

H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

May 20

D3.2 Architecture Design – Final Version

 D3.2 Architecture Design – Final Version 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 31 May 2020

Author(s): Mark Purcell (IBM), Mathieu Sinn (IBM), Marco Simioni (IBM),

Stefano Braghin (IBM), Minh Ngoc Tran (IBM)

Participant(s): TREE, IMP; ENG, UC3M; IDSA

Reviewer(s): Joao Correia (B3D), Susanna Bonura (ENG)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP3

Dissemination level: Public

Version: 1.0

Contact: mathsinn@ie.ibm.com

Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving

Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 824988. The sole

responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be

made with reference to the publisher.

 D3.2 Architecture Design – Final Version 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

This deliverable (D3.2 "Architecture Design – Final Version") is a document describing the

architecture for the MUSKETEER centralized server platform. It is the culmination of task T3.1

and builds upon the initial architecture document D3.1, providing architecture/design updates

as well as reporting progress in relation to the platform requirements.

Document History

Version Date Status Author Comment

1 01 April 2020 Outline draft Mathieu Sinn First draft
2 30 April 2020 First Draft Mark Purcell Section 1, 3

3 06 May 2020 Revised Draft Mark Purcell Section 2, 5
4 07 May 2020 Revised Draft Marco Simioni Section 4

5 07 May 2020 Revised Draft Mark Purcell Section 6

6 08 May 2020 Ready for Review Mark Purcell Ready for
reviewers

7 21 May 2020 Incorporate review Mark Purcell Ready
8 22 May 2020 Final version Mark Purcell Ready

9 25 May 2020 Clean and
submission

Gal Weiss Final

 D3.2 Architecture Design – Final Version 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES .. 6

LIST OF TABLES ... 7

LIST OF ACRONYMS AND ABBREVIATIONS ... 8

1 INTRODUCTION .. 9

1.1 Purpose ... 9

1.2 Related documents .. 9

1.3 Outline ... 11

2 REQUIREMENTS ... 12

2.1 Scope ... 12

2.2 Industrial and technical requirements .. 12

2.2.1 User roles .. 12

2.2.2 Functional requirements ... 12

2.2.3 Non-functional requirements ... 15

2.3 Alignment with industrial data platform standards ... 16

3 PLATFORM ARCHITECTURE ... 17

3.1 Message Flow .. 18

3.1.1 Control-plane .. 19

3.1.2 Data-plane ... 20

3.2 Cloud-hosted Services .. 21

3.2.1 Open Source/Standards .. 21

3.3 Initial Security/Privacy Mitigations ... 22

3.3.1 Outbound-only network connections ... 22

3.3.2 Secure communications .. 22

3.3.3 Time-limited credentials ... 23

3.3.4 User validation .. 23

3.3.5 Queuing Policy ... 23

3.3.6 Avoidance of SQL Injection attacks ... 24

 D3.2 Architecture Design – Final Version 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4 SECURITY & PRIVACY .. 25

4.1 Security and Privacy by Design principles .. 25

4.2 SPbD in the MUSKETEER centralized server platform .. 26

4.2.1 Threat Model and Security Architecture Review .. 27

4.3 Threat Assessment Conclusions .. 35

4.3.1 Considerations on the current Trust Model.. 35

5 PROPOSED API ... 36

5.1 Basic Message Structure ... 36

5.1.1 Service Request ... 36

5.1.2 Service Response ... 36

5.2 Control-plane APIs ... 37

5.2.1 Change User Password .. 37

5.2.2 List Tasks .. 37

5.2.3 Create Task .. 38

5.2.4 Stop Task ... 39

5.2.5 Join Task .. 39

5.2.6 Leave Task ... 40

5.2.7 Task Info .. 40

5.2.8 Joined Tasks ... 41

5.2.9 Created Tasks .. 42

5.2.10 Download Model ... 42

5.3 Data-plane APIs.. 43

5.3.1 Aggregator Start Training Round .. 43

5.3.2 Aggregator Notification ... 44

5.3.3 Participant Notification ... 44

5.3.4 Participant Training Round Complete ... 45

5.4 Registration APIs .. 45

5.4.1 Register User ... 45

5.4.2 Reset User Password ... 46

5.5 Administration APIs ... 46

5.6 Federated Machine Learning Framework (FMLF) Package 47

5.6.1 Basic User .. 47

5.6.2 Aggregator User .. 47

5.6.3 Participant User ... 47

 D3.2 Architecture Design – Final Version 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.6.4 Open Source .. 47

5.7 Authorisation ... 47

6 CONCLUSIONS AND POSSIBLE FUTURE EXTENSIONS.. 49

7 REFERENCES ... 51

 D3.2 Architecture Design – Final Version 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1: MUSKETEER’s PERT diagram ... 10

