

H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

October 19July 19

D4.2 Pre-processing, normalization, data
alignment and data value estimation al-

gorithms – Initial version

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 31 July 2019

Author(s): Ángel Navia-Vázquez (UC3M), Jesús Cid-Sueiro (UC3M), Ma-

nuel Vázquez-López (UC3M)

Participant(s): TREE

Reviewer(s): Chiara Napione (COMAU), Mathieu Sinn (IBM)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP4

Dissemination level: Public

Version: 5.0

Contact: angel.navia@uc3m.es

Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-

Preserving Scenarios (MUSKETEER) has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 824988. The sole re-

sponsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only

be made with reference to the publisher.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

This deliverable (D4.2 "Pre-processing, normalization, data alignment and data value estima-

tion") is the first software outcome of MUSKETEER’s WP4 in the form of a Demonstrator.

Besides the software prototype itself, it comprises a report with the description of the oper-

ation of the MUSKETEER Demonstrator under different operations, as well as the software

documentation and description of the software components. The implementations included

in the Demonstrator are preliminary yet fully operative, although possibly their design may

change as the project progresses. In future versions, more operations and modules will be

available, some of the existing modules could be replaced by improved versions (the cur-

rently available algorithms are rather simple), and some general redesign may be necessary

to facilitate the integration with the rest of MUSKETEER components.

Document History

Version Date Status Author Comment

1 01 July 2019 For internal review Angel Navia-Vázquez First draft
2 10 July 2019 Review inputs Chiara Napione Update
3 13 July 2019 Review inputs Mathieu Sinn Update
4 Final Version Update
5 15 July 2019 Clean and submis-

sion
Gal Weiss Final

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES.. 5

LIST OF ACRONYMS AND ABBREVIATIONS... 7

1 INTRODUCTION .. 8

1.1 Purpose ... 8

1.2 Related Documents .. 8

1.3 Document Structure ... 9

2 CONTEXT OF THE DEMONSTRATOR .. 10

2.1 Task Alignment approaches.. 12

2.2 Data value estimation approaches ... 14

3 DEMONSTRATOR ASSUMPTIONS ... 18

4 INSTALLATION INSTRUCTIONS .. 22

5 EXECUTION SETUP ... 23

6 OPERATION OF THE DEMONSTRATOR .. 25

6.1 User interface .. 25

6.2 Master node initialization .. 26

6.3 Display available end users .. 27

6.4 Task alignment ... 27

6.5 Excluding unwanted users .. 28

6.6 Ad Hoc local data pre-processing .. 29

6.7 Global data normalization .. 32

6.8 Global feature selection ... 33

6.9 Data value estimation .. 34

6.10 Model training ... 35

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6.11 Performance on local validation/test ... 36

6.12 Performance on training data at every user .. 36

6.13 Create ROC figures ... 37

6.14 Terminate all user nodes .. 39

6.15 Exit MUSKETEER Demonstrator .. 39

7 SOFTWARE DOCUMENTATION ... 40

8 CONCLUSIONS .. 54

9 REFERENCES ... 54

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1 MUSKETEER’s PERT diagram .. 8

Figure 2 The centralized (a) vs. (privacy/confidentiality preserving) distributed scenario (b).

Every user provides a portion of the training dataset. .. 10

Figure 3 The Task alignment and data value estimation problems ... 11

Figure 4 Task alignment scenarios: supervised (a) vs. unsupervised (b) 13

Figure 5 Task alignment estimation in the supervised scenario with the correlation (a) and

gradients (b) ... 14

Figure 6 Data value estimation using the full model (a) and the fast linear estimation

approach (b) ... 16

Figure 7 Greedy incremental Data value estimation using the Final Model Inter-Dependent

User approach. ... 17

Figure 8 Data value estimation based on fast correlation and gradient measurements 18

Figure 9 The Demonstrator setup: Master, Workers and other participating objects 20

Figure 10 The States and transitions of the Master FSM showing operations for task

alignment, data value estimation and pre-processing .. 21

Figure 11 The States and transitions of the Master FSM showing operations for model

training and computation of the performance at workers .. 21

Figure 12 The States and transitions of the Worker FSM showing operations for task

alignment, data value estimation and pre-processing .. 22

Figure 13 The States and transitions of the Workers FSM showing operations for model

training and computation of the performance at workers .. 22

Figure 14 The Demonstrator User Interface .. 24

Figure 14 The terminal showing messages from user "0". .. 25

Figure 16 The Master Node is initiated .. 26

Figure 17 listing the connected users .. 27

Figure 18 Applying the task alignment estimation .. 28

Figure 19 Excluding misaligned users ... 29

Figure 20 Misaligned users are disconnected .. 29

Figure 21 Updated list of participants .. 29

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 22 Local Pre-processing Menu .. 30

Figure 23 AlexNet network used for Deep Learning pre-processing 30

Figure 24 Applying the down-sample pre-processing ... 31

Figure 25 Workers applying the pre-processing and showing the new data size 31

Figure 26 Applying the Deep Learning Pre-processing .. 32

Figure 27 Global normalization parameters estimation and application to users’ data 33

