
   

 

   

 

H2020 – ICT-13-2018-2019 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Grant No 824988 
 

 
 

 
 

November 19  

D3.1 Architecture Design – Initial Version  



 

 

 

 D3.1 Architecture Design – Initial Version 1 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
 
 

Imprint  
 
 
Contractual Date of Delivery to the EC:  30 November 2019  
 
Author(s):  Mathieu Sinn (IBM), Mark Purcell (IBM), Minh Ngoc Tran (IBM), 

John Sheehan (IBM), Stefano Braghin (IBM) 
Participant(s):  TREE, IMP; ENG, UC3M; IDSA 
Reviewer(s):  Antoine Garnier (IDSA), Roberto Diaz Morales (TREE) 
  
 
Project:  Machine learning to augment shared knowledge in 

federated privacy-preserving scenarios (MUSKETEER) 
 
Work package:  WP3 
Dissemination level:  Public 
Version:  1.0 
 
Contact:  mathsinn@ie.ibm.com 
Website:  www.MUSKETEER.eu  
 
 
 
 

Legal disclaimer 
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving 
Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 824988. The sole responsibility 
for the content of this publication lies with the authors.  

Copyright 
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be 
made with reference to the publisher. 



 

 

 

 D3.1 Architecture Design – Initial Version 2 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Executive Summary 
This deliverable (D3.1 "Architecture Design") is a document describing the initial version of 
the MUSKETEER platform architecture. It addresses the previously delivered technical require-
ments and key performance indicators, takes into account legal and ethical requirements, and 
aligns with the algorithm library architecture and assessment framework. It informs the 
MUSKETEER platform development work and acts as counterpart of the client connectors’ ar-
chitecture, which describes the customization and end-to-end integration of the core platform 
capabilities for the industrial use cases. 
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1 Introduction 

1.1 Purpose 

The purpose of the MUSKETEER platform is to enable participants of the data economy to 
participate in Federated Machine Learning (ML) and thereby realize the value of their data 
assets, while preventing the leakage of information that is proprietary, confidential, person-
ally sensitive, or that must not be shared because of other legal or regulatory requirements. 

Functionally, the platform has to provide the infrastructure and implement the services that 
are required to enable the federated ML algorithms developed in WP4 and WP5 in end-to-end 
applications. It must also support the assessments to be carried it out in WP6 and provide 
interfaces which allow for the development of client connectors and end-to-end demonstra-
tion of the industrial use cases in WP7.  
 
The purpose of this document is to describe the initial version of the MUSKETEER platform 
architecture. Particular emphasis is on: 

• defining the scope of the core platform, particularly vis-à-vis the algo-
rithmic library and the client connectors’ architecture; 

• explaining key design decisions in light of the envisioned scalability, se-
curity, trustworthiness and privacy-awareness of the platform; 

• addressing the specific industrial, technical and legal requirements out-
lined in previous deliverables; 

• documenting application programming interfaces (APIs) that expose 
core platform capabilities to the algorithmic library and client connect-
ors’ software; 

• providing examples that illustrate how to use the platform APIs for fed-
erated learning and user/task management; 

• discussing alignment of the architecture design with existing and emerg-
ing standards for industrial data platforms. 

 

1.2 Related documents 

This deliverable is related to the following documents (also see Figure 1): 
• D2.1 Industrial and technical requirements – in so far as the platform 

architecture has to address functional and non-functional technical re-
quirements described in that document. 

• D2.2 Legal requirements and implementation guidelines – in so far as 
the design of the platform architecture should follow the 
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implementation guidelines arising in the context of the applicable legal 
and ethical framework. 

• D2.3 Key performance indicators selection and definition – in so far as 
the platform has to either provide the core capabilities that other func-
tional components (e.g. the algorithmic library or the client connectors) 
require to meet their goals, or to meet specific goals itself. 

• D4.1 Investigative overview of targeted architecture and algorithms – 
in so far as the platform has to provide the core capabilities to support 
and enable the targeted architecture and algorithms. 

• D4.2 Pre-processing, normalization, data alignment and data value es-
timation algorithms (initial version) – in so far as the platform has to 
provide the core capabilities to support the deployment of the pro-
posed algorithms. 

• D5.1 Threat analysis for federated machine learning algorithms – in so 
far as the platform has to provide the core capabilities to support the 
deployment of the proposed algorithms. 

• D6.1 Assessment framework design and specification – in so far as the 
platform has to provide the core capabilities to support the application 
of the proposed framework and meet relevant key performance indica-
tors (KPIs). 

• D7.1. - Client connectors’ architecture design (initial version) – in so far 
as the platform has to provide the core capabilities to support the de-
velopment and deployment of the proposed client connectors’ architec-
ture. 
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Figure 1: MUSKETEER’s PERT diagram 

 

1.3 Outline 

The remainder of this document is structured as follows:  

• Section 2 describes the scope of the MUSKETEER core platform (in par-
ticular vis-à-vis the algorithmic library and the client connectors soft-
ware) and reviews the relevant functional and non-functional require-
ments outlined in the documents listed above. 

• Section 3 describes the design of the platform architecture and provides 
detailed information on each of the platform’s components as well as 
the underlying core technology. 

• Section 4 outlines the proposed design of the API for utilizing the plat-
form’s services and shows an example how the API is intended to be 
used for federated learning algorithms and user/task management. 

• Finally, Section 5 discusses possible extensions of the platform that 
were outside the scope of the initial version and may require further 
analysis in conjunction with other work packages for consideration in 
future versions to be developed under this project. 
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2 Requirements 

2.1 Scope 

When defining the scope of the MUSKETEER platform, it is important to draw distinctions be-
tween the core platform, the federated ML algorithm library, and the client connectors. This 
will become immanent when reviewing the technical requirements in Section 3 and under-
standing which of these three components they pertain to. At a high level, the scope of these 
three different components is defined along the following lines: 

• The platform provides services (via an API) that allow new users to reg-
ister to the platform. 

• The platform provides registered users with the ability to create new 
federated ML tasks. 

• The platform provides registered users with the ability to join existing 
federated ML tasks. 

• The platform provides registered users with the ability to leave a feder-
ated ML task that they had previously joined. 

• The platform provides registered users with the ability to cancel a task 
that they had previously created. 

• The platform provides, during the execution of a federated ML algo-
rithm, participants and the aggregator with the ability to send and re-
ceive messages in order to perform the federated ML training. 

• The platform provides the aggregator with the ability to retrieve the 
number and status of participants in an ongoing task. 

In its initial version, the platform does neither host nor start the aggregator training processes; 
the participants’ training process are understood to be executed within the client connectors’ 
software environments. 

Any logic for performing the federated ML is implemented in the federated ML algorithms 
library. This includes logic for: 

• Checking, on the aggregator side, whether the criterion for starting the 
federated ML training is met (e.g. quorum of participants, start time 
stamp etc.) and subsequently begin the actual training. 

• Handling participants that either explicitly (via leaving a task) or implic-
itly (via disconnecting and not sending any further messages) cease to 
actually participate in an ongoing federated ML task. 



 

 

 

 D3.1 Architecture Design – Initial Version 11 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

• (De-)serialization of messages that are sent/received between the ag-
gregator and task participants. 

The core platform itself agnostic of specific elements of a Federated ML task definition. In 
particular, the platform does not make any assumptions about the actual ML backend (e.g. 
whether the training algorithms use Keras, Scikit-learn etc.). In principle, it doesn’t even as-
sume that the runtime is Python (with the only restriction that the API for interacting with the 
platform will be provided in Python, same as the sample code to be provided as well as scripts 
for running the aggregator and participants’ processes). 

The platform itself is agnostic, too, of whether messages are encrypted or not. It is unaware, 
too, of the working of local data connectors on the client side. Finally, it is unaware of 
whether/how trained models are deployed on the client side. (In the initial version of the plat-
form, trained models are not persisted in a central location; in order to support local re-use 
and deployment of trained models, they would have to be stored locally as part of the partic-
ipant training processes.) 

On the other hand, the algorithms library will be agnostic of the actual protocol, backend and 
infrastructure that is used for sending and receiving messages. It is agnostic of where / how 
task and user information is stored. 
 

2.2 Industrial and technical requirements 
D2.1 (Industrial and technical requirements) comprises a detailed analysis of the MUSKETEER 
platform users and user stories, leading to an exhaustive list of technical requirements to drive 
the developments in the technical work packages (WP3-WP6) as well as the integration in 
WP7. In the following, we are going to review those technical requirements. We will discuss 
whether they fall under the responsibility of the core platform, the algorithms library or the 
client connectors software where applicable. We will refine them where needed and indicate 
their priority with regard to the first version of the platform architecture versus support in 
possible future extensions. We begin by examining and refining the platform user roles de-
fined in Table 6 of D2.1. 

2.2.1 User roles 

A key aspect informing the design of the MUSKETEER platform architectures are the different 
roles of users that are interacting with the platform. A consolidated view of the user roles is 
provided in Table 1. 
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Table 1: MUSKETEER platform user roles 

User role Description 

Platform administrator A platform administrator has full access to the platform. He/she has the 
privilege to perform any action on the platform described in the following 
that any other user can perform in his/her role. Moreover, a platform ad-
ministrator can register new users to the platform, provide them with ini-
tial usernames and passwords, change passwords of users, or delete users. 

General user A general user has access to the platform through a username and pass-
word provided by a platform administrator. General users can view and 
potentially join Federated ML tasks that have been created by other gen-
eral users. 

Task creator A task creator user is a general user who has created a Federated ML task. 
Only the task creator is allowed to modify, stop or delete a task that they 
have created. 

