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Executive Summary 

This deliverable (D4.2 "Pre-processing, normalization, data alignment and data value estima-

tion") is the first software outcome of MUSKETEER’s WP4 in the form of a Demonstrator. 

Besides the software prototype itself, it comprises a report with the description of the oper-

ation of the MUSKETEER Demonstrator under different operations, as well as the software 

documentation and description of the software components. The implementations included 

in the Demonstrator are preliminary yet fully operative, although possibly their design may 

change as the project progresses. In future versions, more operations and modules will be 

available, some of the existing modules could be replaced by improved versions (the cur-

rently available algorithms are rather simple), and some general redesign may be necessary 

to facilitate the integration with the rest of MUSKETEER components. 
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1 Introduction 

1.1 Purpose 

This deliverable provides a Demonstrator of some of the MUSKETEER capabilities (mainly 

focusing on data pre-processing, data normalization, data alignment and data value estima-

tion). Although not required in the Agreement, we also provide a very simple Machine 

Learning (ML) model operating under confidentiality preserving conditions, such that the 

effects of the pre-processing operations can be measured and quantified in a particular task 

(image classification) using Receiver Operating Characteristics (ROC) curves on both valida-

tion and test sets. 

1.2 Related Documents 

D4.2 will serve as a basis for a deeper understanding of the models and algorithms to be 

further developed in WP4 (D4.4 and D4.6), and it will provide valuable information to WP7 

(Client side connector implementation and use case piloting), as indicated in the PERT dia-

gram below. In general terms, it constitutes a tangible outcome such that any member of 

the consortium can carry out "hands on" experimentation with a preliminary version of the 

platform, and such interaction could provide relevant feedback among all participants. 

 
Figure 1 MUSKETEER’s PERT diagram 
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1.3 Document Structure 

This document is structured as follows:  

• The current section (Introduction), presents the general aspects about 

this document and its relationship with other developments in the pro-

ject. 

• The section "Context of the Demonstrator" briefly revisits the main ob-

jectives of MUSKETEER from a Machine Learning point of view. We fo-

cus on one possible particular scenario (user story) and the main chal-

lenges that have been identified. We briefly describe preliminary ap-

proaches to deal with the task alignment and data value estimation 

problems, although the main research about these topics will take 

place in the upcoming months, until the final versions are delivered in 

month 26 (D4.3). 

• The section "Demonstrator assumptions" describes the specific pa-

rameters used in the demonstrator: models, task and dataset descrip-

tion, number of users, available operations, etc. 

• In Section 4: "Execution Setup", we explain the basic steps for execut-

ing the demonstrator in a multicore machine. Currently, it is only pos-

sible to run the demonstrator in a single machine, but when a new 

communications library is available1, the same software demonstrator 

could be run in different machines, simply replacing the communica-

tions module with the new one. 

• The Section "Operation of the Demonstrator" describes a text-based 

basic User Interface (only for the purpose of this demonstrator) and 

the available options in the "Menu". We illustrate the effect of every 

option in every participant, and show the results. This section could 

serve as a script to execute a demonstration with the provided soft-

ware prototype. 

• Finally, although the full software documentation is included in the 

software package in html format (and it will be dynamically updated), 

we have also included in this report part of that documentation, to fa-

cilitate a preliminary inspection of the software components. 

 

1  The communications library will be developed under WP3 and it will ultimately support 

communication between processes in different machines, hosted possibly in different or-

ganizations or even countries, via a cloud-based message broker. 
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2 Context of the demonstrator 

The Demonstrator described in this document is a simplified instance of the MUSKETEER 

platform, mainly concentrating on illustrating the concepts of pre-processing, normalization, 

task alignment and data value estimation. The MUSKETEER platform aims at solving Machine 

Learning (ML) problems using data from different users while preserving the priva-

cy/confidentiality of the data. Essentially, it aims at deploying a distributed ML setup (Figure 

1(b)) such that a model equivalent to the one obtained in the centralized setup (Figure 1(a)) 

is obtained.  

              
 

Figure 2 The centralized (a) vs. (privacy/confidentiality preserving) distributed scenario (b). Every user provides a portion 
of the training dataset. 

The centralized solution requires that the data from different users is gathered in a common 

location, something that is not always possible due to privacy/confidentiality restrictions2. 