Figure 28 Applying the global greedy feature selection .. 34

Figure 29 Data Value estimation .. 35

Figure 30 Model training .. 35

Figure 31 Performance on local data ... 36

Figure 32 Performance on users’ data ... 37

Figure 33 Comparative ROC curves for different solutions on the validation set 38

Figure 34 Comparative ROC curves for different solutions on the test set 39

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition

AUC Area Under (ROC) Curve
CA Consortium Agreement
DP Differential Privacy
DC Data Connector
DV Data Value

FLE Fast Linear Estimation
FS Feature Selection
FSM Finite State Machine
GA Grant Agreement
IDR Intermediate Data Representation
LC Logistic Classifier
LGFS Linear Greedy Feature Selection
MK Master Key
ML Machine Learning
MLP Multi-Layer Perceptron
MN Master Node
OS Operating System

PERT Program evaluation and review technique
PK Public Key
POM Privacy Operation Mode
PP Privacy Preserving
PPML Privacy Preserving Machine Learning (a.k.a. Priva-

cy Preserving Data Mining)
ROC Receiver Operating Characteristics
SQL Structured Query Language
TA Task Alignment
UI User Interface
WN Worker Node

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

This deliverable provides a Demonstrator of some of the MUSKETEER capabilities (mainly

focusing on data pre-processing, data normalization, data alignment and data value estima-

tion). Although not required in the Agreement, we also provide a very simple Machine

Learning (ML) model operating under confidentiality preserving conditions, such that the

effects of the pre-processing operations can be measured and quantified in a particular task

(image classification) using Receiver Operating Characteristics (ROC) curves on both valida-

tion and test sets.

1.2 Related Documents

D4.2 will serve as a basis for a deeper understanding of the models and algorithms to be

further developed in WP4 (D4.4 and D4.6), and it will provide valuable information to WP7

(Client side connector implementation and use case piloting), as indicated in the PERT dia-

gram below. In general terms, it constitutes a tangible outcome such that any member of

the consortium can carry out "hands on" experimentation with a preliminary version of the

platform, and such interaction could provide relevant feedback among all participants.

Figure 1 MUSKETEER’s PERT diagram

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1.3 Document Structure

This document is structured as follows:

• The current section (Introduction), presents the general aspects about

this document and its relationship with other developments in the pro-

ject.

• The section "Context of the Demonstrator" briefly revisits the main ob-

jectives of MUSKETEER from a Machine Learning point of view. We fo-

cus on one possible particular scenario (user story) and the main chal-

lenges that have been identified. We briefly describe preliminary ap-

proaches to deal with the task alignment and data value estimation

problems, although the main research about these topics will take

place in the upcoming months, until the final versions are delivered in

month 26 (D4.3).

• The section "Demonstrator assumptions" describes the specific pa-

rameters used in the demonstrator: models, task and dataset descrip-

tion, number of users, available operations, etc.

• In Section 4: "Execution Setup", we explain the basic steps for execut-

ing the demonstrator in a multicore machine. Currently, it is only pos-

sible to run the demonstrator in a single machine, but when a new

communications library is available1, the same software demonstrator

could be run in different machines, simply replacing the communica-

tions module with the new one.

• The Section "Operation of the Demonstrator" describes a text-based

basic User Interface (only for the purpose of this demonstrator) and

the available options in the "Menu". We illustrate the effect of every

option in every participant, and show the results. This section could

serve as a script to execute a demonstration with the provided soft-

ware prototype.

• Finally, although the full software documentation is included in the

software package in html format (and it will be dynamically updated),

we have also included in this report part of that documentation, to fa-

cilitate a preliminary inspection of the software components.

1 The communications library will be developed under WP3 and it will ultimately support

communication between processes in different machines, hosted possibly in different or-

ganizations or even countries, via a cloud-based message broker.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2 Context of the demonstrator

The Demonstrator described in this document is a simplified instance of the MUSKETEER

platform, mainly concentrating on illustrating the concepts of pre-processing, normalization,

task alignment and data value estimation. The MUSKETEER platform aims at solving Machine

Learning (ML) problems using data from different users while preserving the priva-

cy/confidentiality of the data. Essentially, it aims at deploying a distributed ML setup (Figure

1(b)) such that a model equivalent to the one obtained in the centralized setup (Figure 1(a))

is obtained.

Figure 2 The centralized (a) vs. (privacy/confidentiality preserving) distributed scenario (b). Every user provides a portion
of the training dataset.

The centralized solution requires that the data from different users is gathered in a common

location, something that is not always possible due to privacy/confidentiality restrictions2.

On the other hand, the distributed privacy preserving approach requires to exchange some

information (intermediate data representation3, IDR) among the participating users such

2 It would be possible to gather data from different users in the same place if it is previously "transformed"

under the "data outsourcing" paradigm, to be finally processed in a central location, a cloud system, for in-

stance. If the transformation follows Differential Privacy principles, the data is altered and the effect on

the final models is uncertain. If the data is encrypted, there is a computational overhead during the train-

ing phase, as well as complications when processing data encrypted with different keys. MUSKETEER does

not currently contemplate the "transformed data outsourcing" scheme.