Task member A task member user is a general user who has joined a Federated ML task 
created by a task creator. Task members have permission to participate in 
the training of the Federated ML task and potentially retrieve the trained 
model, depending on the Privacy Operation Mode (POM).  

Aggregator An aggregator is a task member whose role it is to coordinate Federated 
ML training and aggregate updates received from participants during the 
course of the training.  In MUSKETEER, each Federated ML task involves 
exactly one aggregator.1 

Participant A participant is a task member whose role it is to contribute updates to 
Federated ML training based on their local data. Each Federated ML task 
involves at least one participant. 

 
We note that, in D2.1, a few additional roles were described that we have subsumed here for 
consolidation and simplification purposes. In particular: 

• We do not distinguish between general and technical users. In D2.1 this 
distinction was made to describe users who could register to the plat-
form, view Federated ML tasks etc., who were however not allowed to 

 
1 There exist Federated ML protocols which consider multiple aggregators, e.g. for robustness and performance 

improvements, typically in compute environments where network connectivity is unstable. Since this is not 
an important requirement for MUSKETEER, we will be focusing on protocols that involve only one aggrega-
tor. 
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join tasks, create new tasks etc. In the initial version of the platform we 
do not see value of implementing this distinction; we will discuss, how-
ever, in Section 5 its relevance for possible future extensions of the plat-
form. 

• D2.1 also envisioned the role of a group owner who is a technical user 
with permission to facilitate the sharing of Federated ML tasks or mod-
els between members of the same organization or groups of organiza-
tions. We envision that, for the first version of the platform, a different 
instance will be deployed for each use case2, thus, the separation be-
tween organizations or group will be enforced at the platform instance 
level. We will discuss the possible future importance of groups and 
group owners within a single platform instance in Section 5. 

• Finally, D2.1 described the role of a researcher who is a general user 
aiming at benchmarking the performance of the platform and, towards 
that aim, needs the ability to run synthetic tasks involving multiple arti-
ficial users. We argue that the needs of this user role can be met by 
granting platform admin privileges on a dedicated platform instance. 

 
On the other hand, D2.1 did not specify the roles of aggregators or participants. In some sense, 
while all the other roles typically correspond to human individuals exercising those roles, ag-
gregators and participants are rather “algorithmic” roles.  

2.2.2 Functional requirements 

Next, we will provide a consolidated view of the functional requirements provided in Table 8 
of D2.1. We will organize those requirements along three different categories: 

• Managing platform users (Section 2.2.2.1) 
• Managing Federated ML tasks (Section 2.2.2.2)  
• Executing Federated ML tasks (Section 2.2.2.3) 

 

2.2.2.1 Managing platform users 

A consolidated view of the functional requirements for managing platform users is provided 
in Table 2: Functional requirements for managing platform users. At the end of the description 

 
2 Specifically, we plan to deploy one instance of the platform for the Manufacturing use case, a separate instance 

for the Healthcare instance, a separate instance for algorithmic research purposes on synthetic datasets and 
Federated ML tasks, and finally a separate instance for development and integration testing purposes. 
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of each requirement, we refer to the original identifier of the relevant functional requirement 
in D2.1. 

  

Table 2: Functional requirements for managing platform users 

 

We emphasize a few requirements outlined in D2.1 that require further analysis before possi-
ble consideration in a future extension of the MUSKETEER platform design: 

• D2.1 specified the ability for general users to provide and update per-
sonal profile information (D2.1-FR002), and to browse available infor-
mation about other general users of the platform (D2.1-FR005). D2.1 
also outlined the ability for general users to manage their own visibility 
(D2.1-FR004), i.e. to what extent their profile information would be ac-
cessible by other general users of the platform. We believe that, in order 
for those abilities to be considered as functional requirements of the 
MUSKETEER platform, an analysis of possible legal and ethical implica-
tions needs to be undertaken. Furthermore, it should be investigated 
whether such functionality would indeed help increase the value of the 
MUSKETEER platform for boosting the European data economy. A re-
lated effort – namely, creating a platform for professional networking 
and sharing assets among AI and Data Science practitioners – is cur-
rently undertaken with the AI4EU platform, so it could be worthwhile to 
explore its synergies with MUSKETEER to provide and complement such 
abilities. For the time being, we have assumed in our design of the initial 
version of the MUSKETEER platform a maximum degree of privacy pro-
tection, hence it is not possible for general users to browse information 
about other users, and also during the execution of Federated ML 

ID Description of the requirement 

FR001 Ability for platform admin to grant username and password to new general 
user (D2.1-FR034). 

FR002 Ability for platform admin to revoke username and password of existing gen-
eral user (D2.1-FR034). 

FR003 Ability for general user to avail of platform functionality through authentica-
tion with their username and password (D2.1-FR001). 

FR004 Ability for general user to change their password (D2.1-FR002). 
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training, the amount of information that is exposed about other partic-
ipants is kept at minimum. 

• D2.1 specifically indicated the ability for general users to provide and 
update information about datasets that they own, or even provide the 
datasets themselves (D2.1-FR003, D2.1-FR036, D2.1-FR041), along with 
the ability to browse datasets (or information about datasets) owned by 
other general users (D2.1-FR006). In some sense, this can be regarded 
as a special type of user profile information discussed in the previous 
paragraph. Same as before, we argue that a careful analysis of legal/eth-
ical implications and the added value of such functionality is required, 
as well as a better understanding how the AI4EU platform could be lev-
eraged for such purposes, in order to avoid duplication of efforts. 

• D2.1 mentions the ability to manage access controls according to user 
groups, e.g. the visibility of information about datasets (D2.1-FR003) or 
the availability of trained ML models to third parties for downloading 
(D2.1-FR018, D2.1-FR030). Moreover D2.1 mentions the ability to man-
age groups by adding or removing general users (D2.1-FR031, D2.1-
FR035). As discussed in Section 2.2.1, we see this ability as an important 
possible future extension of the platform to support multi-tenancy de-
ployments and will discuss it in more detail in Section 5. The initial ver-
sion of the platform is designed for single-tenancy deployments (as in-
dicated in Section 2.2.1, we will deploy separate instances of the plat-
form for the different MUSKETEER use cases) which alleviates the need 
for access controls via user groups. 

• Finally, D2.1 outlines the ability to change the role of users (D2.1-
FR035), specifically, grant general users admin privileges (D2.1-FR040)3. 
As will become clear in the following discussion of functional require-
ments pertaining to managing Federated ML tasks (Section 2.2.2.2), the 
change (or rather the addition) of roles such as task creator or task 
member occurs implicitly once a general user creates a new task a joins 
a task. The only other possible change of roles is for a general user to 
obtain admin privileges. We do not consider this, however, a functional 

 
3 As we had argued in Section 2.2.1, supporting the needs of a “researcher” general users essentially boils down 

to giving the researcher admin privileges so that he/she can create artificial users to study Federated ML 
training with as many participants as needed. Thus, D2.1-FR032 relates to granting general users admin priv-
ileges, too. 
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requirement per say, but rather a process requirement, i.e. what is the 
organizational and approval process for general users to be issued the 
credentials that they need to have admin privileges. 

  

2.2.2.2 Managing Federated ML tasks 

A consolidated view of the functional requirements for managing Federated ML tasks is pro-
vided in Table 3. At the end of the description of each requirement, we refer to the original 
identifier of the relevant functional requirement in D2.1. 
 

Table 3: Functional requirements for managing Federated ML tasks 

ID Description of the requirement 

FR005 Ability for general users to create a new Federated ML task, including an un-
structured description and all structured information that is required to define 
the task, such as the input data format, required mechanism for pre-pro-
cessing the raw input data, the number of participants, starting/stopping crite-
rions, etc. (D2.1-FR016, D2.1-FR019, D2.1-FR043). 

FR006 Ability for a task creator to update the task description and information. 

FR007 Ability for general users to list all the existing Federated ML tasks that have 
been created; view their description, definition and status; compute summary 
statistics, e.g., total number of tasks and participants (D2.1-FR007, D2.1-
FR008, D2.1-FR009, D2.1-FR010, D2.1-FR022, D2.1-FR027, D2.1-FR039) 

FR008 Ability for a general user to join a task that has already been created and that 
accepts new participants (D2.1-FR012). 

FR009 Ability for a task member to actually participate in the training of that task’s 
Federated ML model, either as aggregator or as participant (D2.1-FR024). 

FR010 Ability for a task member to leave that task (D2.1-FR029). 

FR011 Ability for a task creator to cancel that task (D2.1-FR020). 

FR013 Ability for general users to list all the Federated ML models; view their descrip-
tion, definition, KPIs etc. if available (D2.1-FR011). 

FR014 Ability for general users to download trained Federated ML models (D2.1-
FR013, D2.1-FR026). 
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We emphasize a few requirements outlined in D2.1 that require further analysis before possi-
ble consideration in a future extension of the MUSKETEER platform design: 

• D2.1 had suggested different mechanisms than FR008 for a general user 
to join a Federated ML task, such as: selecting the tasks participants as 
part of the task creation process (D2.1-FR016), selecting which general 
users can join the Federated ML training “on-the-fly” (D2.1-FR017), or 
having potential task members seek for agreement by the task creator 
for them to join (D2.1-FR023). Similarly, D2.1 had suggested that task 
members would have to send a request to the task creator in order to 
leave a task that they had previously joined (D2.1-FR029), and the task 
creator would have to agree or disagree to such a request (D2.1-FR023). 
Some of those requirements contradict each other, and they may have 
legal, ethical or business implications that need to be further analysed. 
Therefore, for the initial version of the platform, we are considering the 
most basic functional requirements for joining/leaving a task as de-
scribed in FR008 and FR010. 

