

H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

November 19

D3.1 Architecture Design – Initial Version

 D3.1 Architecture Design – Initial Version 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 30 November 2019

Author(s): Mathieu Sinn (IBM), Mark Purcell (IBM), Minh Ngoc Tran (IBM),

John Sheehan (IBM), Stefano Braghin (IBM)
Participant(s): TREE, IMP; ENG, UC3M; IDSA
Reviewer(s): Antoine Garnier (IDSA), Roberto Diaz Morales (TREE)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP3
Dissemination level: Public
Version: 1.0

Contact: mathsinn@ie.ibm.com
Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving
Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 824988. The sole responsibility
for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be
made with reference to the publisher.

 D3.1 Architecture Design – Initial Version 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary
This deliverable (D3.1 "Architecture Design") is a document describing the initial version of
the MUSKETEER platform architecture. It addresses the previously delivered technical require-
ments and key performance indicators, takes into account legal and ethical requirements, and
aligns with the algorithm library architecture and assessment framework. It informs the
MUSKETEER platform development work and acts as counterpart of the client connectors’ ar-
chitecture, which describes the customization and end-to-end integration of the core platform
capabilities for the industrial use cases.

Document History

Ver-
sion

Date Status Author Comment

1 01 November 2019 First version for in-
ternal review

Mathieu Sinn First draft

2 20 November 2019 Final version for in-
ternal review

Mathieu Sinn Draft for
review

3 Review inputs Antoine Garnier Update
4 Review inputs Roberto Diaz Morales Update
5 Final Version Update
6 Clean and submis-

sion
Gal Weiss Final

 D3.1 Architecture Design – Initial Version 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES ... 5

LIST OF TABLES ... 5

LIST OF ACRONYMS AND ABBREVIATIONS ... 6

1 INTRODUCTION ... 7

1.1 Purpose ... 7

1.2 Related documents ... 7

1.3 Outline .. 9

2 REQUIREMENTS .. 10

2.1 Scope .. 10

2.2 Industrial and technical requirements ... 11

2.2.1 User roles ... 11

2.2.2 Functional requirements ... 13

2.2.3 Non-functional requirements .. 19

2.2.4 Technical requirements ... 20

2.3 Key performance indicators .. 24

2.4 Legal and ethical requirements ... 27

2.5 Privacy operation modes and machine learning algorithms 28

2.5.1 Federated collaborative POMs (POM1-POM3) .. 28

2.5.2 Semi-honest scenarios (POM4-POM6) .. 30

2.5.3 Conventional ML scenarios (POM7-POM8) ... 31

2.5.4 Algorithmic library assumptions .. 31

2.6 Client connectors .. 33

2.7 Alignment with industrial data platform standards ... 34

3 PLATFORM ARCHITECTURE .. 34

3.1 Overview .. 34

3.2 Cloud-hosted Services ... 36

3.2.1 IBM Cloud™ Messages for RabbitMQ .. 36

 D3.1 Architecture Design – Initial Version 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.2.2 IBM® Db2® on Cloud .. 36

3.2.3 IBM® Cloud Object Storage .. 37

3.2.4 IBM Cloud™ Functions ... 37

3.2.5 IBM Cloud™ Kubernetes Service .. 38

3.3 Security & Privacy ... 38

3.3.1 User Accounts .. 38

3.3.2 Task Aggregation/Participation ... 38

3.3.3 Models ... 39

3.4 Client Package ... 40

3.5 Messaging Gateway .. 40

3.6 Command Router Service .. 40

3.7 User Management Service .. 41

3.8 Task Management Service ... 41

3.9 Modelling Service .. 43

3.10 Binary Storage Service ... 43

4 EXAMPLE: PROPOSED USAGE .. 44

4.1 Motivation .. 44

4.1.1 Detailed steps .. 45

5 POSSIBLE FUTURE EXTENSIONS ... 48

6 REFERENCES .. 50

 D3.1 Architecture Design – Initial Version 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1: MUSKETEER’s PERT diagram .. 9

Figure 2: MUSKETEER platform architecture (initial version) ... 35

Figure 3: Account registration on the MUSKETEER platform .. 45

Figure 4: Create Federated ML task on the MUSKETEER platform ... 45

Figure 5: List tasks on the MUSKETEER platform .. 46

Figure 6: Join task on the MUSKETEER platform ... 46

Figure 7: Communication from the aggregator to task participants 47

Figure 8: Communication from the task participants to the aggregator 48

List of Tables

Table 1: MUSKETEER platform user roles ... 12

Table 2: Functional requirements for managing platform users .. 14

Table 3: Functional requirements for managing Federated ML tasks 16

Table 4: Functional requirements for executing Federated ML tasks 19

Table 5: Non-functional requirements on the MUSKETEER platform 20

Table 6: Technical requirements on the MUSKETEER platform .. 21

Table 7: GQM questions and metrics pertaining to core platform capabilities 24

 D3.1 Architecture Design – Initial Version 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
FaaS Functions-as-a-Service
GQM Goal/Question/Metric
IP Internet Protocol
JSON JavaScript Object Notation
KPI Key Performance Indicator
ML Machine Learning
POM Privacy Operation Mode
RAM Random-Access Memory
REST Representational State Transfer
SQL Structured Query Language
TFIDF Term Frequency – Inverse Document Frequency
TLS Transport Layer Security
URL Uniform Resource Locator
vCPU Virtual Central Processing Unit
WP Work Package
YAML Yet Another Markup Language

 D3.1 Architecture Design – Initial Version 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

The purpose of the MUSKETEER platform is to enable participants of the data economy to
participate in Federated Machine Learning (ML) and thereby realize the value of their data
assets, while preventing the leakage of information that is proprietary, confidential, person-
ally sensitive, or that must not be shared because of other legal or regulatory requirements.

Functionally, the platform has to provide the infrastructure and implement the services that
are required to enable the federated ML algorithms developed in WP4 and WP5 in end-to-end
applications. It must also support the assessments to be carried it out in WP6 and provide
interfaces which allow for the development of client connectors and end-to-end demonstra-
tion of the industrial use cases in WP7.

The purpose of this document is to describe the initial version of the MUSKETEER platform
architecture. Particular emphasis is on:

• defining the scope of the core platform, particularly vis-à-vis the algo-
rithmic library and the client connectors’ architecture;

• explaining key design decisions in light of the envisioned scalability, se-
curity, trustworthiness and privacy-awareness of the platform;

• addressing the specific industrial, technical and legal requirements out-
lined in previous deliverables;

• documenting application programming interfaces (APIs) that expose
core platform capabilities to the algorithmic library and client connect-
ors’ software;

• providing examples that illustrate how to use the platform APIs for fed-
erated learning and user/task management;

• discussing alignment of the architecture design with existing and emerg-
ing standards for industrial data platforms.

1.2 Related documents

This deliverable is related to the following documents (also see Figure 1):
• D2.1 Industrial and technical requirements – in so far as the platform

architecture has to address functional and non-functional technical re-
quirements described in that document.

• D2.2 Legal requirements and implementation guidelines – in so far as
the design of the platform architecture should follow the

 D3.1 Architecture Design – Initial Version 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

implementation guidelines arising in the context of the applicable legal
and ethical framework.

• D2.3 Key performance indicators selection and definition – in so far as
the platform has to either provide the core capabilities that other func-
tional components (e.g. the algorithmic library or the client connectors)
require to meet their goals, or to meet specific goals itself.

• D4.1 Investigative overview of targeted architecture and algorithms –
in so far as the platform has to provide the core capabilities to support
and enable the targeted architecture and algorithms.

• D4.2 Pre-processing, normalization, data alignment and data value es-
timation algorithms (initial version) – in so far as the platform has to
provide the core capabilities to support the deployment of the pro-
posed algorithms.

• D5.1 Threat analysis for federated machine learning algorithms – in so
far as the platform has to provide the core capabilities to support the
deployment of the proposed algorithms.

• D6.1 Assessment framework design and specification – in so far as the
platform has to provide the core capabilities to support the application
of the proposed framework and meet relevant key performance indica-
tors (KPIs).

• D7.1. - Client connectors’ architecture design (initial version) – in so far
as the platform has to provide the core capabilities to support the de-
velopment and deployment of the proposed client connectors’ architec-
ture.

 D3.1 Architecture Design – Initial Version 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 1: MUSKETEER’s PERT diagram

1.3 Outline

The remainder of this document is structured as follows:

• Section 2 describes the scope of the MUSKETEER core platform (in par-
ticular vis-à-vis the algorithmic library and the client connectors soft-
ware) and reviews the relevant functional and non-functional require-
ments outlined in the documents listed above.

• Section 3 describes the design of the platform architecture and provides
detailed information on each of the platform’s components as well as
the underlying core technology.

• Section 4 outlines the proposed design of the API for utilizing the plat-
form’s services and shows an example how the API is intended to be
used for federated learning algorithms and user/task management.

• Finally, Section 5 discusses possible extensions of the platform that
were outside the scope of the initial version and may require further
analysis in conjunction with other work packages for consideration in
future versions to be developed under this project.

 D3.1 Architecture Design – Initial Version 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2 Requirements

2.1 Scope

When defining the scope of the MUSKETEER platform, it is important to draw distinctions be-
tween the core platform, the federated ML algorithm library, and the client connectors. This
will become immanent when reviewing the technical requirements in Section 3 and under-
standing which of these three components they pertain to. At a high level, the scope of these
three different components is defined along the following lines:

• The platform provides services (via an API) that allow new users to reg-
ister to the platform.

• The platform provides registered users with the ability to create new
federated ML tasks.

• The platform provides registered users with the ability to join existing
federated ML tasks.

• The platform provides registered users with the ability to leave a feder-
ated ML task that they had previously joined.

• The platform provides registered users with the ability to cancel a task
that they had previously created.

• The platform provides, during the execution of a federated ML algo-
rithm, participants and the aggregator with the ability to send and re-
ceive messages in order to perform the federated ML training.