On the other hand, the distributed privacy preserving approach requires to exchange some 

information (intermediate data representation3, IDR) among the participating users such 

 

2  It would be possible to gather data from different users in the same place if it is previously "transformed" 

under the "data outsourcing" paradigm, to be finally processed in a central location, a cloud system, for in-

stance. If the transformation follows Differential Privacy principles, the data is altered and the effect on 

the final models is uncertain. If the data is encrypted, there is a computational overhead during the train-

ing phase, as well as complications when processing data encrypted with different keys. MUSKETEER does 

not currently contemplate the "transformed data outsourcing" scheme. 

3  Any intermediate data representation should carry some information about the data it is derived from (to 

allow learning), while hiding the actual raw data values to the participants in the protocol. Averaged gradi-

ents, auto-correlation matrices or cross-correlation vectors could be examples of IDR, each one revealing 

different partial information about the datasets. 



 

 

 

 
D4.2 Pre-processing, normalization, data alignment and data value estimation 

algorithms – Initial Version 11 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

that a Master Node (MN) obtains the final ML model without ever receiving/seeing the raw 

data of the users.  

Under this setup, several users may want to cooperate to train a joint model, but it the 

amount and quality of the data provided by every one of them is not known beforehand. 

Actually, some of them could even be malicious, and try to inject low quality or directly "poi-

sonous" data into the learning process. Obviously, all of them could declare that they are 

contributing with a large amount of high quality data, but that is something to be further 

assessed by the Master node controlling the learning process, since in a data economy, an 

economic reward must be sent to every participant, according to their real contribution (Da-

ta Value). Therefore, the tasks of detecting the ‘alignment of every participant’ with respect 

to the defined task is a very important preliminary step, since the inclusion of "bad" data in 

the learning process could largely bias the resulting model. A thorough analysis of these 

types of attacks and of potential strategies for defending against them will be carried out in 

the context of WP5: Security and Trustworthiness of Federated Machine Learning Algo-

rithms, and the results produced in WP5 will help reducing the risk of incorporating data that 

may damage the learning process.  

By now, and for illustration purposes, we will present very basic Task Alignment (TA) ap-

proaches. For instance, in Figure 3 below, user #3 offers a large amount of data, but its quali-

ty is low and therefore the reward should be smaller than for users #1 and #2 (better data 

quality), even considering the latter contribute with less data. User #4 offers data, but it is 

detected as non-aligned with the task to be solved, and therefore it is considered as rubbish 

or poisoned data. User #4 should be excluded from the learning process as soon as possible, 

and obviously gets no reward in return. 

 
Figure 3 The Task alignment and data value estimation problems 
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2.1 Task Alignment approaches 

The first step before training the model is to evaluate if all the contributed data corresponds 

to the same task. The participating users may provide data with different quality, and some 

of them could even be malicious and provide wrong data. This step is described as "task 

alignment", i.e., we want to estimate if every users data is "in line" with the real task to be 

solved. 

In a traditional setup, where all data is available for analysis without any kind of restriction, 

the task alignment problems could be stated as the problem of verifying that the different 

datasets share a common (or at least similar) joint distribution. Actually, the main objective 

at this stage is to detect distributions that significantly differ from the reference one. This is, 

if data from user "0" can be described as {xp, yp}0 , p = 1, …, N0, we can assume that the pat-

terns associated to user "0" come from a given joint distribution p0(x, y). We could apply the 

same reasoning to the data coming from the other users p1(x, y), p2(x, y), etc., including the 

one providing the reference: pR(x, y). Therefore, we could state the task alignment problem 

as a distance computation between those distributions: the users with distributions closer to 

the reference one are considered "aligned", and we assume that they will contribute posi-

tively to the training process. Misaligned users should be removed from the training set. 

Classical examples of such a kind of distances are, among many other: 

• Kullback–Leibler divergence [Kullback_1951]  

• Hellinger distance [Hellinger_1909] 

• Total variation distance [Chatterjee_2008] 

• Jensen–Shannon divergence [Schütze_1999] 

• Wasserstein metric (earth mover's distance) [Rüschendorf_2001] 

However, in the MUSKETEER context, we do not have an unlimited access to the data, and 

estimations of the distributions are not available. We will have to restrict ourselves to com-

puting distances among the intermediate data representations (IDR) that preserve the priva-

cy/confidentiality of the data.   