• D2.1 had made different suggestions regarding the permission of gen-
eral users for downloading trained Federated ML models, such as gen-
eral users having to request permission (D2.1-FR014), general users 
having to pay for permissions (D2.1-FR015), the task creator deciding 
whether trained models would be available to any user, to specific 
groups of users, or kept privately (D2.1-FR018, D2.1-FR030), or trained 
models (intermediate and/or final) being accessible to task members. In 
light of those different, sometimes somewhat contradictory require-
ments, we decided to start with the most basic requirement described 
in FR014, however, we will discuss possible extensions and refinements 
in Section 5. 

• D2.1 outlines requirements related to data monetization, such as the 
ability for task members be compensated for data that they contributed 
to Federated ML training (D2.1-FR028), or the ability to compute sum-
mary statistics of compensation and data value per user or per task 
(D2.1-FR009). While this could be important functionality to incentivize 
participation in Federated ML training, we believe that a further level of 
requirement analysis is needed before it can be envisioned to be sup-
ported in future versions of the platform; we will make a step in this 
direction in our discussion in Section 5. 

• D2.1 includes two functional requirements (D2.1-FR032, D2.1-FR033) 
outlining the application of the MUSKETEER platform by researchers for 

FR015 Ability for a task creator to delete the Federated ML models trained as part of 
that task (D2.1-FR021). 
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measuring and comparing performance on synthetic tasks/data with ar-
tificial users. In fact, this does not constitute any additional functional 
requirement, but – as discussed before – essentially requires the re-
searcher to have platform admin privileges in order to efficiently per-
form such tasks. 

When considering the requirements FR005 and FR009, it is important to clearly distinguish 
between the responsibilities of the core platform, the algorithmic library and the client con-
nections software (see the discussion in Section 2.1). Specifically, it is important to note that 
the core platform is not able to start or end the actual training processes on the client side 
(as required per D2.1-FR019). Those processes need to be initiated on the client side, either 
manually by the user, or automatically upon the user joining a Federated ML task. 

In the following section, we are going to list the lower-level functional requirements that are 
required from an algorithmic viewpoint in order to support the higher-level requirement 
FR009. 

For completeness’ sake, we finally mention three functional requirements described in D2.1 
which, from our viewpoint, are not relevant from the core platform perspective: 

• Selecting datasets contributing to a Federated ML task (D2.1-FR025): 
This appears to be a manual process to be undertaken by task members. 
A possible functional requirement for the client connectors’ software is 
that the selected datasets can be loaded in memory for the participation 
of the user in the actual Federated ML training. 

• Pre-processing data by general users (D2.1-FR043): From an end-to-end 
platform perspective, this requirement pertains to defining appropriate 
data pre-processing steps as part of a Federated ML task definition and 
ensuring that the same pre-processing steps are performed by all task 
members, which has to be ensured by the algorithmic library in conjunc-
tion with the client connectors’ software environment. 

• Configuration of privacy-preserving data sharing methods (D2.1-
FR042): This is a requirement for the algorithmic library to implement 
different privacy-preserving data sharing methods (e.g. POM1-POM6) 
and support the settings of those methods e.g. through configurable pa-
rameters of task definitions.  

 

2.2.2.3 Executing Federated ML tasks 

Finally, we provide a view of the functional requirements for executing Federated ML tasks in 
Table 4. Essentially, those are the platform capabilities that are required by algorithm devel-
opers to implement Federated ML algorithms in the algorithmic library. Requirements at this 
level had not been explicitly provided in D2.1, although they are implicitly needed to meet 
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requirement FR009 in Table 3. Some of those requirements were described in the documen-
tation of the prototype communications library in Section 7 of D4.2. 
 

Table 4: Functional requirements for executing Federated ML tasks 

 
In Section 4 we will outline the design of a Python API that exposes the functional require-
ments described in FR016-FR026 and that should thus allow algorithm developers to imple-
ment the methods described in D4.1 and D4.2. 

2.2.3 Non-functional requirements 

Next, we will provide a consolidated view of the non-functional requirements provided in Ta-
ble 9 of D2.1. 

ID Description of the requirement 

FR016 Ability for an aggregator or participant to retrieve the definition of a specific 
task. 

FR017 Ability for an aggregator to retrieve the list of all participants of a specific task.  

FR018 Ability for an aggregator to broadcast a message to all the participants. 

FR019 Ability for an aggregator to send a message to a specific participant. 

FR020 Ability for a participant to send a message to the aggregator. 

FR021 Ability for a participant to route a message to the “next” participant (according 
to an underlying ring topology), without having to send it via the aggregator. 

FR022 Ability for an aggregator to receive a message sent by a participant, together 
with an identifier of the participant who sent it. 

FR023 Ability for a participant to receive a message sent by the aggregator. 

FR024 Ability for a participant to receive a message routed from the “previous” par-
ticipant (according to an underlying ring topology), including an identifier to 
distinguish from messages sent by the aggregator. 

FR025 Ability for an aggregator to store task status updates. 

FR026 Ability for an aggregator to store intermediate or final versions of the trained 
Federated ML model. 

FR027 Ability for an aggregator to store information regarding the data value contri-
butions per participants. 
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Table 5: Non-functional requirements on the MUSKETEER platform 

 
For completeness’ sake we also mention D2.1-NR007 which stipulates that the MUSKETEER 
platform should enable the interconnection and exchange of information among Federated 
ML task participants; since this essentially boils down to functional requirements described in 
Table 4, we exclude it from the list of non-functional requirements. 
 

2.2.4 Technical requirements 

Next, we provide a consolidated view of the technical requirements provided in Table 9 of 
D2.1, which are meant to be synthesis of the functional and non-functional requirements dis-
cussed before. 

ID Description of the requirement 

NR001 High availability (D2.1-NR001). 

NR002 Security, specifically regarding access control and adherence to industry secu-
rity standards (D2.1-NR002).  

NR003 Robustness of the overall platform with respect to software errors (D2.1-
NR016). 

NR004 Availability of appropriate logging mechanisms for all operations (D2.1-
NR010). 

NR005 Recoverability, specifically of the training of Federated ML models, from tem-
porary system or component failures (D2.1-NR003, D2.1-NR004, D2.1-NR005, 
D2.1-NR015). 

NR006 Scalability, specifically the efficient execution of Federated ML training algo-
rithms (D2.1-NR006), and efficient handling of simultaneous requests (D2.1-
NR014).  

NR007 High usability, specifically regarding the ease of software installation for end 
users (D2.1-NR009) and the design of interfaces for interactions with the plat-
form, including their documentation (D2.1-NR008). 

NR008 Maintainability, specifically the availability of mechanisms to efficiently per-
form system or component updates with minimum downtime for the overall 
platform (D2.1-NR007, D2.1-NR013). 
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Table 6: Technical requirements on the MUSKETEER platform 

ID Description of the requirement Related functional 
and non-functional re-

quirements 

TR001 The MUSKETEER platform requires users to authenticate 
with their unique username and a password in order to 
avail of the platform functionality, which includes ex-
change of information as part of Federated ML tasks 
(D2.1-TR002, D2.1-TR003, D2.1-TR005, D2.1-TR006). 

FR001, FR002, 
FR003, FR004, 
NR002 

TR002 The MUSKETEER platform allows general users to create 
one or more Federated ML tasks (D2.1-TR007, D2.1-
TR021), the purpose of which is to train a machine learn-
ing according to the task definition on the task members’ 
local data (D2.1-TR008).  

FR005, FR006 

TR003 Each task should be associated in the platform with a 
unique task identifier (D2.1-TR009). 

NR007 

TR004 Each task definition should include all the required infor-
mation about the model to be trained such as hyperpa-
rameters, loss function etc. (D2.1-TR031). 

FR005, FR009 

TR005 Each task definition should include a general description 
of the task (D2.1-TR010). 

NR007 

TR006 Each task definition should include a description of the 
required input data features (D2.1-TR010) 

NR007 

TR007 Each task definition should include a definition of the in-
put data pre-processing algorithms that are to be applied 
prior to the training of the Federated ML model (e.g. 
high pass filtering, edge detection, bag of words with 
TFIDF weighting …) (D2.1-TR013). 

D2.1-FR043 

TR008 A working implementation of input data pre-processing 
algorithms referred to in task definitions must be made 
available to task members (more specifically, to the par-
ticipants) in the client connectors’ software environment 
(D2.1-TR014, D2.1-TR015). 

D2.1-FR043 
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TR009 Task members must have the ability to retrieve the task 
definition in order to configure the client connectors’ 
software environment and contribute (either as aggrega-
tor or as participant) to the Federated ML training (D2.1-
TR016). 

FR016, NR007 

TR010 The Privacy Operation Modes (POMs) implemented in 
the algorithm library must cover all the privacy re-
strictions that task members would want to apply to 
their data (D2.1-TR017, D2.1-TR034). This specifically in-
cludes the case where the task members want to collab-
orate to train a ML model without sharing or centralizing 
their local data (D2.1-TR027), thus no raw data must be 
transferred outside the task members’ organizations cli-
ent facilities and the ML model training is coordinated by 
an aggregator requesting and receiving model updates 
from the participants (D2.1-TR026).  

FR003, FR004, 
FR009, NR002, 
NR004 

TR011 In the task definitions, the privacy restrictions should be 
described in human-understandable terms (D2.1-TR018). 