• The platform provides the aggregator with the ability to retrieve the
number and status of participants in an ongoing task.

In its initial version, the platform does neither host nor start the aggregator training processes;
the participants’ training process are understood to be executed within the client connectors’
software environments.

Any logic for performing the federated ML is implemented in the federated ML algorithms
library. This includes logic for:

• Checking, on the aggregator side, whether the criterion for starting the
federated ML training is met (e.g. quorum of participants, start time
stamp etc.) and subsequently begin the actual training.

• Handling participants that either explicitly (via leaving a task) or implic-
itly (via disconnecting and not sending any further messages) cease to
actually participate in an ongoing federated ML task.

 D3.1 Architecture Design – Initial Version 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• (De-)serialization of messages that are sent/received between the ag-
gregator and task participants.

The core platform itself agnostic of specific elements of a Federated ML task definition. In
particular, the platform does not make any assumptions about the actual ML backend (e.g.
whether the training algorithms use Keras, Scikit-learn etc.). In principle, it doesn’t even as-
sume that the runtime is Python (with the only restriction that the API for interacting with the
platform will be provided in Python, same as the sample code to be provided as well as scripts
for running the aggregator and participants’ processes).

The platform itself is agnostic, too, of whether messages are encrypted or not. It is unaware,
too, of the working of local data connectors on the client side. Finally, it is unaware of
whether/how trained models are deployed on the client side. (In the initial version of the plat-
form, trained models are not persisted in a central location; in order to support local re-use
and deployment of trained models, they would have to be stored locally as part of the partic-
ipant training processes.)

On the other hand, the algorithms library will be agnostic of the actual protocol, backend and
infrastructure that is used for sending and receiving messages. It is agnostic of where / how
task and user information is stored.

2.2 Industrial and technical requirements
D2.1 (Industrial and technical requirements) comprises a detailed analysis of the MUSKETEER
platform users and user stories, leading to an exhaustive list of technical requirements to drive
the developments in the technical work packages (WP3-WP6) as well as the integration in
WP7. In the following, we are going to review those technical requirements. We will discuss
whether they fall under the responsibility of the core platform, the algorithms library or the
client connectors software where applicable. We will refine them where needed and indicate
their priority with regard to the first version of the platform architecture versus support in
possible future extensions. We begin by examining and refining the platform user roles de-
fined in Table 6 of D2.1.

2.2.1 User roles

A key aspect informing the design of the MUSKETEER platform architectures are the different
roles of users that are interacting with the platform. A consolidated view of the user roles is
provided in Table 1.

 D3.1 Architecture Design – Initial Version 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table 1: MUSKETEER platform user roles

User role Description

Platform administrator A platform administrator has full access to the platform. He/she has the
privilege to perform any action on the platform described in the following
that any other user can perform in his/her role. Moreover, a platform ad-
ministrator can register new users to the platform, provide them with ini-
tial usernames and passwords, change passwords of users, or delete users.

General user A general user has access to the platform through a username and pass-
word provided by a platform administrator. General users can view and
potentially join Federated ML tasks that have been created by other gen-
eral users.

Task creator A task creator user is a general user who has created a Federated ML task.
Only the task creator is allowed to modify, stop or delete a task that they
have created.

Task member A task member user is a general user who has joined a Federated ML task
created by a task creator. Task members have permission to participate in
the training of the Federated ML task and potentially retrieve the trained
model, depending on the Privacy Operation Mode (POM).

Aggregator An aggregator is a task member whose role it is to coordinate Federated
ML training and aggregate updates received from participants during the
course of the training. In MUSKETEER, each Federated ML task involves
exactly one aggregator.1

Participant A participant is a task member whose role it is to contribute updates to
Federated ML training based on their local data. Each Federated ML task
involves at least one participant.

We note that, in D2.1, a few additional roles were described that we have subsumed here for
consolidation and simplification purposes. In particular:

• We do not distinguish between general and technical users. In D2.1 this
distinction was made to describe users who could register to the plat-
form, view Federated ML tasks etc., who were however not allowed to

1 There exist Federated ML protocols which consider multiple aggregators, e.g. for robustness and performance

improvements, typically in compute environments where network connectivity is unstable. Since this is not
an important requirement for MUSKETEER, we will be focusing on protocols that involve only one aggrega-
tor.

 D3.1 Architecture Design – Initial Version 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

join tasks, create new tasks etc. In the initial version of the platform we
do not see value of implementing this distinction; we will discuss, how-
ever, in Section 5 its relevance for possible future extensions of the plat-
form.

• D2.1 also envisioned the role of a group owner who is a technical user
with permission to facilitate the sharing of Federated ML tasks or mod-
els between members of the same organization or groups of organiza-
tions. We envision that, for the first version of the platform, a different
instance will be deployed for each use case2, thus, the separation be-
tween organizations or group will be enforced at the platform instance
level. We will discuss the possible future importance of groups and
group owners within a single platform instance in Section 5.

• Finally, D2.1 described the role of a researcher who is a general user
aiming at benchmarking the performance of the platform and, towards
that aim, needs the ability to run synthetic tasks involving multiple arti-
ficial users. We argue that the needs of this user role can be met by
granting platform admin privileges on a dedicated platform instance.

On the other hand, D2.1 did not specify the roles of aggregators or participants. In some sense,
while all the other roles typically correspond to human individuals exercising those roles, ag-
gregators and participants are rather “algorithmic” roles.

2.2.2 Functional requirements

Next, we will provide a consolidated view of the functional requirements provided in Table 8
of D2.1. We will organize those requirements along three different categories:

• Managing platform users (Section 2.2.2.1)
• Managing Federated ML tasks (Section 2.2.2.2)
• Executing Federated ML tasks (Section 2.2.2.3)

2.2.2.1 Managing platform users

A consolidated view of the functional requirements for managing platform users is provided
in Table 2: Functional requirements for managing platform users. At the end of the description

2 Specifically, we plan to deploy one instance of the platform for the Manufacturing use case, a separate instance

for the Healthcare instance, a separate instance for algorithmic research purposes on synthetic datasets and
Federated ML tasks, and finally a separate instance for development and integration testing purposes.

 D3.1 Architecture Design – Initial Version 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

of each requirement, we refer to the original identifier of the relevant functional requirement
in D2.1.

Table 2: Functional requirements for managing platform users

We emphasize a few requirements outlined in D2.1 that require further analysis before possi-
ble consideration in a future extension of the MUSKETEER platform design:

• D2.1 specified the ability for general users to provide and update per-
sonal profile information (D2.1-FR002), and to browse available infor-
mation about other general users of the platform (D2.1-FR005). D2.1
also outlined the ability for general users to manage their own visibility
(D2.1-FR004), i.e. to what extent their profile information would be ac-
cessible by other general users of the platform. We believe that, in order
for those abilities to be considered as functional requirements of the
MUSKETEER platform, an analysis of possible legal and ethical implica-
tions needs to be undertaken. Furthermore, it should be investigated
whether such functionality would indeed help increase the value of the
MUSKETEER platform for boosting the European data economy. A re-
lated effort – namely, creating a platform for professional networking
and sharing assets among AI and Data Science practitioners – is cur-
rently undertaken with the AI4EU platform, so it could be worthwhile to
explore its synergies with MUSKETEER to provide and complement such
abilities. For the time being, we have assumed in our design of the initial
version of the MUSKETEER platform a maximum degree of privacy pro-
tection, hence it is not possible for general users to browse information
about other users, and also during the execution of Federated ML

ID Description of the requirement

FR001 Ability for platform admin to grant username and password to new general
user (D2.1-FR034).

FR002 Ability for platform admin to revoke username and password of existing gen-
eral user (D2.1-FR034).

FR003 Ability for general user to avail of platform functionality through authentica-
tion with their username and password (D2.1-FR001).

FR004 Ability for general user to change their password (D2.1-FR002).

 D3.1 Architecture Design – Initial Version 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

training, the amount of information that is exposed about other partic-
ipants is kept at minimum.

• D2.1 specifically indicated the ability for general users to provide and
update information about datasets that they own, or even provide the
datasets themselves (D2.1-FR003, D2.1-FR036, D2.1-FR041), along with
the ability to browse datasets (or information about datasets) owned by
other general users (D2.1-FR006). In some sense, this can be regarded
as a special type of user profile information discussed in the previous
paragraph. Same as before, we argue that a careful analysis of legal/eth-
ical implications and the added value of such functionality is required,
as well as a better understanding how the AI4EU platform could be lev-
eraged for such purposes, in order to avoid duplication of efforts.

• D2.1 mentions the ability to manage access controls according to user
groups, e.g. the visibility of information about datasets (D2.1-FR003) or
the availability of trained ML models to third parties for downloading
(D2.1-FR018, D2.1-FR030). Moreover D2.1 mentions the ability to man-
age groups by adding or removing general users (D2.1-FR031, D2.1-
FR035). As discussed in Section 2.2.1, we see this ability as an important
possible future extension of the platform to support multi-tenancy de-
ployments and will discuss it in more detail in Section 5. The initial ver-
sion of the platform is designed for single-tenancy deployments (as in-
dicated in Section 2.2.1, we will deploy separate instances of the plat-
form for the different MUSKETEER use cases) which alleviates the need
for access controls via user groups.

• Finally, D2.1 outlines the ability to change the role of users (D2.1-
FR035), specifically, grant general users admin privileges (D2.1-FR040)3.
As will become clear in the following discussion of functional require-
ments pertaining to managing Federated ML tasks (Section 2.2.2.2), the
change (or rather the addition) of roles such as task creator or task
member occurs implicitly once a general user creates a new task a joins
a task. The only other possible change of roles is for a general user to
obtain admin privileges. We do not consider this, however, a functional

3 As we had argued in Section 2.2.1, supporting the needs of a “researcher” general users essentially boils down

to giving the researcher admin privileges so that he/she can create artificial users to study Federated ML
training with as many participants as needed. Thus, D2.1-FR032 relates to granting general users admin priv-
ileges, too.