We will assume therefore that some representation vector can be constructed from the 

available information from every user (correlation matrices/vectors, gradient aggregation, 

data distribution, etc.), and such IDR can be shared with the Master Node without compro-

mising the privacy/confidentiality. We will propose here some preliminary IDR, but a deeper 

research will be carried out during the next months in relation to the concept of “sufficient 

statistics” and to what degree those IDR may reveal unwanted information about the users 

data.   
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Under this hypothesis, the alignment can be defined as any measurement among those IDR 

vectors, for instance, normalized matrix distances, cosine of the angle among those vectors, 

etc., or any other statistic measure able to operate under the privacy/confidentiality re-

quirements. This is something to be investigated in the upcoming months, and it is an open 

research issue how the distances among the original distributions are preserved in the trans-

formed (IDR) space. As an example, we show here two possible IDR vector computations:  

a) IDR based on correlation matrices/vectors. We assume that the master node receives 

a correlation matrix and cross-correlation vector from every one of the workers (R1, 

r1), …, (Rm, rm). A possible IDR is to compute the following vector: 

Im = [[Rm], rm], where [.] represents the operation of vertically stacking the columns of 

a matrix or several vectors to build a larger vector. 

b) IDR based on gradients. We assume that the master node receives an accumulated 

gradient vector from every one of the workers (R1, r1), …, (Rm, rm) to update the mod-

el. A possible option here is to directly use the accumulated gradient vector as IDR. 

Based on the above mentioned IDR vectors, two scenarios are possible. In the first one (su-

pervised) we assume that a reference is available to estimate the correct alignment. This is 

possible when the task proponent also provides a validation data set such that the reference 

IDR vector is the one derived from that validation dataset, and it can be used as a reference 

or target IDR to be followed by the other participants, as shown in Figure 4 (a) 

 

    
Figure 4 Task alignment scenarios: supervised (a) vs. unsupervised (b)  

In this supervised scenario (Figure 4a), in spite of the presence of many other mis-aligned 

users, the aligned ones are always correctly identified, and the final estimated alignment is 

very close to the correct one. The second scenario (Figure 4b), named as unsupervised, does 

not provide a ground truth reference, and we need to trust on a majority vote approach. In 
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the case of many colluding users towards a wrong solution, the system is not able to detect 

the correct alignment. If the number of "fair" users is larger than the wrong ones, the solu-

tion will also be correct, as in the supervised case4.  

As an example, in a supervised task alignment scenario (where a reference is available), and 

6 users (3 of them with fair data), a possible task alignment estimation results could be as 

follows: 

  
Figure 5 Task alignment estimation in the supervised scenario with the correlation (a) and gradients (b)  

We can observe how users No. 1, 4 and 5 are not aligned (their agreement/alignment with 

the task is lower). These users should be removed from the platform, to protect the training 

process. 

After this preliminary detection, any procedure provided in WP5 (Security and Trustworthi-

ness) could improve the detection of malicious users trying to interfere in the normal train-

ing process in more subtle ways (data poisoning, evasion attacks, etc.).  

2.2 Data value estimation approaches 

The Data Value (DV) estimation problem is related to the task alignment one. After excluding 

the misaligned users (users 1, 4, 5 in the example of the previous section, continued here), 

the objective is to assign a percentage of merit to every "fair" contributing user (users No. 0, 

2, 3).  

We foresee the following families of approaches for DV estimation, their detailed formula-

tion, performance and other characteristics -such as computational complexity-, are still to 

be investigated.  

We can classify the approaches according to the relationship among users data during the 

DV estimation: 

 

4 The threat by colluding malicious users will be extensively analysed in WP5. 
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• User independent methods: the DV of every user is estimated unique-

ly using data from that user, independently from the rest of the users 

(absolute measures) 

• User inter-dependent methods: the DV contribution of every user de-

pends on the contributions of the other users (relative measures) 

With respect to the models used during the process: 

• Final/Full Model approach (FM): the ML model architecture to be fi-

nally obtained is used in every intermediate step of the DV estimation 

process, i.e., if a Multi-Layer Perceptron (MLP) is the model to be ulti-

mately obtained, then, any intermediate model used will also be a 

MLP. 

• Fast Linear Estimation (FLE): a linear model is used for the intermedi-

ate estimations, even when the final one is a different one. Faster but 

less accurate estimations are expected to be obtained. 

In what follows, we will briefly describe some of the approach combinations and the ob-

tained results.  

Under a Full Model User Independent approach we directly use the performance achieved 

with the targeted ML model (in the case illustrated here, a Logistic Classifier, LC) to estimate 

the real contribution of every participant to the final solution. The performance obtained 

with the LC is shown in Figure 6(a), where the Area Under Curve (AUC) values are shown for 

every "fair" user (users 0, 2 and 3).  These values indicate which user is providing the most 

valuable dataset (users 0 and 3 are equally best, user 2 is slightly worse). 