3 Any intermediate data representation should carry some information about the data it is derived from (to

allow learning), while hiding the actual raw data values to the participants in the protocol. Averaged gradi-

ents, auto-correlation matrices or cross-correlation vectors could be examples of IDR, each one revealing

different partial information about the datasets.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

that a Master Node (MN) obtains the final ML model without ever receiving/seeing the raw

data of the users.

Under this setup, several users may want to cooperate to train a joint model, but it the

amount and quality of the data provided by every one of them is not known beforehand.

Actually, some of them could even be malicious, and try to inject low quality or directly "poi-

sonous" data into the learning process. Obviously, all of them could declare that they are

contributing with a large amount of high quality data, but that is something to be further

assessed by the Master node controlling the learning process, since in a data economy, an

economic reward must be sent to every participant, according to their real contribution (Da-

ta Value). Therefore, the tasks of detecting the ‘alignment of every participant’ with respect

to the defined task is a very important preliminary step, since the inclusion of "bad" data in

the learning process could largely bias the resulting model. A thorough analysis of these

types of attacks and of potential strategies for defending against them will be carried out in

the context of WP5: Security and Trustworthiness of Federated Machine Learning Algo-

rithms, and the results produced in WP5 will help reducing the risk of incorporating data that

may damage the learning process.

By now, and for illustration purposes, we will present very basic Task Alignment (TA) ap-

proaches. For instance, in Figure 3 below, user #3 offers a large amount of data, but its quali-

ty is low and therefore the reward should be smaller than for users #1 and #2 (better data

quality), even considering the latter contribute with less data. User #4 offers data, but it is

detected as non-aligned with the task to be solved, and therefore it is considered as rubbish

or poisoned data. User #4 should be excluded from the learning process as soon as possible,

and obviously gets no reward in return.

Figure 3 The Task alignment and data value estimation problems

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.1 Task Alignment approaches

The first step before training the model is to evaluate if all the contributed data corresponds

to the same task. The participating users may provide data with different quality, and some

of them could even be malicious and provide wrong data. This step is described as "task

alignment", i.e., we want to estimate if every users data is "in line" with the real task to be

solved.

In a traditional setup, where all data is available for analysis without any kind of restriction,

the task alignment problems could be stated as the problem of verifying that the different

datasets share a common (or at least similar) joint distribution. Actually, the main objective

at this stage is to detect distributions that significantly differ from the reference one. This is,

if data from user "0" can be described as {xp, yp}0 , p = 1, …, N0, we can assume that the pat-

terns associated to user "0" come from a given joint distribution p0(x, y). We could apply the

same reasoning to the data coming from the other users p1(x, y), p2(x, y), etc., including the

one providing the reference: pR(x, y). Therefore, we could state the task alignment problem

as a distance computation between those distributions: the users with distributions closer to

the reference one are considered "aligned", and we assume that they will contribute posi-

tively to the training process. Misaligned users should be removed from the training set.

Classical examples of such a kind of distances are, among many other:

• Kullback–Leibler divergence [Kullback_1951]

• Hellinger distance [Hellinger_1909]

• Total variation distance [Chatterjee_2008]

• Jensen–Shannon divergence [Schütze_1999]

• Wasserstein metric (earth mover's distance) [Rüschendorf_2001]

However, in the MUSKETEER context, we do not have an unlimited access to the data, and

estimations of the distributions are not available. We will have to restrict ourselves to com-

puting distances among the intermediate data representations (IDR) that preserve the priva-

cy/confidentiality of the data.

We will assume therefore that some representation vector can be constructed from the

available information from every user (correlation matrices/vectors, gradient aggregation,

data distribution, etc.), and such IDR can be shared with the Master Node without compro-

mising the privacy/confidentiality. We will propose here some preliminary IDR, but a deeper

research will be carried out during the next months in relation to the concept of “sufficient

statistics” and to what degree those IDR may reveal unwanted information about the users

data.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Under this hypothesis, the alignment can be defined as any measurement among those IDR

vectors, for instance, normalized matrix distances, cosine of the angle among those vectors,

etc., or any other statistic measure able to operate under the privacy/confidentiality re-

quirements. This is something to be investigated in the upcoming months, and it is an open

research issue how the distances among the original distributions are preserved in the trans-

formed (IDR) space. As an example, we show here two possible IDR vector computations:

a) IDR based on correlation matrices/vectors. We assume that the master node receives

a correlation matrix and cross-correlation vector from every one of the workers (R1,

r1), …, (Rm, rm). A possible IDR is to compute the following vector:

Im = [[Rm], rm], where [.] represents the operation of vertically stacking the columns of

a matrix or several vectors to build a larger vector.

b) IDR based on gradients. We assume that the master node receives an accumulated

gradient vector from every one of the workers (R1, r1), …, (Rm, rm) to update the mod-

el. A possible option here is to directly use the accumulated gradient vector as IDR.