 D3.1 Architecture Design – Initial Version 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

requirement per say, but rather a process requirement, i.e. what is the
organizational and approval process for general users to be issued the
credentials that they need to have admin privileges.

2.2.2.2 Managing Federated ML tasks

A consolidated view of the functional requirements for managing Federated ML tasks is pro-
vided in Table 3. At the end of the description of each requirement, we refer to the original
identifier of the relevant functional requirement in D2.1.

Table 3: Functional requirements for managing Federated ML tasks

ID Description of the requirement

FR005 Ability for general users to create a new Federated ML task, including an un-
structured description and all structured information that is required to define
the task, such as the input data format, required mechanism for pre-pro-
cessing the raw input data, the number of participants, starting/stopping crite-
rions, etc. (D2.1-FR016, D2.1-FR019, D2.1-FR043).

FR006 Ability for a task creator to update the task description and information.

FR007 Ability for general users to list all the existing Federated ML tasks that have
been created; view their description, definition and status; compute summary
statistics, e.g., total number of tasks and participants (D2.1-FR007, D2.1-
FR008, D2.1-FR009, D2.1-FR010, D2.1-FR022, D2.1-FR027, D2.1-FR039)

FR008 Ability for a general user to join a task that has already been created and that
accepts new participants (D2.1-FR012).

FR009 Ability for a task member to actually participate in the training of that task’s
Federated ML model, either as aggregator or as participant (D2.1-FR024).

FR010 Ability for a task member to leave that task (D2.1-FR029).

FR011 Ability for a task creator to cancel that task (D2.1-FR020).

FR013 Ability for general users to list all the Federated ML models; view their descrip-
tion, definition, KPIs etc. if available (D2.1-FR011).

FR014 Ability for general users to download trained Federated ML models (D2.1-
FR013, D2.1-FR026).

 D3.1 Architecture Design – Initial Version 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

We emphasize a few requirements outlined in D2.1 that require further analysis before possi-
ble consideration in a future extension of the MUSKETEER platform design:

• D2.1 had suggested different mechanisms than FR008 for a general user
to join a Federated ML task, such as: selecting the tasks participants as
part of the task creation process (D2.1-FR016), selecting which general
users can join the Federated ML training “on-the-fly” (D2.1-FR017), or
having potential task members seek for agreement by the task creator
for them to join (D2.1-FR023). Similarly, D2.1 had suggested that task
members would have to send a request to the task creator in order to
leave a task that they had previously joined (D2.1-FR029), and the task
creator would have to agree or disagree to such a request (D2.1-FR023).
Some of those requirements contradict each other, and they may have
legal, ethical or business implications that need to be further analysed.
Therefore, for the initial version of the platform, we are considering the
most basic functional requirements for joining/leaving a task as de-
scribed in FR008 and FR010.

• D2.1 had made different suggestions regarding the permission of gen-
eral users for downloading trained Federated ML models, such as gen-
eral users having to request permission (D2.1-FR014), general users
having to pay for permissions (D2.1-FR015), the task creator deciding
whether trained models would be available to any user, to specific
groups of users, or kept privately (D2.1-FR018, D2.1-FR030), or trained
models (intermediate and/or final) being accessible to task members. In
light of those different, sometimes somewhat contradictory require-
ments, we decided to start with the most basic requirement described
in FR014, however, we will discuss possible extensions and refinements
in Section 5.

• D2.1 outlines requirements related to data monetization, such as the
ability for task members be compensated for data that they contributed
to Federated ML training (D2.1-FR028), or the ability to compute sum-
mary statistics of compensation and data value per user or per task
(D2.1-FR009). While this could be important functionality to incentivize
participation in Federated ML training, we believe that a further level of
requirement analysis is needed before it can be envisioned to be sup-
ported in future versions of the platform; we will make a step in this
direction in our discussion in Section 5.

• D2.1 includes two functional requirements (D2.1-FR032, D2.1-FR033)
outlining the application of the MUSKETEER platform by researchers for

FR015 Ability for a task creator to delete the Federated ML models trained as part of
that task (D2.1-FR021).

 D3.1 Architecture Design – Initial Version 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

measuring and comparing performance on synthetic tasks/data with ar-
tificial users. In fact, this does not constitute any additional functional
requirement, but – as discussed before – essentially requires the re-
searcher to have platform admin privileges in order to efficiently per-
form such tasks.

When considering the requirements FR005 and FR009, it is important to clearly distinguish
between the responsibilities of the core platform, the algorithmic library and the client con-
nections software (see the discussion in Section 2.1). Specifically, it is important to note that
the core platform is not able to start or end the actual training processes on the client side
(as required per D2.1-FR019). Those processes need to be initiated on the client side, either
manually by the user, or automatically upon the user joining a Federated ML task.

In the following section, we are going to list the lower-level functional requirements that are
required from an algorithmic viewpoint in order to support the higher-level requirement
FR009.

For completeness’ sake, we finally mention three functional requirements described in D2.1
which, from our viewpoint, are not relevant from the core platform perspective:

• Selecting datasets contributing to a Federated ML task (D2.1-FR025):
This appears to be a manual process to be undertaken by task members.
A possible functional requirement for the client connectors’ software is
that the selected datasets can be loaded in memory for the participation
of the user in the actual Federated ML training.

• Pre-processing data by general users (D2.1-FR043): From an end-to-end
platform perspective, this requirement pertains to defining appropriate
data pre-processing steps as part of a Federated ML task definition and
ensuring that the same pre-processing steps are performed by all task
members, which has to be ensured by the algorithmic library in conjunc-
tion with the client connectors’ software environment.

• Configuration of privacy-preserving data sharing methods (D2.1-
FR042): This is a requirement for the algorithmic library to implement
different privacy-preserving data sharing methods (e.g. POM1-POM6)
and support the settings of those methods e.g. through configurable pa-
rameters of task definitions.

2.2.2.3 Executing Federated ML tasks

Finally, we provide a view of the functional requirements for executing Federated ML tasks in
Table 4. Essentially, those are the platform capabilities that are required by algorithm devel-
opers to implement Federated ML algorithms in the algorithmic library. Requirements at this
level had not been explicitly provided in D2.1, although they are implicitly needed to meet

 D3.1 Architecture Design – Initial Version 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

requirement FR009 in Table 3. Some of those requirements were described in the documen-
tation of the prototype communications library in Section 7 of D4.2.

Table 4: Functional requirements for executing Federated ML tasks

In Section 4 we will outline the design of a Python API that exposes the functional require-
ments described in FR016-FR026 and that should thus allow algorithm developers to imple-
ment the methods described in D4.1 and D4.2.

2.2.3 Non-functional requirements

Next, we will provide a consolidated view of the non-functional requirements provided in Ta-
ble 9 of D2.1.

ID Description of the requirement

FR016 Ability for an aggregator or participant to retrieve the definition of a specific
task.

FR017 Ability for an aggregator to retrieve the list of all participants of a specific task.

FR018 Ability for an aggregator to broadcast a message to all the participants.

FR019 Ability for an aggregator to send a message to a specific participant.

FR020 Ability for a participant to send a message to the aggregator.

FR021 Ability for a participant to route a message to the “next” participant (according
to an underlying ring topology), without having to send it via the aggregator.

FR022 Ability for an aggregator to receive a message sent by a participant, together
with an identifier of the participant who sent it.

FR023 Ability for a participant to receive a message sent by the aggregator.

FR024 Ability for a participant to receive a message routed from the “previous” par-
ticipant (according to an underlying ring topology), including an identifier to
distinguish from messages sent by the aggregator.

FR025 Ability for an aggregator to store task status updates.

FR026 Ability for an aggregator to store intermediate or final versions of the trained
Federated ML model.

FR027 Ability for an aggregator to store information regarding the data value contri-
butions per participants.

 D3.1 Architecture Design – Initial Version 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table 5: Non-functional requirements on the MUSKETEER platform

For completeness’ sake we also mention D2.1-NR007 which stipulates that the MUSKETEER
platform should enable the interconnection and exchange of information among Federated
ML task participants; since this essentially boils down to functional requirements described in
Table 4, we exclude it from the list of non-functional requirements.

2.2.4 Technical requirements

Next, we provide a consolidated view of the technical requirements provided in Table 9 of
D2.1, which are meant to be synthesis of the functional and non-functional requirements dis-
cussed before.

ID Description of the requirement

NR001 High availability (D2.1-NR001).

NR002 Security, specifically regarding access control and adherence to industry secu-
rity standards (D2.1-NR002).

NR003 Robustness of the overall platform with respect to software errors (D2.1-
NR016).

NR004 Availability of appropriate logging mechanisms for all operations (D2.1-
NR010).

NR005 Recoverability, specifically of the training of Federated ML models, from tem-
porary system or component failures (D2.1-NR003, D2.1-NR004, D2.1-NR005,
D2.1-NR015).

NR006 Scalability, specifically the efficient execution of Federated ML training algo-
rithms (D2.1-NR006), and efficient handling of simultaneous requests (D2.1-
NR014).

NR007 High usability, specifically regarding the ease of software installation for end
users (D2.1-NR009) and the design of interfaces for interactions with the plat-
form, including their documentation (D2.1-NR008).

NR008 Maintainability, specifically the availability of mechanisms to efficiently per-
form system or component updates with minimum downtime for the overall
platform (D2.1-NR007, D2.1-NR013).

 D3.1 Architecture Design – Initial Version 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table 6: Technical requirements on the MUSKETEER platform

ID Description of the requirement Related functional
and non-functional re-

quirements

TR001 The MUSKETEER platform requires users to authenticate
with their unique username and a password in order to
avail of the platform functionality, which includes ex-
change of information as part of Federated ML tasks
(D2.1-TR002, D2.1-TR003, D2.1-TR005, D2.1-TR006).