NR007 

TR012 General users must have the ability to browse active Fed-
erated ML tasks (D2.1-TR020, D2.1-TR021). 

FR007 

TR013 The MUSKETEER platform must support the execution of 
Federated ML training among task members, comprising 
one aggregator and one or more participants (D2.1-
TR022). This includes the transfer of information – such 
as sending and receiving models, model updates or gra-
dients – among participants and the aggregator (D2.1-
TR011, D2.1-TR025, D2.1-TR032, D2.1-TR033, D2.1-
TR035, D2.1-TR036, D2.1-TR037). Depending on the 
POM, that information may or may not be encrypted 
(D2.1-TR029). 

FR009, FR016-
FR025, NR006 

TR014 The MUSKETEER platform has to support potential re-en-
cryption of information transferred among task members 
for POMs where task members use different private keys 
for the homomorphic encryption of their model updates 
(D2.1-TR029). 

FR009, D2.1-FR042 
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The original list in D2.1 included a number of requirements pertaining to the management of 
datasets,  such as providing or obeying access controls for datasets (D2.1-TR001, D2.1-TR002, 
D2.1-TR003, D2.1-TR034), or provisioning private cloud storage for users’ encrypted data 
(D2.1-TR030). Considering the MUSKETEER platform in a broad sense where the platform 
comprises the end users’ proprietary computational environments, those requirements could 
be considered in-scope, however, it would still remain the end users’ responsibility to ensure 
the proper local access controls. From the core platforms’ perspective, however, we consider 
those requirements to be out-of-scope, however, since the users’ data is not supposed to en-
ter the boundary of the core platform, and thus the required access controls must remain 
outside, too. 
 
The technical requirements in D2.1 also consider the ability of the MUSKETEER platform to 
support the provision of monetary rewards (D2.1-TR019, D2.1-TR023). As discussed above, 
we do not consider requirements regarding the support of data value estimation and moneti-
zation in our design of the initial version of the MUSKETEER platform, however, we will discuss 
it as part of possible future extensions in Section 5. 
 
Finally, we add some additional context and clarification on the technical requirements TR007 
and TR008 pertaining to the input data pre-processing. We emphasize that the core platform 
is agnostic to the existence of input data pre-processing functions. The implementation of 
those functions is outside the scope of WP3, and the execution of those function outside the 
boundary of the core platform – same as the Federated ML algorithms. The responsibility of 
the core platform is only to store references to the pre-processing functions to be applied as 
part of Federated ML task definitions, and to make the information about which functions 
shall be applied available to any user of the platform, in particular to participants of Federated 
ML tasks who will ultimately have to execute those functions as part of the execution of the 
training algorithms within the client connectors’ software environment on their premises. 
 
 

TR015 Task members must have the ability to query the pro-
gress/status of Federated ML training tasks (D2.1-
TR023). 

FR007 

TR016 Task members must have the ability to access the mod-
els trained as part of Federated ML tasks (D2.1-TR024). 

FR014 
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2.3 Key performance indicators 
 
D2.3 and D6.1 define key performance indicators (KPIs) for the MUSKETEER platform using 
the Goal/Question/Metric (GQM) methodology [1]. The four defined goals (G1-G4) comprise: 

• G1: Evaluation of the platform architecture with respect to standardiza-
tion and extensibility in the context of general use case validation 
(G1.1), of the healthcare use case (G1.2) and of the smart manufactur-
ing use case (G1.3). 

• G2: Evaluation of the privacy-preserving operation modes (POMs) with 
respect to privacy, computational/storage/communication require-
ments and data utility accountability, again the context of general use 
case validation (G2.1), the healthcare (G2.2) and the smart manufactur-
ing (G2.3) use case. 

• G3: Evaluation of the federated privacy-preserving ML algorithms in the 
context of WP6 evaluation scenarios, which are broken down with re-
spect to performance (G3.1.1), reliability (G3.1.2), scalability (G3.1.3), 
computational efficiency (G3.1.4), and with respect to security (G3.2). 
Moreover, evaluation of those algorithms with respect to pre-pro-
cessing, normalization, data alignment, supervised and unsupervised 
learning in the context of the healthcare (G3.3) and the smart manufac-
turing (G3.4) use cases. 

• G4: Evaluation of rewarding models with respect to data value in the 
context of WP6 evaluation scenarios. (The G4 questions and metrics 
have not been defined yet; this will be part of the future deliverable 
D6.4.) 

 
Table 7 lists a summary of the questions and metrics pertaining to core platform capabilities.  
 

Table 7: GQM questions and metrics pertaining to core platform capabilities 

IDs Question KPIs Related re-
quirements 

G1.1_Q02 Does the MUSKETEER platform al-
low interoperability with ML 
frameworks? 

Number of supported 
ML frameworks. 

FR005, FR007, 
FR016, TR002, 
TR004, TR009 

G1.1_Q04, 
G1.2_Q01, 

Does it allow fast installation, de-
ployment and use? 

Effort to install/update 
client SW; effort to 

FR001, NR007 
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4 D2.1 also lists as a metric “Number of screens supported by help options”. Since the development of screens, 

i.e. graphical user interfaces, is outside the scope of the core platform, we exclude this metric from this list. 

G1.2_Q02, 
G1.3_Q01, 
G1.3_Q02 

create and run a Feder-
ated ML task; effort to 
use a trained model; ef-
fort to onboard a new 
user.4 

G1.3_Q03 Are there different visibility con-
straints based on user permis-
sions? 

Different information 
for different user per-
missions (y/n). 

NR002 

G1.3_Q04 Is the architecture compliant with 
industry standard and production 
plant IT policies? 

Compliance with such 
standards and policies 
(y/n). 

NR002 

G1.3_Q06 Is it possible to download the 
trained Federated ML models? 

Possibility of download-
ing the ML model (y/n). 

TR016 

G1.3_Q07 Is the Federated ML model train-
ing fast enough? 

Time for training (per 
sample), time for scor-
ing 

FR018 – FR026 

G1.3_Q08 When a new task is launched, 
what are the algorithm used and 
its parameters? 

Possibility to access in-
formation about the al-
gorithm used and its 
parameters (y/n). 

TR004, TR005, 
TR006, TR007, 
TR009 

G1.3_Q09 Is it possible to report a comment 
on an unexpected behavior of al-
gorithms during a user session? 

Ability to report an un-
expected behavior 
(y/n). 

 

G2.3_Q06 How easy is it to verify if all the 
communications are working? 

Possibility to verify if all 
the communication 
protocols are enabled 
(y/n). 

FR003 

G2.3_Q07 Which is the maximum dimension 
of messages supported by the 
platform? 

Maximum dimension of 
messages (sent or re-
ceived) supported by 
the platform. 

FR018 – FR024 
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The following goals and questions are not relevant for the evaluation of core platform capa-
bilities, or will be discussed later, and have therefore not been included in Table 7: 

• G1.1_Q01 aims at evaluating the alignment of the MUSKETEER platform 
with the IDSA reference architecture, measured by the number of 
aligned artefacts. The alignment analysis will mostly pertain to the client 
connectors’ software environment, nevertheless we will review this as-
pect in more detail in Section 2.7. 

• G1.1_Q03 aims at assessing the extensibility of the MUSKETEER plat-
form in terms of whether it fosters the creation of a community of de-
velopers and researchers that can extend the platform with new algo-
rithms and attack detection mechanisms; the principal KPI is the 

G3.1.2_Q01 Does each ML algorithm give 
comparable output working on 
the same data and in the same 
conditions in different sessions 
(reliability)? 

Standard deviation of 
normalized outputs in 
different sessions. 

FR018 – FR026 

G3.1.3_Q01
, 
G3.1.3_Q02
, 
G3.1.3_Q03 

Does the training algorithm scale 
up when the dimension of the ap-
plication scenario grows in terms 
of the amount of data / users/ in-
put features? 

Trend profile of training 
time vs amount of data 
/ users / input features. 

FR018 – FR026 

G3.1.4_Q02 Are the message transmission 
costs reasonable? 

Amount of information 
transmitted; fraction of 
training time dedicated 
to transmission. 

FR018 – FR024 

G3.1.4_Q03 Is the memory usage during train-
ing reasonable? 

Total memory usage by 
aggregator and partici-
pants normalized by 
size of dataset. 

 

G4.1_Q01 Is the task alignment procedure 
able to detect which are the most 
relevant data contributions to 
solve a given problem? 

Error rate in experi-
ments where the 
ground truth is known. 

FR022 

G4.1_Q02 the data value estimation method 
able to reward every participant 
according to the real data value 
of their data contribution? 

Error in reward estima-
tion in experiments 
where the ground truth 
is known. 

FR022 
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amount of open source community interactions. Since this is not de-
pendent on the architecture per say but on the licensing (including po-
tentially open sourcing) of platform components, we excluded this 
question from Table 7. 

• G1.2_Q03 and G1.3_Q05 aim at evaluating whether the MUSKETEER 
end-to-end platform requires the local deployment of special hardware. 
This will depend on the type of ML algorithms and the amount of data 
from the two use cases, thus we do not consider it here. 

• G1.2_Q04 aims at evaluating the interoperability of the MUSKETEER 
platform with Medical Imaging Systems standards, which is within the 
boundary of the client connectors’ software environment, therefore we 
exclude it here. 