Based on the above mentioned IDR vectors, two scenarios are possible. In the first one (su-

pervised) we assume that a reference is available to estimate the correct alignment. This is

possible when the task proponent also provides a validation data set such that the reference

IDR vector is the one derived from that validation dataset, and it can be used as a reference

or target IDR to be followed by the other participants, as shown in Figure 4 (a)

Figure 4 Task alignment scenarios: supervised (a) vs. unsupervised (b)

In this supervised scenario (Figure 4a), in spite of the presence of many other mis-aligned

users, the aligned ones are always correctly identified, and the final estimated alignment is

very close to the correct one. The second scenario (Figure 4b), named as unsupervised, does

not provide a ground truth reference, and we need to trust on a majority vote approach. In

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

the case of many colluding users towards a wrong solution, the system is not able to detect

the correct alignment. If the number of "fair" users is larger than the wrong ones, the solu-

tion will also be correct, as in the supervised case4.

As an example, in a supervised task alignment scenario (where a reference is available), and

6 users (3 of them with fair data), a possible task alignment estimation results could be as

follows:

Figure 5 Task alignment estimation in the supervised scenario with the correlation (a) and gradients (b)

We can observe how users No. 1, 4 and 5 are not aligned (their agreement/alignment with

the task is lower). These users should be removed from the platform, to protect the training

process.

After this preliminary detection, any procedure provided in WP5 (Security and Trustworthi-

ness) could improve the detection of malicious users trying to interfere in the normal train-

ing process in more subtle ways (data poisoning, evasion attacks, etc.).

2.2 Data value estimation approaches

The Data Value (DV) estimation problem is related to the task alignment one. After excluding

the misaligned users (users 1, 4, 5 in the example of the previous section, continued here),

the objective is to assign a percentage of merit to every "fair" contributing user (users No. 0,

2, 3).

We foresee the following families of approaches for DV estimation, their detailed formula-

tion, performance and other characteristics -such as computational complexity-, are still to

be investigated.

We can classify the approaches according to the relationship among users data during the

DV estimation:

4 The threat by colluding malicious users will be extensively analysed in WP5.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• User independent methods: the DV of every user is estimated unique-

ly using data from that user, independently from the rest of the users

(absolute measures)

• User inter-dependent methods: the DV contribution of every user de-

pends on the contributions of the other users (relative measures)

With respect to the models used during the process:

• Final/Full Model approach (FM): the ML model architecture to be fi-

nally obtained is used in every intermediate step of the DV estimation

process, i.e., if a Multi-Layer Perceptron (MLP) is the model to be ulti-

mately obtained, then, any intermediate model used will also be a

MLP.

• Fast Linear Estimation (FLE): a linear model is used for the intermedi-

ate estimations, even when the final one is a different one. Faster but

less accurate estimations are expected to be obtained.

In what follows, we will briefly describe some of the approach combinations and the ob-

tained results.

Under a Full Model User Independent approach we directly use the performance achieved

with the targeted ML model (in the case illustrated here, a Logistic Classifier, LC) to estimate

the real contribution of every participant to the final solution. The performance obtained

with the LC is shown in Figure 6(a), where the Area Under Curve (AUC) values are shown for

every "fair" user (users 0, 2 and 3). These values indicate which user is providing the most

valuable dataset (users 0 and 3 are equally best, user 2 is slightly worse).

The Fast Linear Estimation User Independent approach uses a –Least Squares- linear model,

which can be trained much faster. The resulting AUC values are shown in Figure 6(b) and

show a similar pattern.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 6 Data value estimation using the full model (a) and the fast linear estimation approach (b)

The Data Value (in percentage) has been directly estimated here as the corresponding pro-

portions for every user, i.e, for user "i" (i = 0, 2, 3):

DVi = (AUCi) / (AUC0 + AUC2 + AUC3) * 100

Using this approach we obtain the following DV estimations:

• FM: User "0": 33.4%, User "2": 33.2%, User "3": 33.4%

• FLE: User "0": 33.9%, User "2": 32.3%, User "3": 33.8%

These estimations are coherent with the “ground truth” of the experiment (these three us-

ers provide fair data, the user number 2 provides slightly less training patterns).

We observe that good estimates can be achieved using the FLE approach in comparison with

the FM one. Anyhow, it is too early to draw any conclusion, and more research and experi-

mentation is needed during the upcoming months before producing the final algorithms.

The above described methods only provide a DV estimation proportional to measurements

on independently trained models, and they do not take into account the potential correla-

tions among the datasets of the participants. An alternative is to use a Full Model User Inter-

Dependent (brute force) approach, but it requires training a big number of final models with

different input data configurations, with the corresponding overhead in computation. Under

a greedy setup that avoids evaluating some of the possible combinations, the procedure

would consist on the following steps:

1. Identify the user that provides the best data (user 3, in our case)

2. Evaluate different incremental models, by combining contributions

from user 3 with the other. In our case we have these two options:

a. Model “A” trained with data from users 3 and 0

b. Model “B” trained with data from users 3 and 2

3. Choose the best performing model, in this case, model “A” is the best

performing, as shown in Figure 7 below, and therefore the second best

user is user No. “0”.

4. Repeat the process until all users have been evaluated and ranked.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 7 Greedy incremental Data value estimation using the Final Model Inter-Dependent User approach.