FR001, FR002,
FR003, FR004,
NR002

TR002 The MUSKETEER platform allows general users to create
one or more Federated ML tasks (D2.1-TR007, D2.1-
TR021), the purpose of which is to train a machine learn-
ing according to the task definition on the task members’
local data (D2.1-TR008).

FR005, FR006

TR003 Each task should be associated in the platform with a
unique task identifier (D2.1-TR009).

NR007

TR004 Each task definition should include all the required infor-
mation about the model to be trained such as hyperpa-
rameters, loss function etc. (D2.1-TR031).

FR005, FR009

TR005 Each task definition should include a general description
of the task (D2.1-TR010).

NR007

TR006 Each task definition should include a description of the
required input data features (D2.1-TR010)

NR007

TR007 Each task definition should include a definition of the in-
put data pre-processing algorithms that are to be applied
prior to the training of the Federated ML model (e.g.
high pass filtering, edge detection, bag of words with
TFIDF weighting …) (D2.1-TR013).

D2.1-FR043

TR008 A working implementation of input data pre-processing
algorithms referred to in task definitions must be made
available to task members (more specifically, to the par-
ticipants) in the client connectors’ software environment
(D2.1-TR014, D2.1-TR015).

D2.1-FR043

 D3.1 Architecture Design – Initial Version 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

TR009 Task members must have the ability to retrieve the task
definition in order to configure the client connectors’
software environment and contribute (either as aggrega-
tor or as participant) to the Federated ML training (D2.1-
TR016).

FR016, NR007

TR010 The Privacy Operation Modes (POMs) implemented in
the algorithm library must cover all the privacy re-
strictions that task members would want to apply to
their data (D2.1-TR017, D2.1-TR034). This specifically in-
cludes the case where the task members want to collab-
orate to train a ML model without sharing or centralizing
their local data (D2.1-TR027), thus no raw data must be
transferred outside the task members’ organizations cli-
ent facilities and the ML model training is coordinated by
an aggregator requesting and receiving model updates
from the participants (D2.1-TR026).

FR003, FR004,
FR009, NR002,
NR004

TR011 In the task definitions, the privacy restrictions should be
described in human-understandable terms (D2.1-TR018).

NR007

TR012 General users must have the ability to browse active Fed-
erated ML tasks (D2.1-TR020, D2.1-TR021).

FR007

TR013 The MUSKETEER platform must support the execution of
Federated ML training among task members, comprising
one aggregator and one or more participants (D2.1-
TR022). This includes the transfer of information – such
as sending and receiving models, model updates or gra-
dients – among participants and the aggregator (D2.1-
TR011, D2.1-TR025, D2.1-TR032, D2.1-TR033, D2.1-
TR035, D2.1-TR036, D2.1-TR037). Depending on the
POM, that information may or may not be encrypted
(D2.1-TR029).

FR009, FR016-
FR025, NR006

TR014 The MUSKETEER platform has to support potential re-en-
cryption of information transferred among task members
for POMs where task members use different private keys
for the homomorphic encryption of their model updates
(D2.1-TR029).

FR009, D2.1-FR042

 D3.1 Architecture Design – Initial Version 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The original list in D2.1 included a number of requirements pertaining to the management of
datasets, such as providing or obeying access controls for datasets (D2.1-TR001, D2.1-TR002,
D2.1-TR003, D2.1-TR034), or provisioning private cloud storage for users’ encrypted data
(D2.1-TR030). Considering the MUSKETEER platform in a broad sense where the platform
comprises the end users’ proprietary computational environments, those requirements could
be considered in-scope, however, it would still remain the end users’ responsibility to ensure
the proper local access controls. From the core platforms’ perspective, however, we consider
those requirements to be out-of-scope, however, since the users’ data is not supposed to en-
ter the boundary of the core platform, and thus the required access controls must remain
outside, too.

The technical requirements in D2.1 also consider the ability of the MUSKETEER platform to
support the provision of monetary rewards (D2.1-TR019, D2.1-TR023). As discussed above,
we do not consider requirements regarding the support of data value estimation and moneti-
zation in our design of the initial version of the MUSKETEER platform, however, we will discuss
it as part of possible future extensions in Section 5.

Finally, we add some additional context and clarification on the technical requirements TR007
and TR008 pertaining to the input data pre-processing. We emphasize that the core platform
is agnostic to the existence of input data pre-processing functions. The implementation of
those functions is outside the scope of WP3, and the execution of those function outside the
boundary of the core platform – same as the Federated ML algorithms. The responsibility of
the core platform is only to store references to the pre-processing functions to be applied as
part of Federated ML task definitions, and to make the information about which functions
shall be applied available to any user of the platform, in particular to participants of Federated
ML tasks who will ultimately have to execute those functions as part of the execution of the
training algorithms within the client connectors’ software environment on their premises.

TR015 Task members must have the ability to query the pro-
gress/status of Federated ML training tasks (D2.1-
TR023).

FR007

TR016 Task members must have the ability to access the mod-
els trained as part of Federated ML tasks (D2.1-TR024).

FR014

 D3.1 Architecture Design – Initial Version 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.3 Key performance indicators

D2.3 and D6.1 define key performance indicators (KPIs) for the MUSKETEER platform using
the Goal/Question/Metric (GQM) methodology [1]. The four defined goals (G1-G4) comprise:

• G1: Evaluation of the platform architecture with respect to standardiza-
tion and extensibility in the context of general use case validation
(G1.1), of the healthcare use case (G1.2) and of the smart manufactur-
ing use case (G1.3).

• G2: Evaluation of the privacy-preserving operation modes (POMs) with
respect to privacy, computational/storage/communication require-
ments and data utility accountability, again the context of general use
case validation (G2.1), the healthcare (G2.2) and the smart manufactur-
ing (G2.3) use case.

• G3: Evaluation of the federated privacy-preserving ML algorithms in the
context of WP6 evaluation scenarios, which are broken down with re-
spect to performance (G3.1.1), reliability (G3.1.2), scalability (G3.1.3),
computational efficiency (G3.1.4), and with respect to security (G3.2).
Moreover, evaluation of those algorithms with respect to pre-pro-
cessing, normalization, data alignment, supervised and unsupervised
learning in the context of the healthcare (G3.3) and the smart manufac-
turing (G3.4) use cases.

• G4: Evaluation of rewarding models with respect to data value in the
context of WP6 evaluation scenarios. (The G4 questions and metrics
have not been defined yet; this will be part of the future deliverable
D6.4.)

Table 7 lists a summary of the questions and metrics pertaining to core platform capabilities.

Table 7: GQM questions and metrics pertaining to core platform capabilities

IDs Question KPIs Related re-
quirements

G1.1_Q02 Does the MUSKETEER platform al-
low interoperability with ML
frameworks?

Number of supported
ML frameworks.

FR005, FR007,
FR016, TR002,
TR004, TR009

G1.1_Q04,
G1.2_Q01,

Does it allow fast installation, de-
ployment and use?

Effort to install/update
client SW; effort to

FR001, NR007

 D3.1 Architecture Design – Initial Version 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4 D2.1 also lists as a metric “Number of screens supported by help options”. Since the development of screens,

i.e. graphical user interfaces, is outside the scope of the core platform, we exclude this metric from this list.

G1.2_Q02,
G1.3_Q01,
G1.3_Q02

create and run a Feder-
ated ML task; effort to
use a trained model; ef-
fort to onboard a new
user.4

G1.3_Q03 Are there different visibility con-
straints based on user permis-
sions?

Different information
for different user per-
missions (y/n).

NR002

G1.3_Q04 Is the architecture compliant with
industry standard and production
plant IT policies?

Compliance with such
standards and policies
(y/n).

NR002

G1.3_Q06 Is it possible to download the
trained Federated ML models?

Possibility of download-
ing the ML model (y/n).

TR016

G1.3_Q07 Is the Federated ML model train-
ing fast enough?

Time for training (per
sample), time for scor-
ing

FR018 – FR026

G1.3_Q08 When a new task is launched,
what are the algorithm used and
its parameters?

Possibility to access in-
formation about the al-
gorithm used and its
parameters (y/n).

TR004, TR005,
TR006, TR007,
TR009

G1.3_Q09 Is it possible to report a comment
on an unexpected behavior of al-
gorithms during a user session?

Ability to report an un-
expected behavior
(y/n).

G2.3_Q06 How easy is it to verify if all the
communications are working?

Possibility to verify if all
the communication
protocols are enabled
(y/n).

FR003

G2.3_Q07 Which is the maximum dimension
of messages supported by the
platform?

Maximum dimension of
messages (sent or re-
ceived) supported by
the platform.

FR018 – FR024

 D3.1 Architecture Design – Initial Version 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The following goals and questions are not relevant for the evaluation of core platform capa-
bilities, or will be discussed later, and have therefore not been included in Table 7:

• G1.1_Q01 aims at evaluating the alignment of the MUSKETEER platform
with the IDSA reference architecture, measured by the number of
aligned artefacts. The alignment analysis will mostly pertain to the client
connectors’ software environment, nevertheless we will review this as-
pect in more detail in Section 2.7.

• G1.1_Q03 aims at assessing the extensibility of the MUSKETEER plat-
form in terms of whether it fosters the creation of a community of de-
velopers and researchers that can extend the platform with new algo-
rithms and attack detection mechanisms; the principal KPI is the

G3.1.2_Q01 Does each ML algorithm give
comparable output working on
the same data and in the same
conditions in different sessions
(reliability)?

Standard deviation of
normalized outputs in
different sessions.

FR018 – FR026

G3.1.3_Q01
,
G3.1.3_Q02
,
G3.1.3_Q03

Does the training algorithm scale
up when the dimension of the ap-
plication scenario grows in terms
of the amount of data / users/ in-
put features?

Trend profile of training
time vs amount of data
/ users / input features.

FR018 – FR026

G3.1.4_Q02 Are the message transmission
costs reasonable?

Amount of information
transmitted; fraction of
training time dedicated
to transmission.

FR018 – FR024

G3.1.4_Q03 Is the memory usage during train-
ing reasonable?