• The questions for the evaluation of G2.1/G2.2 and most of the ques-
tions for the evaluation of G2.3 (with the exception of G2.3_Q07 which 
is included in Table 7) pertain to the algorithmic library, therefore we 
did not include them here. Specifically, G2.3_Q04 addresses the diffi-
culty of encrypting/decrypting information as part of the Federated ML 
training, which is within the boundary of the algorithmic library5, and 
G2.3_Q05 the storage requirements, which is within the boundary of 
the client connectors’ software. 

• The questions related to G3.2 pertain to the robustness of Federated 
ML training against evasion, poisoning and user collusion, which is 
within the scope of the algorithmic library framework. 

• The questions related to G3.3 and G3.4 all pertain to the accuracy of ML 
models which falls within the scope of the algorithmic library and the 
development of the use cases. 

 

2.4 Legal and ethical requirements 
D2.2 outlines the legal requirements that are relevant to the scope of the MUSKETEER project 
and provides guidance in terms of their implementation. At this stage, the requirements per-
taining to the core platform mainly concern the implementation of cybersecurity mechanisms 
and processes, such as 

 
5 Although we will discuss the relevance of key management solutions for possible future extensions of the plat-

form in Section 5. 
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• Taking measures to ensure the security of the MUSKETEER platform as 
well as the relevant facilities; 

• Availability of appropriate security incident handling processes; 
• Measures to ensure business continuity in case of a security incident; 
• Compliance with international security standards; 
• Performing thorough monitoring, auditing and testing of the 

MUSKETEER system and facilities to ensure appropriate levels of secu-
rity. 

 
In terms of technical requirements, those implementation guidelines are reflected in TR001 
and the related functional and non-functional requirements (see Table 6), which specify e.g. 
the availability of access controls and user authentication.  

 

2.5 Privacy operation modes and machine learning algorithms 

In this section, we are going to review the technical requirements for supporting the different 
privacy operation modes (POMs) and Federated ML algorithms from the core platform per-
spective. At a high level, those requirements are described in TR013, and more detail is pro-
vided in the functional and non-functional requirements FR009, FR016-FR025 and NR006. 
Here we discuss possible additional requirements. 

Our analysis is based on two previous deliverables: D4.1, which provides a description of the 
targeted POMs and Federated ML algorithms, and D4.2, which describes an initial demonstra-
tor of Federated ML algorithms, specifically of algorithms for aligning and estimation the value 
of participants’ data. D5.1, which provides a threat analysis for Federated ML algorithms, did 
not contribute specific technical requirements at this point, however, future work in WP5 on 
defending Federated ML algorithms against the identified threats may lead to additional func-
tional requirements on the core MUSKETEER platform. 

2.5.1 Federated collaborative POMs (POM1-POM3) 

POM1-POM3 all fall under the standard Federated ML training paradigm where raw data 
never leaves the participants’ environment, instead the ML model is transferred among the 
participants who contributes by locally updating the model, using their data, and sending it to 
the aggregator who combines the model updates. A common feature of those POMs is that 
the participants have access, as part of the training process, to intermediate versions of the 
trained ML model (which is related to TR016), although the final model, after incorporation of 
the ultimate updates, is not necessarily shared with them by the aggregator. 
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The difference between POM1, POM2, POM3 is the approach for sharing and processing 
model updates in an encrypted domain: 

• POM1 (“Aramis”) handles model updates in the plain, unencrypted do-
main. 

• POM2 (“Athos”) works with (partial) homomorphic encryption of model 
updates where the same private key is used by all the participants. 

• POM3 (“Porthos”) envisions different private keys to be used by the par-
ticipants to encrypt their model updates; in order for the aggregator to 
combine those updated in the encrypted domain, a proxy re-encryption 
scheme is required. 

Fundamentally, FR016-FR025 comprise all the non-encryption related functional require-
ments for performing Federated ML training under POM1-POM3. In particular, F018/F019 and 
F023 support the transfer (i.e. sending and receiving) of the ML model from the aggregator to 
participants, and F020 and F022 allow participants to transfer the model updated on their 
local data back to the aggregator. The transfer mechanisms are agnostic as to whether the 
transmitted information is encrypted or not. 

Working with models and model updates in the encrypted domains requires the following: 

• Encryption of model updates by the participants using their private 
key(s) before the updates are sent to the aggregator. The same private 
key is used among all participants in POM2, different private keys are 
used in POM3. We see this step as an integral functionality of the algo-
rithmic library, thus, it does not inform technical requirements on the 
core platform. Also the generation and exchange of private keys (re-
quired in POM2) is outside the realm of the core platform. 

• Applying model updates in the encrypted domain by the aggregator, 
possibly via a proxy re-encryption of updates encrypted using different 
private keys (in POM3). This requires knowledge of the public key(s) of 
the homomorphic encryption which can be transmitted to the aggrega-
tor in the same way as model updates. Again, those steps can be re-
garded as the integral functionality of the algorithmic library (and the 
core platform can stay completely agnostic to them). 

Thus, we argue that the complete core platform functionality to support POM1-POM3 is com-
prised in the functional requirements FR016-FR025. From an end-to-end use case perspective, 
processes and mechanisms need to be defined for generating and managing keys (the most 
challenging requirement being the exchange of keys required for POM2). However, this this 
outside the realm of the technical requirements on the core platform. (We will revisit and 
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summarize our view, also with regard to possible future extensions of the platform, in Section 
5). 

 

2.5.2 Semi-honest scenarios (POM4-POM6) 

POM4-POM6 consider semi-honest scenarios where Federated ML task members are honest-
but-curious, i.e. while they follow the agreed-upon training protocol, they try to gather infor-
mation about other members' inputs, intermediate results, or overall outputs. In particular, 
while in POM1-POM3 intermediate versions of the trained ML model are available to all task 
participants by default, POM4-POM6 provide different mechanisms to prevent the disclosure 
of this type of information. 

• POM4 (“Rochefort”) and POM5 (“deWinter)” deploy proxy-encryption 
of the users’ data and, based on that, perform operations required for 
the ML model training either exploiting homomorphic properties of the 
cryptosystem, or protecting the privacy of the encrypted operands via 
cryptographic binding. POM5 specifically indicates sequential training 
protocols where participants’ model updates are requested and incor-
porated sequentially by the aggregator. 

• POM6 (“Richelieu”) proposes to protect privacy by performing aggrega-
tion operations on the users’ raw data (such as computing dot products, 
covariance matrices etc.) before sharing information with other task 
members. This way, no individual raw data is transferred outside the 
users’ environment. POM6 aims at supporting different configurations 
where the ML model is either public to all participants (same as in 
POM1-POM3), or available only to the aggregator. 

We note that a complete assessment of the functional requirements for POM4-POM6 will re-
quire the analysis of specific ML algorithms (at this stage, the descriptions of POM4-POM6 in 
D4.1 amount to a fairly general framework which is difficult to analyse in this regard). At a 
high level, we deem the functionality described in FR016-FR025 to be sufficient to support 
POM4-POM6, not considering the requirements for supporting different cryptosystems which 
we believe – same as for POM1-POM3 – lies outside the realm of the core platform. POM4 
potentially involves “private-cloud” services for secure data storage and re-encryption; since 
the core MUSKETEER platform will be hosted in the public cloud, such functionality – if criti-
cally required for the implementation of POM4 Federated ML algorithms – would have to re-
side outside the realm of the core platform. It is our understanding, anyhow, that such func-
tionality may be beneficial to reduce the computational burden for the client connectors’ com-
putational environments, however, not critical from a strictly functional point of view. 
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2.5.3 Conventional ML scenarios (POM7-POM8) 

Finally, D4.1 considers two conventional ML scenarios without specific privacy-preserving 
mechanisms: 

• POM7 (Planchet) is a traditional cloud computing schema where all da-
tasets are stored and the ML models are trained centrally in the cloud, 
with the possibility of selectively sharing with the users the resulting 
models. 

• In the POM8 (D’Artagnan) schema, ML models are trained locally using 
local datasets. 

We argue that neither of these two POMs require the MUSKETEER platform. Specifically, there 
exist a number of commercial cloud services already supporting POM7, and a number of 
standard software environments (commercial or open source) already supporting POM8. 
Thus, we do not derive any functional requirements on the MUSKETEER platform for support-
ing POM7 or POM8. 

 

2.5.4 Algorithmic library assumptions 

D4.2 describes a demonstrator of a first version of the algorithmic library, specifically of algo-
rithms for data alignment and data value estimation. In the following we will analyze the as-
sumptions that the demonstrator makes on available platform functionality and explain their 
relation to the technical requirements listed above. 

1. A Federated ML task has been defined, i.e. the platform has to provide 
the ability for general users to create Federated ML tasks, including all 
the information that is required to define the task (FR005). 

2. The platform has identified all the users participating in the training pro-
cess, i.e. the platform provides the ability for general users to join a task 
that has already been created (FR008). 

3. All task participants have access to the task description (FR016). A test 
has been performed to guarantee that the participants’ input data has 
the required format6. 

 
6 We envision that the code for performing such tests has to be available in the client connectors’ computational 

environment, same as the algorithmic library. The task definition, accessible via the platform API, provides 
the configuration of the test (e.g., the required number and range of input features). For the execution of 
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4. The list of addresses of the participating nodes is available (FR017). We 
provide some clarifications on this point: 

a. “Addresses” correspond to pseudo-identifiers of participants, 
which allows the aggregator to send messages to any specific 
participant (FR019) and to identify which participant has sent a 
received message (FR022). For security and privacy purposes, 
neither the actual username nor an actual physical address (e.g. 
IP address or name of message queue) will be revealed. 

b. Only the aggregator / task creator is allowed to access the com-
plete list of participants. Participants are oblivious of the total 
number of participants or (pseudo-)identifiers of specific partic-
ipants. Thus, participants are not able to send messages to arbi-
trary other participants, but only to the aggregator (FR020) or to 
the “next” participant according to an underlying ring topology 
(FR021). 