The Fast Linear Estimation User Independent approach uses a –Least Squares- linear model, 

which can be trained much faster. The resulting AUC values are shown in Figure 6(b) and 

show a similar pattern. 
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Figure 6 Data value estimation using the full model (a) and the fast linear estimation approach (b)  

 

 

The Data Value (in percentage) has been directly estimated here as the corresponding pro-

portions for every user, i.e, for user "i" (i = 0, 2, 3): 

DVi = (AUCi) / (AUC0 + AUC2 + AUC3) * 100 

Using this approach we obtain the following DV estimations: 

• FM: User "0": 33.4%, User "2": 33.2%, User "3": 33.4% 

• FLE: User "0": 33.9%, User "2": 32.3%, User "3": 33.8% 

These estimations are coherent with the “ground truth” of the experiment (these three us-

ers provide fair data, the user number 2 provides slightly less training patterns). 

We observe that good estimates can be achieved using the FLE approach in comparison with 

the FM one. Anyhow, it is too early to draw any conclusion, and more research and experi-

mentation is needed during the upcoming months before producing the final algorithms.  

The above described methods only provide a DV estimation proportional to measurements 

on independently trained models, and they do not take into account the potential correla-

tions among the datasets of the participants. An alternative is to use a Full Model User Inter-

Dependent (brute force) approach, but it requires training a big number of final models with 

different input data configurations, with the corresponding overhead in computation. Under 

a greedy setup that avoids evaluating some of the possible combinations, the procedure 

would consist on the following steps: 

1. Identify the user that provides the best data (user 3, in our case) 

2. Evaluate different incremental models, by combining contributions 

from user 3 with the other. In our case we have these two options:  

a. Model “A” trained with data from users 3 and 0 

b. Model “B” trained with data from users 3 and 2 

3. Choose the best performing model, in this case, model “A” is the best 

performing, as shown in Figure 7 below, and therefore the second best 

user is user No. “0”. 

4. Repeat the process until all users have been evaluated and ranked. 
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Figure 7 Greedy incremental Data value estimation using the Final Model Inter-Dependent User approach.  

In this case, we assume that the master node (the task proponent) already has a trained 

model with AUC=0.94 that he/she wants to improve. The performance curve shown in Figure 

7 represents the improved AUC values when the base model is retrained adding data from 

every user. We have sorted the users according to the largest improvement with respect to 

the reference solution. In Figure 7 we observe how data from user "3" provides an im-

provement up to AUC=0.95 from a previous AUC of the reference dataset of 0.94. The next 

users’ data helps to improve the solution up to a value of AUC = 0.956, and finally, the third 

user provides a marginal improvement. This "winner-takes-all" approach would yield a data 

value estimation very favorable to the first selected user: 

• User "3": 68.7%, User "0": 24.3%, User "2": 7.0% 

We still need to further investigate alternative schemes for data value assignation and their 

implications in a true data value market.  

Finally, there is a second family of possible approaches for data value estimation, where it is 

not necessary to train full models, but rely on the alignment concept described in the previ-

ous section, directly measured on IDR values. This way, the users more "aligned" to the ref-

erence value (if available), can be assigned a larger data value. In Figure 8 below we show 

such estimation using two types of IDR: correlation matrices and aggregated gradients (re-

member that users 1, 4 and 5 have been removed due to their poor alignment). 
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Figure 8 Data value estimation based on fast correlation and gradient measurements  

Using these measurements, we obtain DV estimates very close to the ones obtained using 

the full models, under the independent scheme: 

• Corr.: User "0": 36.3%, User "2": 32.1%, User "3": 31.6% 

• Grad.: User "0": 30.4%, User "2": 26.8%, User "3": 42.8% 

In the demonstrator we have included a preliminary fast estimation based on correlation 

measurements. In the final version of the platform, more estimation methods will be availa-

ble.  All the ML algorithms and estimation methods will be packaged in a library and as such 

they will become available for the end users of the MUSKETEER platform. 

3 Demonstrator assumptions 

In what follows, we assume that a Machine Learning task has already been defined, and that 

the platform has already identified all the potential users participating in the training pro-

cess.  In the complete, end-to-end version of the MUSKETEER platform, the services which 

allow users to register to the platform, define tasks and join tasks will be developed under 

WP3. 