In this case, we assume that the master node (the task proponent) already has a trained

model with AUC=0.94 that he/she wants to improve. The performance curve shown in Figure

7 represents the improved AUC values when the base model is retrained adding data from

every user. We have sorted the users according to the largest improvement with respect to

the reference solution. In Figure 7 we observe how data from user "3" provides an im-

provement up to AUC=0.95 from a previous AUC of the reference dataset of 0.94. The next

users’ data helps to improve the solution up to a value of AUC = 0.956, and finally, the third

user provides a marginal improvement. This "winner-takes-all" approach would yield a data

value estimation very favorable to the first selected user:

• User "3": 68.7%, User "0": 24.3%, User "2": 7.0%

We still need to further investigate alternative schemes for data value assignation and their

implications in a true data value market.

Finally, there is a second family of possible approaches for data value estimation, where it is

not necessary to train full models, but rely on the alignment concept described in the previ-

ous section, directly measured on IDR values. This way, the users more "aligned" to the ref-

erence value (if available), can be assigned a larger data value. In Figure 8 below we show

such estimation using two types of IDR: correlation matrices and aggregated gradients (re-

member that users 1, 4 and 5 have been removed due to their poor alignment).

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 8 Data value estimation based on fast correlation and gradient measurements

Using these measurements, we obtain DV estimates very close to the ones obtained using

the full models, under the independent scheme:

• Corr.: User "0": 36.3%, User "2": 32.1%, User "3": 31.6%

• Grad.: User "0": 30.4%, User "2": 26.8%, User "3": 42.8%

In the demonstrator we have included a preliminary fast estimation based on correlation

measurements. In the final version of the platform, more estimation methods will be availa-

ble. All the ML algorithms and estimation methods will be packaged in a library and as such

they will become available for the end users of the MUSKETEER platform.

3 Demonstrator assumptions

In what follows, we assume that a Machine Learning task has already been defined, and that

the platform has already identified all the potential users participating in the training pro-

cess. In the complete, end-to-end version of the MUSKETEER platform, the services which

allow users to register to the platform, define tasks and join tasks will be developed under

WP3.

Therefore, for the purpose of this demonstrator, we will assume the following:

• General description of the task: an image classification problem is to be solved. The

input images are handwritten digits of size 28x28 pixels and the task is to differenti-

ate between images containing even and odd numbers. All participants have access

to this description and agree to participate and contribute some data to the learning

process. A preliminary check procedure has already been executed to guarantee that

the contributed data follows the needed format (number and type of input features,

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

number and type of target values, etc.). The source dataset used to build this exam-

ple is the MNIST handwritten digits dataset5.

• User_addresses and execution: the list of addresses of the participating nodes (Mas-

ter Node (MN) and Worker Nodes (WN)) is available. For the purpose of this demo,

the address of the master is "5", and the end users providing training data have ad-

dresses "0", "1", "2", "3", "4". Every participant (Master/Workers) will be a separate

process in a local machine. The current version of the Communications Library (CL) is

primarily designed to communicate between processes in the same machine, and we

have executed these simulations using processes in a single machine, but in the fu-

ture the experiments will also cover different remote machines.

• Data: the data for training, validating and testing will be provided to MUSKETEER by

means of a Data Connector (DC) specific for this Demonstrator. The DC in the demon-

strator simply loads data from a file, but in the future any other compatible data

connector can be used (SQL access, for instance). The input patterns (images re-

shaped to a 1-D vector) have a dimension of 784, and targets are binary. The features

are the pixel values of the input images, but some transformation can be applied

within the context of the demonstrator. For the sake of illustration, the TA and DV

functionalities have been implemented in the demonstrator. We have designed a da-

taset partition as follows:

- User "0" provides 4078 fair/correct/useful training patterns

- User "1" provides 3340 random (both features and targets) training

patterns

- User "2" provides 5579 fair/correct/useful training patterns

- User "3" provides 7773 fair/correct/useful training patterns

- User "4" provides 4230 training patterns with correct features but

with opposite targets

Therefore, users "1" and "4" do not contribute positively to the training task (some-

thing to be automatically detected during the task alignment phase), as it will be

shown later. Users "0", "2" and "3" provide valuable data, and the value of their con-

tribution is to be estimated during the Data Value estimation phase.

• Confidentiality requirements: In the Demonstrator we will assume that the raw data

is never sent outside of the owner’s context and that the trained model is kept secret

(only known to the task proposer). We will allow to exchange among the participants

5 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

some IDR, transformations of the data (such as aggregations, cross-correlation matri-

ces, etc.), but in any case that information cannot be used to reconstruct the raw in-

put data or targets. The final end users will be aware in advance of the type of infor-

mation exchanged under every Privacy Operation Mode (POM), and it is their ulti-

mate responsibility to choose among one POM or another.

In the next Figure we show the main components (objects) in the Demonstrator and their

inter-relationship during the normal operation. The Master node is controlling all the activi-

ty, mainly reacting to instructions received from the task proponent through the User Inter-

face. The Workers mainly operate in a responsive way: when they receive a message or in-

struction, they perform a computation, return the result, and come back to a "listening

state". This design is specific for the demonstrator, and the final design in MUSKETEER may

be slightly different. However, we will use this preliminary approach as a baseline for discus-

sion about different alternatives or designs.

