcing, privacy of intermediate results, computational cost, and end user active partici-
pation during the training process, such that practical implementations are possible. We will
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also assume an honest-but-curious (semi-honest) scenario, where all participants follow the
protocols, but yet the information must be protected from each other’s curiosity. The com-
munication model will be either a star, with the central node being the connection among the
end users, or a chain, where a message sequentially visits all end users, the central node being
the initial/final point.

We propose to protect privacy by aggregating operations on the data, such that no individual
training data is transferred outside the owner facilities (no identification of any singular pat-
tern is possible). Such aggregation takes place on the end user side, no raw data is transferred
outside the end user facilities. The ML model training takes place in the central node by using
the aggregated information from the end users. The end users must declare if some of the
aggregation operations (dot products, covariance matrices, etc.) are acceptable for his/her
privacy and do not represent a threat to the raw data security, under a disclosure risk / data
utility trade-off scheme [Duncan_2001][Loukides_2011]. The cooperation of the end users is
necessary during training, but this is not a problem since the MUSKETEER client running on
the end users’ side will always be active.

After a preliminary exploration of possibilities, we have observed that, depending on the re-
quired privacy level, the computational cost may largely vary. We will consider the following
situations that lead to different POM6 implementations (with different computational re-
quirements):

e Public model (PM): the model is known to all participants, in the same line as the Fed-

erated approaches of previous POMs

e Secret model (SM): the model is only known to the central node. This option repre-

sents a significant advantage over Federated schemes, where the model is sent to all
nodes and therefore cannot be kept secret.

e Secret input data: the input features are always kept secret, only revealing averages

or covariances to the central node

e Public targets (PT): under some circumstances, the targets (supervised scenario) could

be revealed to the central node, which largely speeds up the training procedure.

e Secret targets (ST): the targets (supervised scenario) are kept secret.

Anyhow, the user will always be in position of deciding which privacy level is adequate for a
given task.

The algorithms under POM6 will be completely modular, such that any operation can be trans-
parently exchanged by another with the same characteristics, without affecting the algorithm.
This is a very desirable characteristic that will facilitate the improvement or replacement of
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specific operations. The algorithms will be built upon a series of basic privacy preserving op-
erations on the data, to name a few:

e secure dot product: this is a basic operation especially relevant to linear models. We

could use any of the available protocols, for instance:
e protocols relying on homomorphic encryption, such as [Zhang 2017]
e protocols relying on SMC, such as [Zhu_2015]

e secure matrix multiplication: under some circumstances it is possible to obtain the ma-

trix product of two matrices without revealing any of them to the other party. This
approach is especially relevant to implement algorithms under a vertical partition
scheme. [Karr_2009]

e iterated reweighted least squares procedures. Useful to transform non Least-Squares

cost functions into an iterated Least Squares formulation. [Barreto_1994]

By a careful design and combination of the above-mentioned procedures, we foresee to start
implementing the following machine learning models under POMS6, although a deeper analy-
sis is necessary before extending to more complex models:

e Logistic classifier

Robust Ridge regression with Huber cost (outlier resistant)

e k-means clustering

Support Vector Machines (linear and kernel based)

Support Vector regression (linear and kernel based)
Simple ML training example under POM6

To help to understand how ML training will occur in MUSKETEER, we will illustrate here a sim-
ple example: we will solve a regression task using a linear model trained under a Mean
Squared Error (MSE) cost function, to be adjusted using training data from 5 users. The user
end_user_id = 1 will provide training patterns (x™;, y*%), i = 1, ..., N1, and so on for the other
users.

Therefore, given an input data x';, the model output is*:

oD = wixi)

4 Without loss of generality, we assume that the model bias is included as the first element of w, such a formu-
lation is equivalent to using an extra input feature with constant value of 1. This is a common practice in many
ML models.
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and the associated error is:
et = (), - o)
The corresponding SSE cost at every user is:
COw) =¥iZ;  (e™)?= Xy (vW- wix)?

and we want to minimize the global MSE cost:

1
N1+N2+N3+N4+N5

Clw) = (CH(w) + CP(w) + CBow) + CW(w) + CPH(w))

The central node asks the end users to compute some local data aggregation, in this case, the
sum of outer products of the feature vectors and targets, such that at end_user_id = i, we
need to compute:

Ry = XOTx()
rxy(i) = X(')Tym

and send them back to the central node. The central node collects these data matrices and
vectors from all end users and it computes:

Rxx = Rxx(l) + RXX(Z) + RXX(3) + RXX(4) + RXX(S)
Fyy = rxy(l) + rxy<2) + rxy(3) + rxy(4) + rxy(s)
w* = Rxx_lrxy

To evolve from this simple scheme for training a linear regression model under a Least Squares
cost function, at some point it is necessary to compute estimation errors at every node. If the
model w can be freely distributed to all the nodes, then they can locally compute such errors.
If the model is expected to be private and cannot be sent to the end users, then the errors can
be obtained after the application of Secure Dot Product (SDP) or Secure Matrix Multiplication
(SMM) protocols, as described earlier [Zhang_2017], [Zhu_2015], [Karr_2009]. The combina-
tion of local errors with local targets allows to obtain weighting values to transform many cost
functions into Least Squares ones under the Iterated Reweighted Least Squares approach [Bar-
reto_1994], such that more elaborate models can be obtained at the central node. Although
some preliminary -successful- experiments have already been conducted in laboratory condi-
tions, we expect to develop ML algorithms under the POM®6 scheme ready to be integrated in
the MUSKETEER platform during the next months.

5.3 Unrestricted Data-Sharing POMs:

To complete the list of POMs, we have included other approaches where users do not have
any restriction concerning data sharing, nor with respect to data privacy. We include modes
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where data can leave the users’ facilities (using secure communication protocols) and remain
unencrypted in the cloud and on the client side (using secure access mechanisms).

These POMSs work under the assumption that every user will respect the privacy rules and use
it properly. However, the data sovereignty will be strictly supervised and the data transfer will
be secure using the protocols standardized by the Industrial Data Space Association (IDSA).

5.3.1 POM?7 (PLANCHET)

Traditional cloud computing schema where every data owner can store their datasets in the
cloud and predictive models can be trained, with the possibility of selectively sharing with the
users the resulting models. The IDSA standards will be follow for authentication and data
transfer.

5.3.2 POMS8 (DARTAGNAN)

Traditional local computing, where data consumers can download different datasets to locally
train predictive models. We will make use of the IDSA mechanisms for authentication and data
transfer.

6 Conclusion

The present report presents an overview of the privacy operation modes in the MUSKETEER
project. Despite the coverage is far from being exhaustive, we show how these POMs are sup-
ported by the current academic state-of-art. The report also provides information about how
to implement ML algorithms over every POM. Although some design criteria and POMs can
be modified along the project lifecycle, this will be out starting point to develop the libraries.
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