Therefore, for the purpose of this demonstrator, we will assume the following: 

• General description of the task: an image classification problem is to be solved. The 

input images are handwritten digits of size 28x28 pixels and the task is to differenti-

ate between images containing even and odd numbers. All participants have access 

to this description and agree to participate and contribute some data to the learning 

process. A preliminary check procedure has already been executed to guarantee that 

the contributed data follows the needed format (number and type of input features, 
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number and type of target values, etc.). The source dataset used to build this exam-

ple is the MNIST handwritten digits dataset5. 

• User_addresses and execution: the list of addresses of the participating nodes (Mas-

ter Node (MN) and Worker Nodes (WN)) is available. For the purpose of this demo, 

the address of the master is "5", and the end users providing training data have ad-

dresses "0", "1", "2", "3", "4". Every participant (Master/Workers) will be a separate 

process in a local machine. The current version of the Communications Library (CL) is 

primarily designed to communicate between processes in the same machine, and we 

have executed these simulations using processes in a single machine, but in the fu-

ture the experiments will also cover different remote machines.  

• Data: the data for training, validating and testing will be provided to MUSKETEER by 

means of a Data Connector (DC) specific for this Demonstrator. The DC in the demon-

strator simply loads data from a file, but in the future any other compatible data 

connector can be used (SQL access, for instance). The input patterns (images re-

shaped to a 1-D vector) have a dimension of 784, and targets are binary. The features 

are the pixel values of the input images, but some transformation can be applied 

within the context of the demonstrator. For the sake of illustration, the TA and DV 

functionalities have been implemented in the demonstrator. We have designed a da-

taset partition as follows:  

- User "0" provides 4078 fair/correct/useful training patterns 

- User "1" provides 3340 random (both features and targets) training 

patterns 

- User "2" provides 5579 fair/correct/useful training patterns 

- User "3" provides 7773 fair/correct/useful training patterns 

- User "4" provides 4230 training patterns with correct features but 

with opposite targets 

Therefore, users "1" and "4" do not contribute positively to the training task (some-

thing to be automatically detected during the task alignment phase), as it will be 

shown later. Users "0", "2" and "3" provide valuable data, and the value of their con-

tribution is to be estimated during the Data Value estimation phase. 

• Confidentiality requirements: In the Demonstrator we will assume that the raw data 

is never sent outside of the owner’s context and that the trained model is kept secret 

(only known to the task proposer). We will allow to exchange among the participants 

 

5 http://yann.lecun.com/exdb/mnist/ 

http://yann.lecun.com/exdb/mnist/
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some IDR, transformations of the data (such as aggregations, cross-correlation matri-

ces, etc.), but in any case that information cannot be used to reconstruct the raw in-

put data or targets. The final end users will be aware in advance of the type of infor-

mation exchanged under every Privacy Operation Mode (POM), and it is their ulti-

mate responsibility to choose among one POM or another.  

In the next Figure we show the main components (objects) in the Demonstrator and their 

inter-relationship during the normal operation. The Master node is controlling all the activi-

ty, mainly reacting to instructions received from the task proponent through the User Inter-

face. The Workers mainly operate in a responsive way: when they receive a message or in-

struction, they perform a computation, return the result, and come back to a "listening 

state". This design is specific for the demonstrator, and the final design in MUSKETEER may 

be slightly different. However, we will use this preliminary approach as a baseline for discus-

sion about different alternatives or designs. 

 
Figure 9 The Demonstrator setup: Master, Workers and other participating objects  

The behaviour of the Master and Workers may become quite complex, depending on the 

selected POM and Machine Learning procedure to be implemented. To define and control 

such behaviour, we have implemented a Finite State Machine (FSM) object, running in both 

Master and Workers, such that the state of those machines determines which are the ac-

tions to be executed, and the received inputs (messages, instructions, conditions), indicates 
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when to change from one state to another. For illustration purpose, we include here some of 

the states and transitions in the Master. It is out of the scope of this document to enter into 

technical details about the explanation/interpretation of every transition/state. But, as an 

example, if the user wants to carry out a local preprocessing, the event 

“go_sending_prep_object” is activated in the Master, and the state is changed to “send-

ing_prep_object” in Figure 10. As a consequence, every Worker receives a command that 

activates the event “go_storing_prep_object” in Figure 12, and the protocols continue ac-

cording to the structure defined in the FSM. The complexity of these protocols will be hidden 

to the end user, only the ML designer will get access to this low level implementation detail.  