Total memory usage by
aggregator and partici-
pants normalized by
size of dataset.

G4.1_Q01 Is the task alignment procedure
able to detect which are the most
relevant data contributions to
solve a given problem?

Error rate in experi-
ments where the
ground truth is known.

FR022

G4.1_Q02 the data value estimation method
able to reward every participant
according to the real data value
of their data contribution?

Error in reward estima-
tion in experiments
where the ground truth
is known.

FR022

 D3.1 Architecture Design – Initial Version 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

amount of open source community interactions. Since this is not de-
pendent on the architecture per say but on the licensing (including po-
tentially open sourcing) of platform components, we excluded this
question from Table 7.

• G1.2_Q03 and G1.3_Q05 aim at evaluating whether the MUSKETEER
end-to-end platform requires the local deployment of special hardware.
This will depend on the type of ML algorithms and the amount of data
from the two use cases, thus we do not consider it here.

• G1.2_Q04 aims at evaluating the interoperability of the MUSKETEER
platform with Medical Imaging Systems standards, which is within the
boundary of the client connectors’ software environment, therefore we
exclude it here.

• The questions for the evaluation of G2.1/G2.2 and most of the ques-
tions for the evaluation of G2.3 (with the exception of G2.3_Q07 which
is included in Table 7) pertain to the algorithmic library, therefore we
did not include them here. Specifically, G2.3_Q04 addresses the diffi-
culty of encrypting/decrypting information as part of the Federated ML
training, which is within the boundary of the algorithmic library5, and
G2.3_Q05 the storage requirements, which is within the boundary of
the client connectors’ software.

• The questions related to G3.2 pertain to the robustness of Federated
ML training against evasion, poisoning and user collusion, which is
within the scope of the algorithmic library framework.

• The questions related to G3.3 and G3.4 all pertain to the accuracy of ML
models which falls within the scope of the algorithmic library and the
development of the use cases.

2.4 Legal and ethical requirements
D2.2 outlines the legal requirements that are relevant to the scope of the MUSKETEER project
and provides guidance in terms of their implementation. At this stage, the requirements per-
taining to the core platform mainly concern the implementation of cybersecurity mechanisms
and processes, such as

5 Although we will discuss the relevance of key management solutions for possible future extensions of the plat-

form in Section 5.

 D3.1 Architecture Design – Initial Version 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Taking measures to ensure the security of the MUSKETEER platform as
well as the relevant facilities;

• Availability of appropriate security incident handling processes;
• Measures to ensure business continuity in case of a security incident;
• Compliance with international security standards;
• Performing thorough monitoring, auditing and testing of the

MUSKETEER system and facilities to ensure appropriate levels of secu-
rity.

In terms of technical requirements, those implementation guidelines are reflected in TR001
and the related functional and non-functional requirements (see Table 6), which specify e.g.
the availability of access controls and user authentication.

2.5 Privacy operation modes and machine learning algorithms

In this section, we are going to review the technical requirements for supporting the different
privacy operation modes (POMs) and Federated ML algorithms from the core platform per-
spective. At a high level, those requirements are described in TR013, and more detail is pro-
vided in the functional and non-functional requirements FR009, FR016-FR025 and NR006.
Here we discuss possible additional requirements.

Our analysis is based on two previous deliverables: D4.1, which provides a description of the
targeted POMs and Federated ML algorithms, and D4.2, which describes an initial demonstra-
tor of Federated ML algorithms, specifically of algorithms for aligning and estimation the value
of participants’ data. D5.1, which provides a threat analysis for Federated ML algorithms, did
not contribute specific technical requirements at this point, however, future work in WP5 on
defending Federated ML algorithms against the identified threats may lead to additional func-
tional requirements on the core MUSKETEER platform.

2.5.1 Federated collaborative POMs (POM1-POM3)

POM1-POM3 all fall under the standard Federated ML training paradigm where raw data
never leaves the participants’ environment, instead the ML model is transferred among the
participants who contributes by locally updating the model, using their data, and sending it to
the aggregator who combines the model updates. A common feature of those POMs is that
the participants have access, as part of the training process, to intermediate versions of the
trained ML model (which is related to TR016), although the final model, after incorporation of
the ultimate updates, is not necessarily shared with them by the aggregator.

 D3.1 Architecture Design – Initial Version 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The difference between POM1, POM2, POM3 is the approach for sharing and processing
model updates in an encrypted domain:

• POM1 (“Aramis”) handles model updates in the plain, unencrypted do-
main.

• POM2 (“Athos”) works with (partial) homomorphic encryption of model
updates where the same private key is used by all the participants.

• POM3 (“Porthos”) envisions different private keys to be used by the par-
ticipants to encrypt their model updates; in order for the aggregator to
combine those updated in the encrypted domain, a proxy re-encryption
scheme is required.

Fundamentally, FR016-FR025 comprise all the non-encryption related functional require-
ments for performing Federated ML training under POM1-POM3. In particular, F018/F019 and
F023 support the transfer (i.e. sending and receiving) of the ML model from the aggregator to
participants, and F020 and F022 allow participants to transfer the model updated on their
local data back to the aggregator. The transfer mechanisms are agnostic as to whether the
transmitted information is encrypted or not.

Working with models and model updates in the encrypted domains requires the following:

• Encryption of model updates by the participants using their private
key(s) before the updates are sent to the aggregator. The same private
key is used among all participants in POM2, different private keys are
used in POM3. We see this step as an integral functionality of the algo-
rithmic library, thus, it does not inform technical requirements on the
core platform. Also the generation and exchange of private keys (re-
quired in POM2) is outside the realm of the core platform.

• Applying model updates in the encrypted domain by the aggregator,
possibly via a proxy re-encryption of updates encrypted using different
private keys (in POM3). This requires knowledge of the public key(s) of
the homomorphic encryption which can be transmitted to the aggrega-
tor in the same way as model updates. Again, those steps can be re-
garded as the integral functionality of the algorithmic library (and the
core platform can stay completely agnostic to them).

Thus, we argue that the complete core platform functionality to support POM1-POM3 is com-
prised in the functional requirements FR016-FR025. From an end-to-end use case perspective,
processes and mechanisms need to be defined for generating and managing keys (the most
challenging requirement being the exchange of keys required for POM2). However, this this
outside the realm of the technical requirements on the core platform. (We will revisit and

 D3.1 Architecture Design – Initial Version 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

summarize our view, also with regard to possible future extensions of the platform, in Section
5).

2.5.2 Semi-honest scenarios (POM4-POM6)

POM4-POM6 consider semi-honest scenarios where Federated ML task members are honest-
but-curious, i.e. while they follow the agreed-upon training protocol, they try to gather infor-
mation about other members' inputs, intermediate results, or overall outputs. In particular,
while in POM1-POM3 intermediate versions of the trained ML model are available to all task
participants by default, POM4-POM6 provide different mechanisms to prevent the disclosure
of this type of information.

• POM4 (“Rochefort”) and POM5 (“deWinter)” deploy proxy-encryption
of the users’ data and, based on that, perform operations required for
the ML model training either exploiting homomorphic properties of the
cryptosystem, or protecting the privacy of the encrypted operands via
cryptographic binding. POM5 specifically indicates sequential training
protocols where participants’ model updates are requested and incor-
porated sequentially by the aggregator.

• POM6 (“Richelieu”) proposes to protect privacy by performing aggrega-
tion operations on the users’ raw data (such as computing dot products,
covariance matrices etc.) before sharing information with other task
members. This way, no individual raw data is transferred outside the
users’ environment. POM6 aims at supporting different configurations
where the ML model is either public to all participants (same as in
POM1-POM3), or available only to the aggregator.

We note that a complete assessment of the functional requirements for POM4-POM6 will re-
quire the analysis of specific ML algorithms (at this stage, the descriptions of POM4-POM6 in
D4.1 amount to a fairly general framework which is difficult to analyse in this regard). At a
high level, we deem the functionality described in FR016-FR025 to be sufficient to support
POM4-POM6, not considering the requirements for supporting different cryptosystems which
we believe – same as for POM1-POM3 – lies outside the realm of the core platform. POM4
potentially involves “private-cloud” services for secure data storage and re-encryption; since
the core MUSKETEER platform will be hosted in the public cloud, such functionality – if criti-
cally required for the implementation of POM4 Federated ML algorithms – would have to re-
side outside the realm of the core platform. It is our understanding, anyhow, that such func-
tionality may be beneficial to reduce the computational burden for the client connectors’ com-
putational environments, however, not critical from a strictly functional point of view.

 D3.1 Architecture Design – Initial Version 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.5.3 Conventional ML scenarios (POM7-POM8)

Finally, D4.1 considers two conventional ML scenarios without specific privacy-preserving
mechanisms:

• POM7 (Planchet) is a traditional cloud computing schema where all da-
tasets are stored and the ML models are trained centrally in the cloud,
with the possibility of selectively sharing with the users the resulting
models.

• In the POM8 (D’Artagnan) schema, ML models are trained locally using
local datasets.

We argue that neither of these two POMs require the MUSKETEER platform. Specifically, there
exist a number of commercial cloud services already supporting POM7, and a number of
standard software environments (commercial or open source) already supporting POM8.
Thus, we do not derive any functional requirements on the MUSKETEER platform for support-
ing POM7 or POM8.

2.5.4 Algorithmic library assumptions

D4.2 describes a demonstrator of a first version of the algorithmic library, specifically of algo-
rithms for data alignment and data value estimation. In the following we will analyze the as-
sumptions that the demonstrator makes on available platform functionality and explain their
relation to the technical requirements listed above.

1. A Federated ML task has been defined, i.e. the platform has to provide
the ability for general users to create Federated ML tasks, including all
the information that is required to define the task (FR005).

2. The platform has identified all the users participating in the training pro-
cess, i.e. the platform provides the ability for general users to join a task
that has already been created (FR008).

3. All task participants have access to the task description (FR016). A test
has been performed to guarantee that the participants’ input data has
the required format6.