Figure 2: MUSKETEER centralized server platform architecture ... 18

Figure 3: Control-plane flow - Zoomed .. 19

Figure 4: Data-plane flow - Zoomed... 21

Figure 5: Security and Privacy by Design (from [8]) ... 26

Figure 6: Service Request ... 36

Figure 7: Service Response ... 37

Figure 8: Join Task Request .. 37

Figure 9: Join Task Response .. 37

Figure 10: List Tasks Command .. 38

Figure 11: Task Listing Response .. 38

Figure 12: Create Task Request .. 38

Figure 13: Create Task Response ... 38

Figure 14: Stop Task Request ... 39

Figure 15: Stop Task Response ... 39

Figure 16: Join Task Request .. 39

Figure 17: Join Task Response .. 40

Figure 18: Leave Task Request ... 40

Figure 19: Leave Task Response ... 40

Figure 20: Task Info Request .. 40

Figure 21: Task Info Response .. 41

Figure 22: Joined Tasks Request .. 41

Figure 23: Joined Tasks Response .. 41

Figure 24: Created Tasks Request .. 42

Figure 25: Created Tasks Response .. 42

Figure 26: Task Info Request .. 43

Figure 27: Task Info Response .. 43

 D3.2 Architecture Design – Final Version 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 28: Aggregator Start Training Round Request .. 43

Figure 29: Aggregator Received Notification ... 44

Figure 30: Participant Received Notification ... 44

Figure 31: Participant Training Round Complete ... 45

Figure 32: Register User - Request ... 46

Figure 33: Register User - Response... 46

Figure 34: Reset User Password - Request... 46

Figure 35: Reset User Password - Response .. 46

List of Tables

Table 1: Functional requirements for managing platform users ... 12

Table 2: Functional requirements for managing Federated ML tasks 13

Table 3: Functional requirements for executing Federated ML tasks 14

Table 4: Non-functional requirements ... 15

Table 5: Threat Assessment ... 28

Table 6: Authorisation by Operation .. 48

 D3.2 Architecture Design – Final Version 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition

AMQP(S) Advanced Message Queuing Protocol (secure)
API Application Programming Interface

COS Cloud Object Storage
CWE Common Weakness Enumeration
FaaS Functions-as-a-Service
GQM Goal/Question/Metric
IP Internet Protocol

JSON JavaScript Object Notation
KPI Key Performance Indicator
ML Machine Learning

OS Operating System
POM Privacy Operation Mode
RAM Random-Access Memory

REST Representational State Transfer
SPbD Security and Privacy by Design
SQL Structured Query Language
SSL Secure Sockets Layer
SSO Single Sign On
TFIDF Term Frequency – Inverse Document Frequency

TLS Transport Layer Security
URL Uniform Resource Locator
vCPU Virtual Central Processing Unit

WP Work Package
YAML Yet Another Markup Language

 D3.2 Architecture Design – Final Version 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

The purpose of this document is to describe the MUSKETEER centralized server platform,

which enables participants of the data economy to participate in Federated Machine Learning

(ML) and thereby realize the value of their data assets, while preventing the leakage of

information that is proprietary, confidential, personally sensitive, or that must not be shared

because of other legal or regulatory requirements.

This document is the description of the second deliverable (D3.2) of work package 3 (WP3).

The deliverable describes the final version of the architecture for the platform provided by

WP3. Functionally, this platform provides the infrastructure and implements the services that

are required to enable the federated ML algorithms developed in WP4 and WP5 in end-to-end

applications. It must also support the assessments to be carried out in WP6 and provide

interfaces which allow for the development of client connectors and end-to-end

demonstration of the industrial use cases in WP7.

This document is an update to the first deliverable document D3.1 for WP3, which describes

the initial version of the architecture. As such, if the underlying information regarding system

components has not changed since D3.1, these components will not be discussed again.

However, any enhancements or new features will be discussed in this document.

1.2 Related documents

This deliverable is related to the following documents (also see Figure 1):

• D3.1 Architecture Design – Initial Version – the precursor to this

document, detailing the architecture as of M12.

• D2.1 Industrial and technical requirements – in so far as the platform

architecture has to address functional and non-functional technical

requirements described in that document.

• D2.2 Legal requirements and implementation guidelines – in so far as

the design of the platform architecture should follow the

implementation guidelines arising in the context of the applicable legal

and ethical framework.

• D2.3 Key performance indicators selection and definition – in so far as

the platform has to either provide the core capabilities that other

functional components (e.g. the algorithmic library or the client

connectors) require to meet their goals, or to meet specific goals itself.

 D3.2 Architecture Design – Final Version 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• D4.1 Investigative overview of targeted architecture and algorithms –

in so far as the platform has to provide the core capabilities to support

and enable the targeted architecture and algorithms.

• D4.2 Pre-processing, normalization, data alignment and data value

estimation algorithms (initial version) – in so far as the platform has to

provide the core capabilities to support the deployment of the

proposed algorithms.