Figure 9 The Demonstrator setup: Master, Workers and other participating objects

The behaviour of the Master and Workers may become quite complex, depending on the

selected POM and Machine Learning procedure to be implemented. To define and control

such behaviour, we have implemented a Finite State Machine (FSM) object, running in both

Master and Workers, such that the state of those machines determines which are the ac-

tions to be executed, and the received inputs (messages, instructions, conditions), indicates

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

when to change from one state to another. For illustration purpose, we include here some of

the states and transitions in the Master. It is out of the scope of this document to enter into

technical details about the explanation/interpretation of every transition/state. But, as an

example, if the user wants to carry out a local preprocessing, the event

“go_sending_prep_object” is activated in the Master, and the state is changed to “send-

ing_prep_object” in Figure 10. As a consequence, every Worker receives a command that

activates the event “go_storing_prep_object” in Figure 12, and the protocols continue ac-

cording to the structure defined in the FSM. The complexity of these protocols will be hidden

to the end user, only the ML designer will get access to this low level implementation detail.

Figure 10 The States and transitions of the Master FSM showing operations for task alignment, data value estimation and

pre-processing

Figure 11 The States and transitions of the Master FSM showing operations for model training and computation of the

performance at workers

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 12 The States and transitions of the Worker FSM showing operations for task alignment, data value estimation

and pre-processing

Figure 13 The States and transitions of the Workers FSM showing operations for model training and computation of the

performance at workers

4 Installation instructions

Before executing the Demonstrator, it is necessary to correctly configurate an execution Py-

thon 3 environment with all the required libraries. In the final version of the platform, such

configuration will be simplified, since the code will be embedded in a “docker” container.

Fully detailed installation instructions are included in the Software Documentations, but we

describe here the general guidelines.

For the purpose of executing this demonstrator it is highly advisable to use the Anaconda

python 3 distribution6, available for several Operating Systems (OS).

6 https://www.anaconda.com/distribution/

https://www.anaconda.com/distribution/

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Once Anaconda is correctly installed, we need to open one “Anaconda Prompt Terminal”

and execute a preliminary libraries update:

conda update conda

conda update anaconda

The safest way to execute the code is to define a specific execution environment, with all the

required libraries. This procedure is slightly different, depending on the OS:

Linux and macOS:

bash make_conda_environment_unix.sh

Once the environment is ready, we activate it (we have to do this activation in every new

terminal we open):

conda activate Musk_Demo

Windows:

.\make_conda_environment_windows.bat

5 Execution setup

We describe here the needed steps to execute the Demonstrator. These instructions are also

included with greater detail in the software documentation (README file).

To execute the demonstrator and conveniently observe all the output messages, we will

need to open 7 terminals on the same machine:

• On terminal 1, we execute7 "python3 musketeer.py", this process pro-

vides the basic communication facilities among the other processes.

• On terminal 2, we execute "python3 master.py", this window will

show an elementary user interface to interact with the demonstrator,

as shown below. This process will be controlling the behaviour of the

other processes, as a response to the options introduced in the Menu.

7 Note that, depending on the OS, the Python executable could be named “python” or “python3”. In any

case, the code is Python 3.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 14 The Demonstrator User Interface

• On terminals 3-7, we execute the end-user parts (5 different users):

"python3 worker.py --my_id 0 --model_type RidgeRegression"

"python3 worker.py --my_id 1 --model_type RidgeRegression"

"python3 worker.py --my_id 2 --model_type RidgeRegression"

"python3 worker.py --my_id 3 --model_type RidgeRegression"

"python3 worker.py --my_id 4 --model_type RidgeRegression"

Alternatively to this last step, a script that executes the 5 processes in the same terminal can

be executed instead, and the behaviour of the Demonstrator would be the same, although

the messages from all the users will be shown in the same window, which could be slightly

confusing. The advantage of using this script is that we only need 3 terminals to run the de-

monstrator.

In Linux/macOS:

 bash ./launch_workers_unix.sh

In Windows:

 .\launch_workers_windows.bat

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

If we opt for the 7-terminals approach, for instance, in the terminal for user "0", we observe

how it starts all the needed elements, loads the data and enters the "listening state":

Figure 1514 The terminal showing messages from user "0".

By default, many messages are printed in the terminals during the operation of the Demon-

strator. Those messages could be easily deactivated by setting “verbose = False”, but they

are useful to understand the steps executed by every process in the Demonstrator. Anyhow,

a log folder (placed in the Demonstrator folder) containing the resulting log files is also avail-

able. These log files show the messages produced by the communication library, the FSM

and the ML code itself. These logs are produced even when messages on screen are deac-

tivated.

At this point, the demonstrator is running and ready to operate on the users’ data. In the

next section we will guide the reader through the currently supported actions.

6 Operation of the demonstrator

In what follows we will illustrate the operation of the demonstrator.