6 We envision that the code for performing such tests has to be available in the client connectors’ computational

environment, same as the algorithmic library. The task definition, accessible via the platform API, provides
the configuration of the test (e.g., the required number and range of input features). For the execution of

 D3.1 Architecture Design – Initial Version 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4. The list of addresses of the participating nodes is available (FR017). We
provide some clarifications on this point:

a. “Addresses” correspond to pseudo-identifiers of participants,
which allows the aggregator to send messages to any specific
participant (FR019) and to identify which participant has sent a
received message (FR022). For security and privacy purposes,
neither the actual username nor an actual physical address (e.g.
IP address or name of message queue) will be revealed.

b. Only the aggregator / task creator is allowed to access the com-
plete list of participants. Participants are oblivious of the total
number of participants or (pseudo-)identifiers of specific partic-
ipants. Thus, participants are not able to send messages to arbi-
trary other participants, but only to the aggregator (FR020) or to
the “next” participant according to an underlying ring topology
(FR021).

5. The local data for Federated ML training is available to the participant’s
training process via a data connector (this falls within the client connect-
ors’ software environment at the interface with the algorithmic library,
outside the core platform’s boundary).

6. Communication between the aggregator and participants during the
training occurs via send and receive functions.

a. The send functions allow an aggregator to broadcast a message
to all the participants (FR018) or send it to a specific participant
(FR019) where a pseudo-identifier is used to address that partic-
ipant. On the other side, they allow a participant to send a mes-
sage to the aggregator (FR020) or to the “next” participant ac-
cording to an underlying ring topology (FR021).

b. The receive functions allow an aggregator to receive messages
from an arbitrary participant, together with an identifier of the
participant who sent it (FR022).7 Moreover, they allow a

the test, the client connectors need to implement the logic for retrieving the participants’ data from their
respective data sources.

7 In D4.2, the design of the prototype communication library was such that the aggregator could indicate, as an
argument of the receive function, from which specific participant it was waiting to a receive a message.
FR022 capture a more asynchronous design in which messages from different participants could arrive and
be processed in arbitrary order.

 D3.1 Architecture Design – Initial Version 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

participant to receive messages from the aggregator (FR023), or
from the “previous” participant according to an underlying ring
topology.

Platform functionality not assumed in D4.2 but essential for robust Federated ML training,
data alignment and data value estimation, includes:

• Ability for an aggregator to store task status updates (FR025). This may
include any information that is needed by the aggregator in order to
resume a Federated ML training task in case the aggregator process is
interrupted.

• Ability for an aggregator to store intermediate or final versions of the
trained Federated ML model (FR026). This may be used for resuming
training in case of an interruption, and to make the final trained model
available to task members.

• Ability for an aggregator to store information regarding the data value
contributions per participant (FR027). This information may be used to
determine the appropriate compensation of task members according to
the value of the data that they contributed to the training.

2.6 Client connectors
For the end-to-end demonstration of the industry use cases under the MUSKETEER project,
the integration of services provided by the core platform with the client connectors’ software
to be installed within the clients’ IT premises is critical. D7.1, which documents the initial de-
sign of the client connectors, is prepared and submitted concurrently with the present docu-
ment. In the following, we describe central elements of this integration and key assumptions
from the core platform’s perspective.

• We assume that the end user will avail of the core platform functionality
from within Python runtimes. This will allow for straight-forward usage
of the Python API that we are planning to develop and package in to a
Python library (see Section 4 for details on the proposed design of the
API). The most basic designated use would be to perform interactive
operations (like user and task management, see Table 2 and Table 3) in
a Python notebook, and execute the actual training logic – either in a
aggregator or a participant role – within a Python script. If desirable, a
graphical user interface for the interactive operations could be devel-
oped in WP7 on top of the platform Python API.

 D3.1 Architecture Design – Initial Version 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• The execution of the training will require the algorithmic library (devel-
oped under WP4) to be available in the client connectors’ computa-
tional environment. We envision that the task definition information
will allow the training Python scripts to dynamically initialize, configure
and run the appropriate algorithms Python object (we will show an ex-
ample of this intended flow in Section 4). This applies to the core Fed-
erated ML algorithms, but also includes potential data preprocessing al-
gorithms. In order to be able to apply the latter, they also have to be
available, e.g. in a Python library, in the client connectors’ computa-
tional environment.

• The core platform does not provide services for deploying trained ML
models for production purposes. The trained models can be down-
loaded and either deployed in the local computational environment of
the end user, or (by the end user) in a commercial cloud environment
that supports the deployment of trained ML models.

2.7 Alignment with industrial data platform standards

An important consideration in the MUSKETEER project is the alignment of the end-to-end plat-
form with existing and emerging standards for industrial data platforms, in particular with the
Industrial Data Space Association (IDSA) reference architecture. Most elements of that refer-
ence architecture pertain to the client connectors. Certification of the client connectors’ soft-
ware by an independent third party is not an architectural but a procedural means to support
the wide application in industrial data spaces. Abstraction from specific use cases in the plat-
form architecture to make it broadly applicable across a variety of data and machine learning
model types and application domains is paramount in this regard, too.

3 Platform architecture

3.1 Overview

This section describes the architecture of the MUSKETEER platform for providing centralized
services. It is the culmination of Task 3.1 – “Design of scalable, secure, trusted and privacy
aware architectures”. There are two elements to this platform: a centralized server compo-
nent for managing services, and a client package for interacting with these services. Figure 2
shows a diagram of the initial version of the architecture for the centralized server compo-
nent.

 D3.1 Architecture Design – Initial Version 35

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 2: MUSKETEER platform architecture (initial version)

The architecture intends to utilise existing public cloud services, and as such, it is a cloud native
system. Internally, it is based on a micro-services architecture [2]. The cloud infrastructure is
provided by IBM, using the IBM® Cloud™ platform [3].

Micro-services are self-contained components, usually operating across a distributed system,
interacting through well-defined interfaces. By adhering to these interfaces or “contracts”, a
given micro-service can be implemented in any runtime a developer wishes, e.g. Java, Python,
NodeJS etc. For MUSKETEER, these contracts are in fact JavaScript Object Notation (JSON)
based messages, and by using a message-based interface, MUSKETEER can now also use a
messaging system to deliver the messages. This messaging system is based on the Publish /
Subscribe Design Pattern [4], with each micro-service either subscribing to events of interest,
publishing information, or both. In either case, the contents of information published or re-
ceived is a JSON message.

Employing this design pattern enables asynchronous interactions between components,
whereby a component can publish several messages in quick succession, and then subscribe
to possibly receive replies, or messages from other sources. This asynchronous use case will
be further described in the Aggregator section 3.3.2.

The messaging system used by MUSKETEER is RabbitMQ [5] and all interactions with the plat-
form operate via this messaging system or gateway. This is instantiated as a public cloud,

 D3.1 Architecture Design – Initial Version 36

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

internet addressable service, allowing remote clients to connect. Remote clients require ap-
propriate credentials to connect, which will be discussed in the security section 3.3.

A second route for interactions with the platform is via the Binary service (Section 3.10). This
mechanism is not directly accessible to remote parties, and in effect, is constrained by internal
functionality that will be provided by the Client Package (Section 3.4) operating via the mes-
saging gateway. The reason that this additional communication mechanism exists is to provide
a scalable, high-volume data movement service, which is used for uploading and downloading
potentially quite large models and model updates during the Federated ML training.

3.2 Cloud-hosted Services

The MUSKETEER architecture utilises a number of services available on the public IBM®
Cloud™. Each of these will now be described.

3.2.1 IBM Cloud™ Messages for RabbitMQ

This is a fully managed instance of RabbitMQ, hosted on the public cloud. Its underlying disk,
random-access memory (RAM), and optional virtual Central Processing Unit (vCPU) allocation,
as well as backup storage usage are all factors in determining the price plan.

RabbitMQ [5] is open source message-queueing software. Effectively a messaging broker, it
implements the Publish / Subscribe design pattern with the Advanced Message Queuing Pro-
tocol (AMQP). Clients publish messages to known RabbitMQ exchanges and queues. Subscrib-
ers listen for activity on known queues, and process the messages, which may result in some
action, the result of which may also be published to an exchange/queue.

For MUSKETEER, RabbitMQ is used as the primary means of communication between both
client applications and individual micro-services as well as between micro-services.

3.2.2 IBM® Db2® on Cloud

This is a fully managed SQL relational database, hosted on the public cloud, with several client
runtimes supported. It is easily provisioned, with several plans available. For MUSKETEER, the
Flex Plan is appropriate, whereby CPU, memory and storage resources can be scaled to match
actual usage over time.

 D3.1 Architecture Design – Initial Version 37

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

An SQL schema is deployed into this Db2 instance, and this schema details the required tables
and indexes for representing users, tasks and models. An instance of this schema is called the
MUSKETEER database.

3.2.3 IBM® Cloud Object Storage

Object storage, or object-based storage, is a data storage system which models the data for
storage as an object. In object storage, an object consists of the data itself, metadata, and a
unique identifier.

The architecture of object storage is flat, each object is stored in the same address space. This
is in contrast to other storage systems such as block storage, where data is partitioned into
blocks and stored in sectors, or file systems, where data is viewed as a file, or collection of
files in a file hierarchy. Data stored in object storage is unstructured, and object storage places
no constraints on the format of the data.

Metadata stored with the data in an object, usually takes the form of key/value pairs, is vari-
able in size, and is generally user defined. Metadata is important as it describes the data con-
tained in the object, without it the data is simply a sequence of bytes. Metadata can include
details such as time of creation, access, revision, etc.

In order to identify the object for later retrieval, it is given an identifier, which can take any
form. The only constraint on the identifier stems from the object storage flat architecture - it
must be unique for each object.