 
Figure 10 The States and transitions of the Master FSM showing operations for task alignment, data value estimation and 

pre-processing  

 

 
Figure 11 The States and transitions of the Master FSM showing operations for model training and computation of the 

performance at workers  
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Figure 12 The States and transitions of the Worker FSM showing operations for task alignment, data value estimation 

and pre-processing  

 
Figure 13 The States and transitions of the Workers FSM showing operations for model training and computation of the 

performance at workers  

4 Installation instructions 

Before executing the Demonstrator, it is necessary to correctly configurate an execution Py-

thon 3 environment with all the required libraries. In the final version of the platform, such 

configuration will be simplified, since the code will be embedded in a “docker” container. 

Fully detailed installation instructions are included in the Software Documentations, but we 

describe here the general guidelines. 

For the purpose of executing this demonstrator it is highly advisable to use the Anaconda 

python 3 distribution6, available for several Operating Systems (OS).  

 

6 https://www.anaconda.com/distribution/ 

https://www.anaconda.com/distribution/
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Once Anaconda is correctly installed, we need to open one “Anaconda Prompt Terminal” 

and execute a preliminary libraries update: 

conda update conda 

conda update anaconda 

The safest way to execute the code is to define a specific execution environment, with all the 

required libraries. This procedure is slightly different, depending on the OS:  

 

Linux and macOS:  

bash make_conda_environment_unix.sh  

Once the environment is ready, we activate it (we have to do this activation in every new 

terminal we open):  

conda activate Musk_Demo 

 

Windows: 

.\make_conda_environment_windows.bat 

5 Execution setup 

We describe here the needed steps to execute the Demonstrator. These instructions are also 

included with greater detail in the software documentation (README file). 

To execute the demonstrator and conveniently observe all the output messages, we will 

need to open 7 terminals on the same machine: 

• On terminal 1, we execute7 "python3 musketeer.py", this process pro-

vides the basic communication facilities among the other processes. 

• On terminal 2, we execute "python3 master.py", this window will 

show an elementary user interface to interact with the demonstrator, 

as shown below. This process will be controlling the behaviour of the 

other processes, as a response to the options introduced in the Menu. 

 

7  Note that, depending on the OS, the Python executable could be named “python” or “python3”. In any 

case, the code is Python 3. 
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Figure 14 The Demonstrator User Interface 

• On terminals 3-7, we execute the end-user parts (5 different users):  

"python3 worker.py --my_id 0 --model_type RidgeRegression" 

"python3 worker.py --my_id 1 --model_type RidgeRegression" 

"python3 worker.py --my_id 2 --model_type RidgeRegression" 

"python3 worker.py --my_id 3 --model_type RidgeRegression" 

"python3 worker.py --my_id 4 --model_type RidgeRegression" 

Alternatively to this last step, a script that executes the 5 processes in the same terminal can 

be executed instead, and the behaviour of the Demonstrator would be the same, although 

the messages from all the users will be shown in the same window, which could be slightly 

confusing. The advantage of using this script is that we only need 3 terminals to run the de-

monstrator. 

 

In Linux/macOS: 

  bash ./launch_workers_unix.sh 

 

In Windows: 

 .\launch_workers_windows.bat 
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If we opt for the 7-terminals approach, for instance, in the terminal for user "0", we observe 

how it starts all the needed elements, loads the data and enters the "listening state": 

 
Figure 1514 The terminal showing messages from user "0". 

By default, many messages are printed in the terminals during the operation of the Demon-

strator. Those messages could be easily deactivated by setting “verbose = False”, but they 

are useful to understand the steps executed by every process in the Demonstrator. Anyhow, 

a log folder (placed in the Demonstrator folder) containing the resulting log files is also avail-

able. These log files show the messages produced by the communication library, the FSM 

and the ML code itself. These logs are produced even when messages on screen are deac-

tivated. 

At this point, the demonstrator is running and ready to operate on the users’ data. In the 

next section we will guide the reader through the currently supported actions. 

6 Operation of the demonstrator 

In what follows we will illustrate the operation of the demonstrator.  