5. The local data for Federated ML training is available to the participant’s 
training process via a data connector (this falls within the client connect-
ors’ software environment at the interface with the algorithmic library, 
outside the core platform’s boundary). 

6. Communication between the aggregator and participants during the 
training occurs via send and receive functions. 

a. The send functions allow an aggregator to broadcast a message 
to all the participants (FR018) or send it to a specific participant 
(FR019) where a pseudo-identifier is used to address that partic-
ipant. On the other side, they allow a participant to send a mes-
sage to the aggregator (FR020) or to the “next” participant ac-
cording to an underlying ring topology (FR021). 

b. The receive functions allow an aggregator to receive messages 
from an arbitrary participant, together with an identifier of the 
participant who sent it (FR022).7 Moreover, they allow a 

 
the test, the client connectors need to implement the logic for retrieving the participants’ data from their 
respective data sources. 

7 In D4.2, the design of the prototype communication library was such that the aggregator could indicate, as an 
argument of the receive function, from which specific participant it was waiting to a receive a message. 
FR022 capture a more asynchronous design in which messages from different participants could arrive and 
be processed in arbitrary order. 
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participant to receive messages from the aggregator (FR023), or 
from the “previous” participant according to an underlying ring 
topology. 

Platform functionality not assumed in D4.2 but essential for robust Federated ML training, 
data alignment and data value estimation, includes: 

• Ability for an aggregator to store task status updates (FR025). This may 
include any information that is needed by the aggregator in order to 
resume a Federated ML training task in case the aggregator process is 
interrupted. 

• Ability for an aggregator to store intermediate or final versions of the 
trained Federated ML model (FR026). This may be used for resuming 
training in case of an interruption, and to make the final trained model 
available to task members. 

• Ability for an aggregator to store information regarding the data value 
contributions per participant (FR027). This information may be used to 
determine the appropriate compensation of task members according to 
the value of the data that they contributed to the training.  

 

2.6 Client connectors 
For the end-to-end demonstration of the industry use cases under the MUSKETEER project, 
the integration of services provided by the core platform with the client connectors’ software 
to be installed within the clients’ IT premises is critical. D7.1, which documents the initial de-
sign of the client connectors, is prepared and submitted concurrently with the present docu-
ment. In the following, we describe central elements of this integration and key assumptions 
from the core platform’s perspective. 

• We assume that the end user will avail of the core platform functionality 
from within Python runtimes. This will allow for straight-forward usage 
of the Python API that we are planning to develop and package in to a 
Python library (see Section 4 for details on the proposed design of the 
API). The most basic designated use would be to perform interactive 
operations (like user and task management, see Table 2 and Table 3) in 
a Python notebook, and execute the actual training logic – either in a 
aggregator or a participant role – within a Python script. If desirable, a 
graphical user interface for the interactive operations could be devel-
oped in WP7 on top of the platform Python API. 
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• The execution of the training will require the algorithmic library (devel-
oped under WP4) to be available in the client connectors’ computa-
tional environment. We envision that the task definition information 
will allow the training Python scripts to dynamically initialize, configure  
and run the appropriate algorithms Python object (we will show an ex-
ample of this intended flow in Section 4). This applies to the core Fed-
erated ML algorithms, but also includes potential data preprocessing al-
gorithms. In order to be able to apply the latter, they also have to be 
available, e.g. in a Python library, in the client connectors’ computa-
tional environment. 

• The core platform does not provide services for deploying trained ML 
models for production purposes. The trained models can be down-
loaded and either deployed in the local computational environment of 
the end user, or (by the end user) in a commercial cloud environment 
that supports the deployment of trained ML models. 

 

2.7 Alignment with industrial data platform standards 

An important consideration in the MUSKETEER project is the alignment of the end-to-end plat-
form with existing and emerging standards for industrial data platforms, in particular with the 
Industrial Data Space Association (IDSA) reference architecture. Most elements of that refer-
ence architecture pertain to the client connectors. Certification of the client connectors’ soft-
ware by an independent third party is not an architectural but a procedural means to support 
the wide application in industrial data spaces. Abstraction from specific use cases in the plat-
form architecture to make it broadly applicable across a variety of data and machine learning 
model types and application domains is paramount in this regard, too. 

3 Platform architecture 

3.1 Overview 

This section describes the architecture of the MUSKETEER platform for providing centralized 
services. It is the culmination of Task 3.1 – “Design of scalable, secure, trusted and privacy 
aware architectures”. There are two elements to this platform: a centralized server compo-
nent for managing services, and a client package for interacting with these services. Figure 2 
shows a diagram of the initial version of the architecture for the centralized server compo-
nent.  
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Figure 2: MUSKETEER platform architecture (initial version) 

 

The architecture intends to utilise existing public cloud services, and as such, it is a cloud native 
system. Internally, it is based on a micro-services architecture [2]. The cloud infrastructure is 
provided by IBM, using the IBM® Cloud™ platform [3]. 

Micro-services are self-contained components, usually operating across a distributed system, 
interacting through well-defined interfaces. By adhering to these interfaces or “contracts”, a 
given micro-service can be implemented in any runtime a developer wishes, e.g. Java, Python, 
NodeJS etc. For MUSKETEER, these contracts are in fact JavaScript Object Notation (JSON) 
based messages, and by using a message-based interface, MUSKETEER can now also use a 
messaging system to deliver the messages. This messaging system is based on the Publish / 
Subscribe Design Pattern [4], with each micro-service either subscribing to events of interest, 
publishing information, or both. In either case, the contents of information published or re-
ceived is a JSON message. 

Employing this design pattern enables asynchronous interactions between components, 
whereby a component can publish several messages in quick succession, and then subscribe 
to possibly receive replies, or messages from other sources. This asynchronous use case will 
be further described in the Aggregator section 3.3.2. 

The messaging system used by MUSKETEER is RabbitMQ [5] and all interactions with the plat-
form operate via this messaging system or gateway. This is instantiated as a public cloud, 
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internet addressable service, allowing remote clients to connect. Remote clients require ap-
propriate credentials to connect, which will be discussed in the security section 3.3. 

A second route for interactions with the platform is via the Binary service (Section 3.10). This 
mechanism is not directly accessible to remote parties, and in effect, is constrained by internal 
functionality that will be provided by the Client Package (Section 3.4) operating via the mes-
saging gateway. The reason that this additional communication mechanism exists is to provide 
a scalable, high-volume data movement service, which is used for uploading and downloading 
potentially quite large models and model updates during the Federated ML training. 

 

3.2 Cloud-hosted Services 

The MUSKETEER architecture utilises a number of services available on the public IBM® 
Cloud™. Each of these will now be described. 

 

3.2.1 IBM Cloud™ Messages for RabbitMQ 

This is a fully managed instance of RabbitMQ, hosted on the public cloud. Its underlying disk, 
random-access memory (RAM), and optional virtual Central Processing Unit (vCPU) allocation, 
as well as backup storage usage are all factors in determining the price plan. 

RabbitMQ [5] is open source message-queueing software. Effectively a messaging broker, it 
implements the Publish / Subscribe design pattern with the Advanced Message Queuing Pro-
tocol (AMQP). Clients publish messages to known RabbitMQ exchanges and queues. Subscrib-
ers listen for activity on known queues, and process the messages, which may result in some 
action, the result of which may also be published to an exchange/queue. 

For MUSKETEER, RabbitMQ is used as the primary means of communication between both 
client applications and individual micro-services as well as between micro-services. 

 

3.2.2 IBM® Db2® on Cloud 

This is a fully managed SQL relational database, hosted on the public cloud, with several client 
runtimes supported. It is easily provisioned, with several plans available. For MUSKETEER, the 
Flex Plan is appropriate, whereby CPU, memory and storage resources can be scaled to match 
actual usage over time.  
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An SQL schema is deployed into this Db2 instance, and this schema details the required tables 
and indexes for representing users, tasks and models. An instance of this schema is called the 
MUSKETEER database. 

 

3.2.3 IBM® Cloud Object Storage 

Object storage, or object-based storage, is a data storage system which models the data for 
storage as an object. In object storage, an object consists of the data itself, metadata, and a 
unique identifier. 

The architecture of object storage is flat, each object is stored in the same address space. This 
is in contrast to other storage systems such as block storage, where data is partitioned into 
blocks and stored in sectors, or file systems, where data is viewed as a file, or collection of 
files in a file hierarchy. Data stored in object storage is unstructured, and object storage places 
no constraints on the format of the data. 

Metadata stored with the data in an object, usually takes the form of key/value pairs, is vari-
able in size, and is generally user defined. Metadata is important as it describes the data con-
tained in the object, without it the data is simply a sequence of bytes. Metadata can include 
details such as time of creation, access, revision, etc. 

In order to identify the object for later retrieval, it is given an identifier, which can take any 
form. The only constraint on the identifier stems from the object storage flat architecture - it 
must be unique for each object. 

 

3.2.4 IBM Cloud™ Functions 

IBM Cloud™ Functions is an IBM Cloud™ instance of Apache OpenWhisk [6], which is a func-
tions-as-a-service (FaaS) programming platform for developing lightweight code that scales 
on demand. Individual functions are billed on a per-execution scale, and the cost of an indi-
vidual function execution is minimal. IBM Cloud™ Functions scales up parallel invocation re-
quests on demand and also scales down to zero. At zero scale, the cost is also zero, which 
essentially means that applications pay for actual use rather that pre-determined capacity. 
This results in a very flexible and cost-effective platform, whereby application scaling is han-
dled by the platform automatically in response to changes in workload. 