3.2.4 IBM Cloud™ Functions

IBM Cloud™ Functions is an IBM Cloud™ instance of Apache OpenWhisk [6], which is a func-
tions-as-a-service (FaaS) programming platform for developing lightweight code that scales
on demand. Individual functions are billed on a per-execution scale, and the cost of an indi-
vidual function execution is minimal. IBM Cloud™ Functions scales up parallel invocation re-
quests on demand and also scales down to zero. At zero scale, the cost is also zero, which
essentially means that applications pay for actual use rather that pre-determined capacity.
This results in a very flexible and cost-effective platform, whereby application scaling is han-
dled by the platform automatically in response to changes in workload.

For MUSKETEER, each individual deployment on IBM Cloud™ Functions is a MUSKETEER cen-
tralized platform micro-service.

 D3.1 Architecture Design – Initial Version 38

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.2.5 IBM Cloud™ Kubernetes Service

This is a managed Kubernetes service [7] hosted on the public cloud. For the purposes of
MUSKETEER, the Free Plan, which provides one cluster and one worker node is sufficient.

Kubernetes itself is an open source platform for managing containerized workloads. It is pro-
vided with declarative information in the form of YAML files and manages the state of the
cluster and running containers (in so-called pods).

3.3 Security & Privacy

From inception, the MUSKETEER architecture has considered security and privacy as funda-
mental requirements for the platform. As the platform encompasses components running on
physically different systems, some on cloud, some on premise, the overall architecture is a
distributed system. Due to this, the network connections between these distributed systems
use the latest available security, which, at the time of writing, is Transport Layer Security (TLS)
v1.2. Connecting clients must also obtain user credentials (username/password) and a plat-
form certificate to operate on the platform. These measures ensure that a user account is
created, the legitimacy of the MUSKETEER platform messaging gateway server is established
and that the contents of all network traffic over connections is encrypted.

3.3.1 User Accounts

User account management is backed by the RabbitMQ Management Console and API, and
when a user registers with the platform, a centralized micro-service issues a RabbitMQ API
call to create a user account on the RabbitMQ instance. There is no general mechanism to list
the users registered on the system, and as such, any given user is unable to obtain the user
account names of other registered users.

3.3.2 Task Aggregation/Participation

There is no direct interaction between task aggregators and any task participant. The aggre-
gator dispatches federated models and training instructions to the centralized platform. A
modelling micro-service then forwards this information to the relevant task participants.
When a task participant completes a round of model training, it dispatches model updates to
the centralized system. A modelling micro-service then forwards these updates to the aggre-
gator. This separation ensures a high level of privacy and security for all users.

 D3.1 Architecture Design – Initial Version 39

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

When a task is created, the task details are stored in the database and a RabbitMQ queue is
also created for the task creator. The task creator is assumed to be the aggregator. This Rab-
bitMQ queue is used to communicate modelling information to the aggregator, for example,
the availability of model updates from task participants (via the centralized platform). Using a
RabbitMQ policy, access to this queue is restricted to the task aggregator, which ensures that
all model updates intended for the aggregator is a private exchange between the centralized
platform and the aggregator. The aggregator is granted read-only permissions on this private
queue.

When a user joins a task, a record of this activity is stored in the database and a RabbitMQ
queue is created for the new task participant. This RabbitMQ queue is used to communicate
modelling information to the task participant (via the centralized platform), for example, the
availability of a new federated machine learning model and instructions to commence a new
round of model training. Using a RabbitMQ policy, access to this queue is restricted to the task
participant, which ensures that all modelling information intended for the participant is a pri-
vate exchange between the participant and the centralized platform. The participant is
granted read-only permissions on this private queue.

Using RabbitMQ policies, access to queues is restricted. In this way, no other user of the plat-
form can access a queue to which they are not permitted. RabbitMQ policies ensure that
queues are in effect, private queues.

In this way, by using dedicated private queues, the privacy of aggregators and participants is
preserved.

3.3.3 Models

Models and model updates are communicated through the use of the Binary Service (see Sec-
tion 3.10). Access to this service is managed internally through the Client Package (see Section
3.4) and is not directly visible to client applications. It is envisioned that the Binary Service will
provide temporary credentials both for individual upload and download of models and model
updates.

It is not intended that the contents of models or model updates stored in the Binary Service
are inspected or processed in any way by components of the MUSKETEER centralized plat-
form. This area is only used by the client package, to upload or download models or model
updates, so that client applications can perform the appropriate processing.

 D3.1 Architecture Design – Initial Version 40

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.4 Client Package

This is software installed locally by each potential user of the platform. It provides the neces-
sary capabilities to interact with the MUSKETEER centralized platform. All interactions are
through the MUSKETEER Messaging Gateway, meaning there is no direct invocation of the
micro-services in the centralized platform.

Details of its envisioned use are discussed in Section 4. The client package will be the corner
stone of the client connector’s interaction with the MUSKETEER centralized cloud platform.

3.5 Messaging Gateway

All interactions between MUSKETEER clients and the centralized platform take place through
the messaging gateway, which is an instance of RabbitMQ. As previously discussed, these in-
teractions require the appropriate credentials.

There are two types of queues in the system. A single-command style queue, to which all re-
quests for services (messages) are published. For example, if a user wishes to join a task, this
request will be published to the single-command queue. All user accounts are granted write
permissions on this queue, and therefore users cannot retrieve messages that were published
by any user. The centralized platform is granted read-write permissions on this queue.

And secondly, multiple private read-only modelling queues, through which federated models
and model updates are communicated between task aggregators and task participants. The
centralized platform is granted write-only permissions to these private queues.

3.6 Command Router Service

MUSKETEER micro-services are not invoked directly by client applications, but rather, clients
dispatch a message to a RabbitMQ exchange/queue. These messages are then examined, and
the appropriate action taken to respond to the service request specified by the message.

The command router is the service which performs this action. It subscribes to the RabbitMQ
single-command queue, receives messages, and determines which IBM Cloud™ Function (mi-
cro-service) should be invoked to handle each message received. As this service must
promptly handle messages received, it in effect, must be an always-on service, with high avail-
ability. Therefore, it is intended that this service runs in a long-lived Kubernetes pod. If this
pod exits for any reason it must be restarted as soon as possible. This will ensure that the
latency between clients dispatching a message, and the appropriate micro-service handling
the message is minimised.

 D3.1 Architecture Design – Initial Version 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

This service was previously researched and developed as part of the GOFLEX H2020 project
[8], and during that project, an open source contribution was made to the IBM Cloud™ Func-
tions public github organisation, with a project called RabbitWhisker [9]. It is implemented as
a multi-threaded Python application, allowing it to receive and route large numbers of con-
current service requests.

3.7 User Management Service

This is a micro-service based on IBM Cloud™ Functions which provides user account services
through the RabbitMQ API and records user details in the database.

The service supports the following actions:

1. User registration: parameters - username, password

a. Ensure username and password are non-empty strings

b. Ensure that the username is unique

c. Create a user account on the RabbitMQ instance

d. Grant permission to username to the single-command queue

e. Create a user entry for username in the database

f. Ensure that collectively c-d-e above is an atomic operation

2. User removal: parameters - username

a. Leave all tasks that username has previously joined

b. Remove username from the RabbitMQ instance

c. Remove the user entry for username from the database

3.8 Task Management Service

This is a micro-service based on IBM Cloud™ Functions which provides machine learning task
management services through the RabbitMQ API and records task details in the database.

The service supports the following actions:

1. Task Create: parameters - task name, username, topology, definition

a. Ensure task name and username are non-empty strings

b. Create a queue for the task on the RabbitMQ instance

c. Create a task entry for task name in the database

d. Ensure that collectively b-c are atomic

 D3.1 Architecture Design – Initial Version 42

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2. Task List: parameters – None

a. Retrieve the task entries from the database

3. Task Info: parameters – task name, username

a. Retrieve the task entry for task name from the database

4. Task Participation: parameters – task name, username

a. Retrieve the user entries for task name from the database

5. Task Start: parameters – task name, username, model

a. Ensure task name has user participants

b. Change the status of the task entry for task name

c. Invoke Modelling Service – Notify Participants with start, model

6. Task Stop: parameters – task name, username, task status

a. Ensure task name has user participants

b. Invoke Modelling Service – Notify Participants with stop

c. Change the status of the task entry for task name

d. Remove the queue for the task on the RabbitMQ instance

7. Task Join: parameters – task name, username

a. Ensure that username can participate in task name

b. Create a queue for the user/task on the RabbitMQ instance

c. Create a user entry for the task in the database

d. Invoke Modelling Service – Notify Aggregator

e. Ensure that collectively b-c-d are atomic

8. Task Leave: parameters – task name, username

a. Ensure that username participates in task name

b. Remove the queue for the user/task on the RabbitMQ instance

c. Remove the user entry for the task in the database

d. Invoke Modelling Service – Notify Aggregator

9. Task Update: parameters – task name, username, status, model

a. Ensure that username participates in task name

b. Update the user entry for the task in the database with status

c. Invoke Modelling Service – Notify Aggregator

 D3.1 Architecture Design – Initial Version 43

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.9 Modelling Service

This is a micro-service based on IBM Cloud™ Functions which provides the queue management
services to handle the interactions between task aggregators and participants. As discussed in
section 3.3.2, there is no direct interaction between task aggregators and any task participant,
but rather the centralized platform routes the required information to the appropriate private
queue.

The service supports the following actions:

1. Notify Participants: parameters - task name, action, model

a. Ensure task name has user participants

b. Retrieve the user entries for task name from the database

c. For each user entry:

i. Publish action/model to the user’s private queue

2. Notify Aggregator: parameters - task name, username, status, model

a. Ensure task name has user participants

b. Ensure that username participates in task name

c. Retrieve the aggregator entry for task name from the database

d. Publish status/model to the aggregator’s private queue

3.10 Binary Storage Service

This is a micro-service based on IBM Cloud™ Functions and the IBM® Cloud Object Storage
Service. As discussed in section 3.3.3 access to this service is not directly available to client
applications. It is however closely linked with, and invoked by, the Task Start and Task Update
functions in the Task Management Service.