6.1 User interface 

As described in the previous section, we provide a simple User Interface (UI) to facilitate the 

interaction with the Demonstrator and the evaluation of all its functionalities. The options 

offered in the "Menu" are: 

• Load local validation/test data and activate ML task: option used to start the Master 

and load validation and test data 

• Display available end users: shows a list of connected users and their addresses 

• Task alignment: allows to estimate the alignment of the data of every contributing 

user with respect to the reference task defined by the master 
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• Exclude unwanted users: allows to exclude unwanted users, once the alignment is 

estimated 

• Ad Hoc local data pre-processing: apply ad-hoc local pre-processing (possibly provid-

ed by the user) on the users' data 

• Global data normalization: estimate global parameters to perform a global normali-

zation 

• Global feature selection: apply a feature selection process on all data, to identify the 

most valuable features 

• Data value estimation: estimate the value of every users’ data 

• Model training (RidgeRegression): train the machine learning model 

• Performance on local validation/test: compute performance on local validation/test 

data 

• Performance on users training data: compute performance on users’ data (training 

data) 

• Create ROC figures: Draw ROC figures comparing the performance of 

the implemented models 

• Terminate all user nodes: sends a message to all users, asking them to terminate 

• EXIT MUSKETEER Demonstrator: finalizes the demonstrator 

In the next sections we will go through all these options and comment the observed results. 

6.2 Master node initialization 

The first step is to load the data local to the Master Node, and activate the Master ML pro-

cess (Option "0" in the UI): 

 
Figure 16 The Master Node is initiated 
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We assume that the user that defines the task (the one that runs the master node), has 

some data to evaluate the goodness of fit of the resulting models (validation and test da-

tasets). It can be observed how the Master loads the validation and test data using the Data 

Connector. It also activates an ML task (Linear Classifier, implemented using a Ridge Regres-

sion model). Then it creates a Finite State Machine (FSM) to control the operational flow and 

it also creates any other local variable needed during the operation. 

6.3 Display available end users 

The demonstrator is able to show all the connected users and their addresses (Option "1"): 

 
Figure 17 listing the connected users 

We observe that 5 users are connected, and their addresses are shown. 

6.4 Task alignment 

The task alignment estimation is started with option "2". 



 

 

 

 
D4.2 Pre-processing, normalization, data alignment and data value estimation 

algorithms – Initial Version 28 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 18 Applying the task alignment estimation 

 

The master starts exchanging information with the worker nodes (correlation values) and a 

task alignment value is produced for every one of them. As expected, the alignment of users 

No. 1 and 4 is low, indicating that the quality of their data is not as expected (for the task at 

hand). 

6.5 Excluding unwanted users  

The next logical step is to exclude from the training process those users with an alignment 

below a given threshold. In Option "3" of the Menu, the system invites to introduce such 

threshold value, and the participants with alignment below that value are excluded (discon-

nected). 
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Figure 19 Excluding misaligned users 

 
Figure 20 Misaligned users are disconnected 

If we list again the available users, we see the list after filtering the unwanted ones: 

 
Figure 21 Updated list of participants 

 

6.6 Ad Hoc local data pre-processing 

Another operation that can be performed from the Master Node is to apply an "ad hoc" local 

pre-processing at every worker node. Under this category may fall any operation that can be 

applied to the raw data without reference from the other users’ data. We have implemented 
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some examples of such ad-hoc local pre-processing options, in the final platform new ones 

will be added and, ultimately, the final user is responsible for providing any additional ad-

hoc local pre-processing object associated to his/her task. 

 
Figure 22 Local Pre-processing Menu 

We see that several options are available in the demonstrator. All these procedures can be 

applied without knowledge from the other participants:  

• A logarithmic transformation; 

• Image Down-sampling by different factors; 

• Local Data Normalization (zero mean, unit standard deviation); 

• Deep Learning Feature extraction (AlexNet model from torchvision, as depicted be-

low (Original Architecture Image from [Krizhevsky et al., 2012.]). The network trans-

forms any input image into a vector of 1000 features. 

 

 
Figure 23 AlexNet network used for Deep Learning pre-processing 
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We illustrate the result of applying some of the available methods, for instance, the 

application of the down-sampling operator: 

 

 
Figure 24 Applying the down-sample pre-processing 

 

 

The worker shows the new size of its local training data: 

 
Figure 25 Workers applying the pre-processing and showing the new data size 
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The application of the Deep Learning Pre-processing yields: 

 
Figure 26 Applying the Deep Learning Pre-processing 

 

 

6.7 Global data normalization 

Another group of pre-processing methods may need global parameters to be applied. For 

instance, if we want that the ensemble set of training patterns has zero mean and unit 

standard deviation, it is necessary to estimate the normalizing values taking into account all 

the data from all users. This is achieved in option "5" in the Menu: 
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Figure 27 Global normalization parameters estimation and application to users’ data 

 

 

6.8 Global feature selection 

Another pre-processing operation that needs global information is feature selection. For 

illustration purposes we have implemented a Greedy Feature Selection approach based on 

the training of linear models (LGFS). It can be applied to the data using option "6" in the 

Menu. The user needs to enter the number of features to be selected (and retained). 
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Figure 28 Applying the global greedy feature selection 

 

After this operation, the Master Node identifies which are the most relevant features, and 

then the local and remote data is pre-processed to retain only those features.  