6.1 User interface

As described in the previous section, we provide a simple User Interface (UI) to facilitate the

interaction with the Demonstrator and the evaluation of all its functionalities. The options

offered in the "Menu" are:

• Load local validation/test data and activate ML task: option used to start the Master

and load validation and test data

• Display available end users: shows a list of connected users and their addresses

• Task alignment: allows to estimate the alignment of the data of every contributing

user with respect to the reference task defined by the master

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Exclude unwanted users: allows to exclude unwanted users, once the alignment is

estimated

• Ad Hoc local data pre-processing: apply ad-hoc local pre-processing (possibly provid-

ed by the user) on the users' data

• Global data normalization: estimate global parameters to perform a global normali-

zation

• Global feature selection: apply a feature selection process on all data, to identify the

most valuable features

• Data value estimation: estimate the value of every users’ data

• Model training (RidgeRegression): train the machine learning model

• Performance on local validation/test: compute performance on local validation/test

data

• Performance on users training data: compute performance on users’ data (training

data)

• Create ROC figures: Draw ROC figures comparing the performance of

the implemented models

• Terminate all user nodes: sends a message to all users, asking them to terminate

• EXIT MUSKETEER Demonstrator: finalizes the demonstrator

In the next sections we will go through all these options and comment the observed results.

6.2 Master node initialization

The first step is to load the data local to the Master Node, and activate the Master ML pro-

cess (Option "0" in the UI):

Figure 16 The Master Node is initiated

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

We assume that the user that defines the task (the one that runs the master node), has

some data to evaluate the goodness of fit of the resulting models (validation and test da-

tasets). It can be observed how the Master loads the validation and test data using the Data

Connector. It also activates an ML task (Linear Classifier, implemented using a Ridge Regres-

sion model). Then it creates a Finite State Machine (FSM) to control the operational flow and

it also creates any other local variable needed during the operation.

6.3 Display available end users

The demonstrator is able to show all the connected users and their addresses (Option "1"):

Figure 17 listing the connected users

We observe that 5 users are connected, and their addresses are shown.

6.4 Task alignment

The task alignment estimation is started with option "2".

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 18 Applying the task alignment estimation

The master starts exchanging information with the worker nodes (correlation values) and a

task alignment value is produced for every one of them. As expected, the alignment of users

No. 1 and 4 is low, indicating that the quality of their data is not as expected (for the task at

hand).

6.5 Excluding unwanted users

The next logical step is to exclude from the training process those users with an alignment

below a given threshold. In Option "3" of the Menu, the system invites to introduce such

threshold value, and the participants with alignment below that value are excluded (discon-

nected).

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 19 Excluding misaligned users

Figure 20 Misaligned users are disconnected

If we list again the available users, we see the list after filtering the unwanted ones:

Figure 21 Updated list of participants

6.6 Ad Hoc local data pre-processing

Another operation that can be performed from the Master Node is to apply an "ad hoc" local

pre-processing at every worker node. Under this category may fall any operation that can be

applied to the raw data without reference from the other users’ data. We have implemented

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

some examples of such ad-hoc local pre-processing options, in the final platform new ones

will be added and, ultimately, the final user is responsible for providing any additional ad-

hoc local pre-processing object associated to his/her task.

Figure 22 Local Pre-processing Menu

We see that several options are available in the demonstrator. All these procedures can be

applied without knowledge from the other participants:

• A logarithmic transformation;

• Image Down-sampling by different factors;

• Local Data Normalization (zero mean, unit standard deviation);

• Deep Learning Feature extraction (AlexNet model from torchvision, as depicted be-

low (Original Architecture Image from [Krizhevsky et al., 2012.]). The network trans-

forms any input image into a vector of 1000 features.

Figure 23 AlexNet network used for Deep Learning pre-processing

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

We illustrate the result of applying some of the available methods, for instance, the

application of the down-sampling operator:

Figure 24 Applying the down-sample pre-processing

The worker shows the new size of its local training data:

Figure 25 Workers applying the pre-processing and showing the new data size

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The application of the Deep Learning Pre-processing yields:

Figure 26 Applying the Deep Learning Pre-processing

6.7 Global data normalization

Another group of pre-processing methods may need global parameters to be applied. For

instance, if we want that the ensemble set of training patterns has zero mean and unit

standard deviation, it is necessary to estimate the normalizing values taking into account all

the data from all users. This is achieved in option "5" in the Menu:

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 27 Global normalization parameters estimation and application to users’ data

6.8 Global feature selection

Another pre-processing operation that needs global information is feature selection. For

illustration purposes we have implemented a Greedy Feature Selection approach based on

the training of linear models (LGFS). It can be applied to the data using option "6" in the

Menu. The user needs to enter the number of features to be selected (and retained).

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 28 Applying the global greedy feature selection

After this operation, the Master Node identifies which are the most relevant features, and

then the local and remote data is pre-processed to retain only those features.

6.9 Data value estimation

An operation related to the task alignment one is the data value estimation. Several ap-

proaches can be implemented. For illustration purposes we will only include here one meth-

od, but more approaches will be investigated during the project. Since all these algorithms

are implemented as separate objects, it will be straightforward to select one or another dur-

ing the final operation of the MUSKETEER platform.