For MUSKETEER, each individual deployment on IBM Cloud™ Functions is a MUSKETEER cen-
tralized platform micro-service. 
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3.2.5 IBM Cloud™ Kubernetes Service 

This is a managed Kubernetes service [7] hosted on the public cloud. For the purposes of 
MUSKETEER, the Free Plan, which provides one cluster and one worker node is sufficient. 

Kubernetes itself is an open source platform for managing containerized workloads. It is pro-
vided with declarative information in the form of YAML files and manages the state of the 
cluster and running containers (in so-called pods). 

 

3.3 Security & Privacy 

From inception, the MUSKETEER architecture has considered security and privacy as funda-
mental requirements for the platform. As the platform encompasses components running on 
physically different systems, some on cloud, some on premise, the overall architecture is a 
distributed system. Due to this, the network connections between these distributed systems 
use the latest available security, which, at the time of writing, is Transport Layer Security (TLS) 
v1.2. Connecting clients must also obtain user credentials (username/password) and a plat-
form certificate to operate on the platform. These measures ensure that a user account is 
created, the legitimacy of the MUSKETEER platform messaging gateway server is established 
and that the contents of all network traffic over connections is encrypted. 

 

3.3.1 User Accounts 

User account management is backed by the RabbitMQ Management Console and API, and 
when a user registers with the platform, a centralized micro-service issues a RabbitMQ API 
call to create a user account on the RabbitMQ instance. There is no general mechanism to list 
the users registered on the system, and as such, any given user is unable to obtain the user 
account names of other registered users. 

 

3.3.2 Task Aggregation/Participation 

There is no direct interaction between task aggregators and any task participant. The aggre-
gator dispatches federated models and training instructions to the centralized platform. A 
modelling micro-service then forwards this information to the relevant task participants. 
When a task participant completes a round of model training, it dispatches model updates to 
the centralized system. A modelling micro-service then forwards these updates to the aggre-
gator. This separation ensures a high level of privacy and security for all users. 
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When a task is created, the task details are stored in the database and a RabbitMQ queue is 
also created for the task creator. The task creator is assumed to be the aggregator. This Rab-
bitMQ queue is used to communicate modelling information to the aggregator, for example, 
the availability of model updates from task participants (via the centralized platform). Using a 
RabbitMQ policy, access to this queue is restricted to the task aggregator, which ensures that 
all model updates intended for the aggregator is a private exchange between the centralized 
platform and the aggregator. The aggregator is granted read-only permissions on this private 
queue. 

When a user joins a task, a record of this activity is stored in the database and a RabbitMQ 
queue is created for the new task participant. This RabbitMQ queue is used to communicate 
modelling information to the task participant (via the centralized platform), for example, the 
availability of a new federated machine learning model and instructions to commence a new 
round of model training. Using a RabbitMQ policy, access to this queue is restricted to the task 
participant, which ensures that all modelling information intended for the participant is a pri-
vate exchange between the participant and the centralized platform. The participant is 
granted read-only permissions on this private queue. 

Using RabbitMQ policies, access to queues is restricted. In this way, no other user of the plat-
form can access a queue to which they are not permitted. RabbitMQ policies ensure that 
queues are in effect, private queues. 

In this way, by using dedicated private queues, the privacy of aggregators and participants is 
preserved. 

 

3.3.3 Models 

Models and model updates are communicated through the use of the Binary Service (see Sec-
tion 3.10). Access to this service is managed internally through the Client Package (see Section 
3.4) and is not directly visible to client applications. It is envisioned that the Binary Service will 
provide temporary credentials both for individual upload and download of models and model 
updates. 

It is not intended that the contents of models or model updates stored in the Binary Service 
are inspected or processed in any way by components of the MUSKETEER centralized plat-
form. This area is only used by the client package, to upload or download models or model 
updates, so that client applications can perform the appropriate processing. 
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3.4 Client Package 

This is software installed locally by each potential user of the platform. It provides the neces-
sary capabilities to interact with the MUSKETEER centralized platform. All interactions are 
through the MUSKETEER Messaging Gateway, meaning there is no direct invocation of the 
micro-services in the centralized platform. 

Details of its envisioned use are discussed in Section 4. The client package will be the corner 
stone of the client connector’s interaction with the MUSKETEER centralized cloud platform. 

 

3.5 Messaging Gateway 

All interactions between MUSKETEER clients and the centralized platform take place through 
the messaging gateway, which is an instance of RabbitMQ. As previously discussed, these in-
teractions require the appropriate credentials. 

There are two types of queues in the system. A single-command style queue, to which all re-
quests for services (messages) are published. For example, if a user wishes to join a task, this 
request will be published to the single-command queue. All user accounts are granted write 
permissions on this queue, and therefore users cannot retrieve messages that were published 
by any user. The centralized platform is granted read-write permissions on this queue. 

And secondly, multiple private read-only modelling queues, through which federated models 
and model updates are communicated between task aggregators and task participants. The 
centralized platform is granted write-only permissions to these private queues. 

 

3.6 Command Router Service 

MUSKETEER micro-services are not invoked directly by client applications, but rather, clients 
dispatch a message to a RabbitMQ exchange/queue. These messages are then examined, and 
the appropriate action taken to respond to the service request specified by the message. 

The command router is the service which performs this action. It subscribes to the RabbitMQ 
single-command queue, receives messages, and determines which IBM Cloud™ Function (mi-
cro-service) should be invoked to handle each message received. As this service must 
promptly handle messages received, it in effect, must be an always-on service, with high avail-
ability. Therefore, it is intended that this service runs in a long-lived Kubernetes pod. If this 
pod exits for any reason it must be restarted as soon as possible. This will ensure that the 
latency between clients dispatching a message, and the appropriate micro-service handling 
the message is minimised. 
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This service was previously researched and developed as part of the GOFLEX H2020 project 
[8], and during that project, an open source contribution was made to the IBM Cloud™ Func-
tions public github organisation, with a project called RabbitWhisker [9]. It is implemented as 
a multi-threaded Python application, allowing it to receive and route large numbers of con-
current service requests. 

 

3.7 User Management Service 

This is a micro-service based on IBM Cloud™ Functions which provides user account services 
through the RabbitMQ API and records user details in the database. 

The service supports the following actions: 

1. User registration: parameters - username, password 

a. Ensure username and password are non-empty strings 

b. Ensure that the username is unique 

c. Create a user account on the RabbitMQ instance 

d. Grant permission to username to the single-command queue 

e. Create a user entry for username in the database 

f. Ensure that collectively c-d-e above is an atomic operation 

2. User removal: parameters - username 

a. Leave all tasks that username has previously joined 

b. Remove username from the RabbitMQ instance 

c. Remove the user entry for username from the database 

 

3.8 Task Management Service 

This is a micro-service based on IBM Cloud™ Functions which provides machine learning task 
management services through the RabbitMQ API and records task details in the database. 

The service supports the following actions: 

1. Task Create: parameters - task name, username, topology, definition  

a. Ensure task name and username are non-empty strings 

b. Create a queue for the task on the RabbitMQ instance 

c. Create a task entry for task name in the database 

d. Ensure that collectively b-c are atomic 
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2. Task List: parameters – None 

a. Retrieve the task entries from the database 

3. Task Info: parameters – task name, username 

a. Retrieve the task entry for task name from the database 

4. Task Participation: parameters – task name, username 

a. Retrieve the user entries for task name from the database 

5. Task Start: parameters – task name, username, model 

a. Ensure task name has user participants 

b. Change the status of the task entry for task name 

c. Invoke Modelling Service – Notify Participants with start, model 

6. Task Stop: parameters – task name, username, task status 

a. Ensure task name has user participants 

b. Invoke Modelling Service – Notify Participants with stop 

c. Change the status of the task entry for task name 

d. Remove the queue for the task on the RabbitMQ instance 

7. Task Join: parameters – task name, username 

a. Ensure that username can participate in task name 

b. Create a queue for the user/task on the RabbitMQ instance 

c. Create a user entry for the task in the database 

d. Invoke Modelling Service – Notify Aggregator 

e. Ensure that collectively b-c-d are atomic 

8. Task Leave: parameters – task name, username 

a. Ensure that username participates in task name 

b. Remove the queue for the user/task on the RabbitMQ instance 

c. Remove the user entry for the task in the database 

d. Invoke Modelling Service – Notify Aggregator 

9. Task Update: parameters – task name, username, status, model 

a. Ensure that username participates in task name 

b. Update the user entry for the task in the database with status 

c. Invoke Modelling Service – Notify Aggregator 
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3.9 Modelling Service 

This is a micro-service based on IBM Cloud™ Functions which provides the queue management 
services to handle the interactions between task aggregators and participants. As discussed in 
section 3.3.2, there is no direct interaction between task aggregators and any task participant, 
but rather the centralized platform routes the required information to the appropriate private 
queue. 

The service supports the following actions: 

1. Notify Participants: parameters - task name, action, model 

a. Ensure task name has user participants 

b. Retrieve the user entries for task name from the database 

c. For each user entry: 

i.  Publish action/model to the user’s private queue 

2. Notify Aggregator: parameters - task name, username, status, model 

a. Ensure task name has user participants 

b. Ensure that username participates in task name 

c. Retrieve the aggregator entry for task name from the database 

d. Publish status/model to the aggregator’s private queue 

 

3.10 Binary Storage Service 

This is a micro-service based on IBM Cloud™ Functions and the IBM® Cloud Object Storage 
Service. As discussed in section 3.3.3 access to this service is not directly available to client 
applications. It is however closely linked with, and invoked by, the Task Start and Task Update 
functions in the Task Management Service. 