6.9 Data value estimation 

An operation related to the task alignment one is the data value estimation. Several ap-

proaches can be implemented. For illustration purposes we will only include here one meth-

od, but more approaches will be investigated during the project. Since all these algorithms 

are implemented as separate objects, it will be straightforward to select one or another dur-

ing the final operation of the MUSKETEER platform.  

The data value estimation is obtained using option "7" in the Menu: 
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Figure 29 Data Value estimation 

 

We observe that the user receiving a larger reward is the user with address "2", which coin-

cides with the user providing the largest amount of fair data.   

6.10 Model training 

Once the training data has been pre-processed or transformed using the mechanisms select-

ed by the Data Scientist controlling the MUSKETEER platform, the predicting model training 

itself can be executed, option "8" in the Menu: 

  
Figure 30 Model training 
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6.11 Performance on local validation/test 

Once the model has been trained, it is possible to measure its performance on the validation 

and test local data, for model selection and comparison purposes. Option "9" in the Menu 

provides this facility. The results of different experiments are stored, to be compared later. 

The Area Under ROC Curve (AUC) for this particular experiment is shown: 

 

 
Figure 31 Performance on local data 

 

6.12 Performance on training data at every user 

Although it is not strictly necessary, for illustration of a possible operation on encrypted da-

ta, we provide the option to evaluate the model on the training data at every worker (with-

out revealing the model to the workers). Since this operation on encrypted data can be ex-

tremely slow, we are showing here the results of the model trained with only two input fea-

tures, and hence the low performance. After executing option "10": 
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Figure 32 Performance on users’ data 

 

6.13 Create ROC figures 

For comparison purposes among different pre-processing options and models, we can gen-

erate ROC curves showing all the executed experiments, with option "11". As a result two 

figures are saved, showing the performance on the validation and test data sets: 
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Figure 33 Comparative ROC curves for different solutions on the validation set 
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Figure 34 Comparative ROC curves for different solutions on the test set 

 

We observe that the worst performance is obtained when only two features are retained 

(i.e., using as input to the model only two selected pixels from the images) (AUC = 0.82), and 

the best result is obtained when a Deep Learning pre-processing (AlexNet) is applied (AUC = 

0.996). The same classification model (RidgeRegression) has been used in all cases, which 

reinforces the importance of an adequate pre-processing of the data. Besides some standard 

pre-processing techniques that can be supplied to the final users, the user defining the task 

is possibly the best qualified to provide the best suited pre-processing object for a task at 

hand.  

6.14 Terminate all user nodes 

Option "12" allows to terminate all users.  

6.15 Exit MUSKETEER Demonstrator 

Option "99" exits MUSKETEER.  
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7 Software documentation 

The documentation of the software is provided in html format along with the code. The doc-

umentation has been generated with Sphinx8, and it will be maintained and expanded as the 

software project grows. We include in what follows the main pages of that documentation.   

 

 

 

 

8 sphinx-doc.org 
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8 Conclusions 

In this deliverable (D4.2) we have presented preliminary algorithms for data pre-

processing, normalization and task alignment and data value estimation ap-

proaches.  As this is an initial version and most of the research is ahead of us and 

also many algorithms are still to be implemented during the next months, these 

preliminary versions have served to define a basic software structure that will be 

partly inherited by the final platform. The operation of the algorithms has been 

illustrated in the form of a fully operable software Demonstrator (within the 

demonstration conditions: given a particular dataset and supporting a limited 

number of options). In spite of only being a first Demonstrator, it includes im-

portant concepts and software components design to be further incorporated in 

the final MUSKETEER platform: pre-processing objects, data connectors, a com-

munication library, Master and Worker nodes, etc. The behaviour of the Demon-

strator has been illustrated in this document, where the results of every available 

option have been briefly described. The Demonstrator has been tested on Linux, 

Windows and macOS platforms, and instructions for installation and execution are 

also included.   
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