The data value estimation is obtained using option "7" in the Menu:

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 35

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 29 Data Value estimation

We observe that the user receiving a larger reward is the user with address "2", which coin-

cides with the user providing the largest amount of fair data.

6.10 Model training

Once the training data has been pre-processed or transformed using the mechanisms select-

ed by the Data Scientist controlling the MUSKETEER platform, the predicting model training

itself can be executed, option "8" in the Menu:

Figure 30 Model training

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 36

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6.11 Performance on local validation/test

Once the model has been trained, it is possible to measure its performance on the validation

and test local data, for model selection and comparison purposes. Option "9" in the Menu

provides this facility. The results of different experiments are stored, to be compared later.

The Area Under ROC Curve (AUC) for this particular experiment is shown:

Figure 31 Performance on local data

6.12 Performance on training data at every user

Although it is not strictly necessary, for illustration of a possible operation on encrypted da-

ta, we provide the option to evaluate the model on the training data at every worker (with-

out revealing the model to the workers). Since this operation on encrypted data can be ex-

tremely slow, we are showing here the results of the model trained with only two input fea-

tures, and hence the low performance. After executing option "10":

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 37

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 32 Performance on users’ data

6.13 Create ROC figures

For comparison purposes among different pre-processing options and models, we can gen-

erate ROC curves showing all the executed experiments, with option "11". As a result two

figures are saved, showing the performance on the validation and test data sets:

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 38

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 33 Comparative ROC curves for different solutions on the validation set

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 39

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 34 Comparative ROC curves for different solutions on the test set

We observe that the worst performance is obtained when only two features are retained

(i.e., using as input to the model only two selected pixels from the images) (AUC = 0.82), and

the best result is obtained when a Deep Learning pre-processing (AlexNet) is applied (AUC =

0.996). The same classification model (RidgeRegression) has been used in all cases, which

reinforces the importance of an adequate pre-processing of the data. Besides some standard

pre-processing techniques that can be supplied to the final users, the user defining the task

is possibly the best qualified to provide the best suited pre-processing object for a task at

hand.

6.14 Terminate all user nodes

Option "12" allows to terminate all users.

6.15 Exit MUSKETEER Demonstrator

Option "99" exits MUSKETEER.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 40

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7 Software documentation

The documentation of the software is provided in html format along with the code. The doc-

umentation has been generated with Sphinx8, and it will be maintained and expanded as the

software project grows. We include in what follows the main pages of that documentation.

8 sphinx-doc.org

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 42

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 43

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 44

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 45

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 46

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 47

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 48

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 49

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 50

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 51

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 52

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 53

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 54

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

8 Conclusions

In this deliverable (D4.2) we have presented preliminary algorithms for data pre-

processing, normalization and task alignment and data value estimation ap-

proaches. As this is an initial version and most of the research is ahead of us and

also many algorithms are still to be implemented during the next months, these

preliminary versions have served to define a basic software structure that will be

partly inherited by the final platform. The operation of the algorithms has been

illustrated in the form of a fully operable software Demonstrator (within the

demonstration conditions: given a particular dataset and supporting a limited

number of options). In spite of only being a first Demonstrator, it includes im-

portant concepts and software components design to be further incorporated in

the final MUSKETEER platform: pre-processing objects, data connectors, a com-

munication library, Master and Worker nodes, etc. The behaviour of the Demon-

strator has been illustrated in this document, where the results of every available

option have been briefly described. The Demonstrator has been tested on Linux,

Windows and macOS platforms, and instructions for installation and execution are

also included.

9 References

[Chatterjee_2008], Chatterjee, Sourav. "Distances between probability measures" (PDF). UC

Berkeley. Archived from the original (PDF) on July 8, 2008. Retrieved 21 June 2013.

D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms – Initial Version 55

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

[Hellinger_1909] Hellinger, Ernst (1909), "Neue Begründung der Theorie quadratischer For-
men von unendlichvielen Veränderlichen", Journal für die reine und angewandte
Mathematik (in German), 136: 210–271

[Krizhevsky2012]. Krizhevsky, Alex & Sutskever, Ilya & E. Hinton, Geoffrey. (2012). ImageNet

Classification with Deep Convolutional Neural Networks. Neural Information Processing Sys-

tems. 25. 10.1145/3065386.

[Kullback_1951] Kullback, S.; Leibler, R.A. (1951). "On information and sufficiency". An-
nals of Mathematical Statistics. 22 (1): 79–86.

[Rüschendorf_2001] Rüschendorf, L. (2001) [1994], "Wasserstein metric", in Hazewinkel,
Michiel (ed.), Encyclopedia of Mathematics, Springer Science+Business Media B.V. /
Kluwer Academic Publishers.

[Sphinx] https://sphinx-doc.org

[Schütze_1999] Hinrich Schütze; Christopher D. Manning (1999). Foundations of Statistical
Natural Language Processing. Cambridge, Mass: MIT Press. p. 304. ISBN 978-0-262-
13360-9.

 [Torchvision] https://pytorch.org/docs/stable/torchvision/index.html

https://sphinx-doc.org/
https://pytorch.org/docs/stable/torchvision/index.html