The IBM® Cloud Object Storage API provides a representational state transfer (REST) based 
API for reading and writing objects and supports a subset of the S3 API [10]. For MUSKETEER 
binary object storage (models), a means to upload and download these objects is required. It 
is envisaged that the S3 API’s for creating pre-signed uniform resource locators (URLs) will be 
used to support this. These URLs will automatically expire after a pre-defined period, and it is 
intended that they should be used as soon as possible, hence the close integration with the 
calling functions. 

The service supports the following actions: 

1. Uploader: parameters - username, object_name 
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a. Ensure username has appropriate permissions 

b. Generate an object name if object name is empty 

c. Call s3.generate_presigned_post with object name 

d. Return the URL generated 

2. Uploader: parameters - username, object name 

a. Ensure username has appropriate permissions 

b. Call s3.generate_presigned_url with object name 

c. Return the URL generated 

 

 

 

 

 

 

 

 

 

4 Example: proposed usage 

This section introduces an end-to-end example for the envisioned usage of the MUSKETEER 
platform services. We first describe an example context motivating the utilization of the 
platform. Then we will illustrate, step by step, the envisioned useage of the platform to 
achieve the goal outlined in the motivation. 

4.1 Motivation 

Alice has a machine learning task for which she would like to train a model, but she has not 
data for the task. Therefore, she would like to harness the MUSKETEER platform to leverage 
training data provided by other parties. On the other hand, John and Jack possess available 
data that may be useful for Alice’s task. Together, they can use the MUSKETEER platform to 
collaboratively train a machine learning in a federated fashion, without having to share or 
centralized the actual data. Thereby, they will be able to unlock additional value of their data 
and all benefit from the creating and training of the machine learning model. 
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4.1.1 Detailed steps 

In order to use the MUSKETEER platform, Alice, John and Jack first must register their own 
user account (Figure 3). Once accounts are created, all subsequent interactions with the 
platform must be performed using those accounts. 

 

Figure 3: Account registration on the MUSKETEER platform 

 

After registering with the platform, Alice will create a machine learning task and register that 
task with MUSKETEER so that it is stored in MUSKETEER’s database. The task creation process 
will require Alice to define the machine learning task in detail as shown in Figure 4. The task 
definition may contain information such as the number of participants, number of training 
epochs, batch sizes, learning rates, etc. Upon successful creation, the task will be assigned 
with a name (“Task005” in this example). In the following, Alice will be playing the role of a 
task creator in the MUSKETEER platform. 

 

Figure 4: Create Federated ML task on the MUSKETEER platform 

As task creator, Alice will also execute the aggregator side of the federated training process in 
her computational environment. In this example, the training quorum is 2 (see Figure 4), i.e. 
exactly two participants need to have joined the task before the training begins. 
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In parallel, John and Jack can avail of the MUSKETEER platform services to explore Federated 
ML tasks created by other users, including the task that was created by Alice. By inspecting 
the definitions of the task (and available meta descriptions), they can decide whether their 
available data may benefit a task and whether they want join that task (Figure 5).  

 

 

Figure 5: List tasks on the MUSKETEER platform 

 

Once they make the decision to participate in a specific task (typically independently and 
unbeknownst of each other), they can avail of the platform services to join that task (Figure 6) 
and assuming the role of task participants in the following. 

 

 

Figure 6: Join task on the MUSKETEER platform 

With two participants having joined, the starting criterium of Alice‘s task has been satisfied, 
and so the training process of the machine learning task can start and run throughout the 
number of iterations specified in the task definition. The exact flow of information among 
participants and aggregators during the training process depends on the specific Privacy 
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Operation Mode (POM); in the following, we provide an example of standard Federated ML 
training as defined in POM1 (see Section 2.5.1). 

Firstly, the aggregator sends an initial version of the ML model to both participants. This can 
be done via a broadcast function in order to save communication costs as illustrated in Figure 
7. Without a broadcast function, the aggregator would have to send the same model 
repeatedly to the platform (once per participant) which will then relay the model to the 
specific designated sender. In practice, a model update could size up to tens of gigabytes, and 
therefore transferring such a large model several times through a cloud network would 
consume a lot of bandwidth. After broadcasting the model, the aggregator waits for incoming 
model updates from each of the participants. 

 

 

Figure 7: Communication from the aggregator to task participants 

 

Secondly, each participant – after receiving the model from the aggregator – will update its 
local model, continue to train the model locally with their local data and obtain a new local 
model update. Then, this local model update will be transferred back to the aggregator 
through the MUSKETEER platform as shown in Figure 8. The aggregator will then collect these 
new model updates from all the participants, average them to produce a new model update, 
which then is broadcasted again to the participants for the next iteration. After a specified 
number of such iterations, the training will end and the aggregator will obtain a final version 
of the trained model, thus completing the Federated ML task created by Alice. 
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Figure 8: Communication from the task participants to the aggregator 

 

5 Possible future extensions 

To conclude this document, we give an outlook on possible future extensions of the platform. 
An analysis and consolidated view on the technical requirements stemming from these exten-
sions will be provided in the documentation of the final version of the MUSKETEER platform 
architecture (D3.2). 

 

Explore synergies and possible integration points with the AI4EU platform 

As discussed in Section 2.2.2, the initial set of technical requirements provided in D2.1 envi-
sioned the ability for users of the MUSKETEER platform to provide their own user profiles, 
explore the profiles of other users and, in conjunction with those profiles, share information 
about datasets that they own which could be leveraged for Federated ML tasks. We do not 
see such platform capabilities as central to the scope of the MUSKETEER project; moreover 
there may be potential legal/ethical implications related to storing this sort of information. 
However, we believe there may be synergies and possible integration points with the AI4EU 
platform [11] that are worthwhile exploring, perhaps less from a technical or architectural 
viewpoint, but certainly from a dissemination and exploitation perspective in this project. 

 

Organizing platform user access permissions in groups 

Another element of D2.1 was the envisioned platform capability to create groups of users in 
order to control, e.g., which users could see or join specific tasks. In the first version of the 
platform, this capability isn’t integrated; as explained in Section 2.2.2, the initial version of the 
platform allows users to see or join any available tasks; we envision that different platforms 
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will be instantiated for the real-world use cases and for algorithmic performance assessment, 
thus this single-tenancy deployment mitigates the need for restricting access to tasks. In prep-
aration of the final version of the MUSKETEER platform architecture (D3.2) we will conduct 
further analysis to understand the user stories and derive more precise technical require-
ments. 

 

Permissions for downloading models 

Currently, the platform does not implement a capability for persisting ML models that result 
from Federated ML tasks, but this is a feature that should be supported by the final version. 
In accordance with that, appropriate permissions should be defined as to who is allowed to 
retrieve the models persisted in the platform. In preparation of D3.2, we are planning to de-
scribe different options in more detail in order to arrive at an informed decision which mech-
anisms to implement; two possible approaches are that either only the task creator has access 
to the final model (restrictive), or that the task creator and all participants can download it 
(permissive). 

 

Model serialization 

A question related to the persistence and downstream use of trained Federated ML models is 
how the format that should be used for serializing and storing the actual models. One option 
would be to export and save the models in a standard format; another option would be to 
save them in framework-specific formats with meta information that is required to properly 
re-load and apply them. Decisions on the exact format should be made in conjunction with 
WP7 as the client connectors will ultimately provide the environment in which end users will 
retrieve the outcomes from Federated ML tasks. 

 

Task lifecycles 

Working towards the final version of the MUSKETEER platform, a further analysis needs to be 
performed in order to understand the full lifecycle of Federated ML tasks, how their status 
should be represented in the platform, and how the status informs different actions that can 
be performed on tasks. This is particularly important for handling, e.g. participants which tem-
porarily disconnect from their training tasks, and aggregators temporarily disconnecting or 
even crashing. To handle such scenarios gracefully, checkpointing of Federated ML tasks 
maybe a required mechanism to be supported by the platform. A related question is how to 
allow users to monitor the status and execution of the Federated ML training. Finally, deci-
sions need to be taken and mechanisms need to be implemented in order to control how long 
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task-related message queues should be kept up and running, and how long to persist task 
metadata, trained models etc. 

 

User roles 

Currently, the platform assumes that the creator of a task will also be taking the role of the 
aggregator during the actual training. In preparation of D3.2, it should be reviewed – in con-
junction with WP7 – whether other cases could be foreseen (e.g. where the task creator would 
also act as training participant) and should be supported by the platform. 

 

Data value estimation 

The ability of the MUSKETEER platform to estimate the value of the data contributed by the 
different participants of a Federated ML task is a key functionality in order to unlock new value 
in the data economy. From the platform perspective, a further analysis needs to be conducted 
in order to understand which services should be provided (i) in order to allow algorithms for 
data value estimation to persist information about contributions from different users in the 
platform; (ii) in order to allow platform users to query, analyze and further process this infor-
mation in order to determine potential rewards to the different participants. 

 

Encryption / key management 

Finally, in order to support Privacy Operation Modes (POMs) that rely on encryption mecha-
nisms, the overall architecture of the MUSKETEER project needs to consider, e.g. how, where 
and by who encryption keys are going to be generated and managed, and how the services 
for key generation / management will interact with the core platform, the algorithmic library, 
and the client connectors.  
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