The IBM® Cloud Object Storage API provides a representational state transfer (REST) based
API for reading and writing objects and supports a subset of the S3 API [10]. For MUSKETEER
binary object storage (models), a means to upload and download these objects is required. It
is envisaged that the S3 API’s for creating pre-signed uniform resource locators (URLs) will be
used to support this. These URLs will automatically expire after a pre-defined period, and it is
intended that they should be used as soon as possible, hence the close integration with the
calling functions.

The service supports the following actions:

1. Uploader: parameters - username, object_name

 D3.1 Architecture Design – Initial Version 44

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

a. Ensure username has appropriate permissions

b. Generate an object name if object name is empty

c. Call s3.generate_presigned_post with object name

d. Return the URL generated

2. Uploader: parameters - username, object name

a. Ensure username has appropriate permissions

b. Call s3.generate_presigned_url with object name

c. Return the URL generated

4 Example: proposed usage

This section introduces an end-to-end example for the envisioned usage of the MUSKETEER
platform services. We first describe an example context motivating the utilization of the
platform. Then we will illustrate, step by step, the envisioned useage of the platform to
achieve the goal outlined in the motivation.

4.1 Motivation

Alice has a machine learning task for which she would like to train a model, but she has not
data for the task. Therefore, she would like to harness the MUSKETEER platform to leverage
training data provided by other parties. On the other hand, John and Jack possess available
data that may be useful for Alice’s task. Together, they can use the MUSKETEER platform to
collaboratively train a machine learning in a federated fashion, without having to share or
centralized the actual data. Thereby, they will be able to unlock additional value of their data
and all benefit from the creating and training of the machine learning model.

 D3.1 Architecture Design – Initial Version 45

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4.1.1 Detailed steps

In order to use the MUSKETEER platform, Alice, John and Jack first must register their own
user account (Figure 3). Once accounts are created, all subsequent interactions with the
platform must be performed using those accounts.

Figure 3: Account registration on the MUSKETEER platform

After registering with the platform, Alice will create a machine learning task and register that
task with MUSKETEER so that it is stored in MUSKETEER’s database. The task creation process
will require Alice to define the machine learning task in detail as shown in Figure 4. The task
definition may contain information such as the number of participants, number of training
epochs, batch sizes, learning rates, etc. Upon successful creation, the task will be assigned
with a name (“Task005” in this example). In the following, Alice will be playing the role of a
task creator in the MUSKETEER platform.

Figure 4: Create Federated ML task on the MUSKETEER platform

As task creator, Alice will also execute the aggregator side of the federated training process in
her computational environment. In this example, the training quorum is 2 (see Figure 4), i.e.
exactly two participants need to have joined the task before the training begins.

 D3.1 Architecture Design – Initial Version 46

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

In parallel, John and Jack can avail of the MUSKETEER platform services to explore Federated
ML tasks created by other users, including the task that was created by Alice. By inspecting
the definitions of the task (and available meta descriptions), they can decide whether their
available data may benefit a task and whether they want join that task (Figure 5).

Figure 5: List tasks on the MUSKETEER platform

Once they make the decision to participate in a specific task (typically independently and
unbeknownst of each other), they can avail of the platform services to join that task (Figure 6)
and assuming the role of task participants in the following.

Figure 6: Join task on the MUSKETEER platform

With two participants having joined, the starting criterium of Alice‘s task has been satisfied,
and so the training process of the machine learning task can start and run throughout the
number of iterations specified in the task definition. The exact flow of information among
participants and aggregators during the training process depends on the specific Privacy

 D3.1 Architecture Design – Initial Version 47

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Operation Mode (POM); in the following, we provide an example of standard Federated ML
training as defined in POM1 (see Section 2.5.1).

Firstly, the aggregator sends an initial version of the ML model to both participants. This can
be done via a broadcast function in order to save communication costs as illustrated in Figure
7. Without a broadcast function, the aggregator would have to send the same model
repeatedly to the platform (once per participant) which will then relay the model to the
specific designated sender. In practice, a model update could size up to tens of gigabytes, and
therefore transferring such a large model several times through a cloud network would
consume a lot of bandwidth. After broadcasting the model, the aggregator waits for incoming
model updates from each of the participants.

Figure 7: Communication from the aggregator to task participants

Secondly, each participant – after receiving the model from the aggregator – will update its
local model, continue to train the model locally with their local data and obtain a new local
model update. Then, this local model update will be transferred back to the aggregator
through the MUSKETEER platform as shown in Figure 8. The aggregator will then collect these
new model updates from all the participants, average them to produce a new model update,
which then is broadcasted again to the participants for the next iteration. After a specified
number of such iterations, the training will end and the aggregator will obtain a final version
of the trained model, thus completing the Federated ML task created by Alice.

 D3.1 Architecture Design – Initial Version 48

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 8: Communication from the task participants to the aggregator

5 Possible future extensions

To conclude this document, we give an outlook on possible future extensions of the platform.
An analysis and consolidated view on the technical requirements stemming from these exten-
sions will be provided in the documentation of the final version of the MUSKETEER platform
architecture (D3.2).

Explore synergies and possible integration points with the AI4EU platform

As discussed in Section 2.2.2, the initial set of technical requirements provided in D2.1 envi-
sioned the ability for users of the MUSKETEER platform to provide their own user profiles,
explore the profiles of other users and, in conjunction with those profiles, share information
about datasets that they own which could be leveraged for Federated ML tasks. We do not
see such platform capabilities as central to the scope of the MUSKETEER project; moreover
there may be potential legal/ethical implications related to storing this sort of information.
However, we believe there may be synergies and possible integration points with the AI4EU
platform [11] that are worthwhile exploring, perhaps less from a technical or architectural
viewpoint, but certainly from a dissemination and exploitation perspective in this project.

Organizing platform user access permissions in groups

Another element of D2.1 was the envisioned platform capability to create groups of users in
order to control, e.g., which users could see or join specific tasks. In the first version of the
platform, this capability isn’t integrated; as explained in Section 2.2.2, the initial version of the
platform allows users to see or join any available tasks; we envision that different platforms

 D3.1 Architecture Design – Initial Version 49

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

will be instantiated for the real-world use cases and for algorithmic performance assessment,
thus this single-tenancy deployment mitigates the need for restricting access to tasks. In prep-
aration of the final version of the MUSKETEER platform architecture (D3.2) we will conduct
further analysis to understand the user stories and derive more precise technical require-
ments.

Permissions for downloading models

Currently, the platform does not implement a capability for persisting ML models that result
from Federated ML tasks, but this is a feature that should be supported by the final version.
In accordance with that, appropriate permissions should be defined as to who is allowed to
retrieve the models persisted in the platform. In preparation of D3.2, we are planning to de-
scribe different options in more detail in order to arrive at an informed decision which mech-
anisms to implement; two possible approaches are that either only the task creator has access
to the final model (restrictive), or that the task creator and all participants can download it
(permissive).

Model serialization

A question related to the persistence and downstream use of trained Federated ML models is
how the format that should be used for serializing and storing the actual models. One option
would be to export and save the models in a standard format; another option would be to
save them in framework-specific formats with meta information that is required to properly
re-load and apply them. Decisions on the exact format should be made in conjunction with
WP7 as the client connectors will ultimately provide the environment in which end users will
retrieve the outcomes from Federated ML tasks.

Task lifecycles

Working towards the final version of the MUSKETEER platform, a further analysis needs to be
performed in order to understand the full lifecycle of Federated ML tasks, how their status
should be represented in the platform, and how the status informs different actions that can
be performed on tasks. This is particularly important for handling, e.g. participants which tem-
porarily disconnect from their training tasks, and aggregators temporarily disconnecting or
even crashing. To handle such scenarios gracefully, checkpointing of Federated ML tasks
maybe a required mechanism to be supported by the platform. A related question is how to
allow users to monitor the status and execution of the Federated ML training. Finally, deci-
sions need to be taken and mechanisms need to be implemented in order to control how long

 D3.1 Architecture Design – Initial Version 50

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

task-related message queues should be kept up and running, and how long to persist task
metadata, trained models etc.

User roles

Currently, the platform assumes that the creator of a task will also be taking the role of the
aggregator during the actual training. In preparation of D3.2, it should be reviewed – in con-
junction with WP7 – whether other cases could be foreseen (e.g. where the task creator would
also act as training participant) and should be supported by the platform.

Data value estimation

The ability of the MUSKETEER platform to estimate the value of the data contributed by the
different participants of a Federated ML task is a key functionality in order to unlock new value
in the data economy. From the platform perspective, a further analysis needs to be conducted
in order to understand which services should be provided (i) in order to allow algorithms for
data value estimation to persist information about contributions from different users in the
platform; (ii) in order to allow platform users to query, analyze and further process this infor-
mation in order to determine potential rewards to the different participants.

Encryption / key management

Finally, in order to support Privacy Operation Modes (POMs) that rely on encryption mecha-
nisms, the overall architecture of the MUSKETEER project needs to consider, e.g. how, where
and by who encryption keys are going to be generated and managed, and how the services
for key generation / management will interact with the core platform, the algorithmic library,
and the client connectors.

6 References

[1] R. van Solingen, E. Berghout (1999). The Goal/Question/Metric Method: A Practical
Guide for Quality Improvement of Software Development, McGraw-Hill.

[2] S. Newman (2015). Building Microservices – Designing Fined-Grained Systems, O’ Reilly.
[3] https://cloud.ibm.com/
[4] S. Tarkoma (2012). Publish/Subscribe Systems: Design and Principles, John Wiley & Sons,

Ltd.
[5] https://www.rabbitmq.com/
[6] https://openwhisk.apache.org/
[7] https://kubernetes.io/

 D3.1 Architecture Design – Initial Version 51

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

[8] https://www.goflex-project.eu/
[9] https://github.com/ibm-functions/package-rabbitmq
[10] https://docs.aws.amazon.com/s3/index.html
[11] https://www.ai4eu.eu/