• D5.1 Threat analysis for federated machine learning algorithms – in so

far as the platform has to provide the core capabilities to support the

deployment of the proposed algorithms.

• D6.1 Assessment framework design and specification – in so far as the

platform has to provide the core capabilities to support the application

of the proposed framework and meet relevant key performance

indicators (KPIs).

• D7.1. - Client connectors’ architecture design (initial version) – in so far

as the platform has to provide the core capabilities to support the

development and deployment of the proposed client connectors’

architecture.

Figure 1: MUSKETEER’s PERT diagram

 D3.2 Architecture Design – Final Version 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1.3 Outline

The remainder of this document is structured as follows:

• Section 2 describes the scope of the MUSKETEER core platform (in

particular vis-à-vis the algorithmic library and the client connectors

software) and reviews the relevant functional and non-functional

requirements outlined in the documents listed above.

• Section 3 describes the platform architecture and design. It provides

detailed information on each of the platform’s components as well as

the underlying core technology.

• Section 4 discusses the security implications for the platform, making

reference to a security by design process that is followed.

• Section 5 outlines the proposed API for utilizing the platform’s services.

• Finally, Section 6 discusses possible extensions to the platform that

were outside the scope of the initial version and may require further

analysis in conjunction with other work packages for consideration in

future versions to be developed under this project or subsequently.

 D3.2 Architecture Design – Final Version 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2 Requirements

2.1 Scope

As discussed in D2.1, when defining the scope of the MUSKETEER platform, it is important to

draw distinctions between the centralized server platform, the federated ML algorithm

library, and the client connectors. This document describes the centralized server platform

only. The centralized server platform neither hosts nor starts the aggregator or participant

training processes. These are understood to be executed within the client software

environments.

2.2 Industrial and technical requirements

D2.1 (Industrial and technical requirements) outlined all of the functional and non-functional

requirements for the complete MUSKETEER platform. In this section, the centralized server

platform related requirements are re-iterated, with section numbers mapping directly to the

same section numbers in D3.1, for ease of reference. For each requirement, the ID is

highlighted in green text if the current prototype described in D3.3 satisfies the requirement.

A requirement may also be highlighted in orange text if the current prototype partially satisfies

the requirement. If a requirement is not currently satisfied by the D3.3 prototype, it is not

highlighted. These requirements are still subject to ongoing development.

2.2.1 User roles

There are no additional user roles beyond those identified in D3.1.

2.2.2 Functional requirements

There are no additional functional requirements beyond those specified in D3.1. What follows

is a D3.3 readiness update for each requirement grouped by the type of action.

2.2.2.1 Managing platform users

Table 1: Functional requirements for managing platform users

ID Description of the requirement

FR001 Ability for platform admin to grant username and password to new general

user (D2.1-FR034).

 D3.2 Architecture Design – Final Version 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.2.2.2 Managing Federated ML tasks

Table 2: Functional requirements for managing Federated ML tasks

FR002 Ability for platform admin to revoke username and password of existing

general user (D2.1-FR034).

FR003 Ability for general user to avail of platform functionality through

authentication with their username and password (D2.1-FR001).

FR004 Ability for general user to change their password (D2.1-FR002).

ID Description of the requirement

FR005 Ability for general users to create a new Federated ML task, including an

unstructured description and all structured information that is required to

define the task, such as the input data format, required mechanism for pre-

processing the raw input data, the number of participants, starting/stopping

criterions, etc. (D2.1-FR016, D2.1-FR019, D2.1-FR043).

FR006 Ability for a task creator to update the task description and information.

FR007 Ability for general users to list all the existing Federated ML tasks that have

been created; view their description, definition and status; compute summary

statistics, e.g., total number of tasks and participants (D2.1-FR007, D2.1-

FR008, D2.1-FR009, D2.1-FR010, D2.1-FR022, D2.1-FR027, D2.1-FR039)

FR008 Ability for a general user to join a task that has already been created and that

accepts new participants (D2.1-FR012).

FR009 Ability for a task member to actually participate in the training of that task’s

Federated ML model, either as aggregator or as participant (D2.1-FR024).

FR010 Ability for a task member to leave that task (D2.1-FR029).

FR011 Ability for a task creator to cancel that task (D2.1-FR020).

FR013 Ability for general users to list all the Federated ML models; view their

description, definition, KPIs etc. if available (D2.1-FR011).

FR014 Ability for general users to download trained Federated ML models (D2.1-

FR013, D2.1-FR026).

 D3.2 Architecture Design – Final Version 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.2.2.3 Executing Federated ML tasks

Table 3: Functional requirements for executing Federated ML tasks

FR015 Ability for a task creator to delete the Federated ML models trained as part of

that task (D2.1-FR021).

ID Description of the requirement

FR016 Ability for an aggregator or participant to retrieve the definition of a specific

task.

FR017 Ability for an aggregator to retrieve the list of all participants of a specific task.

FR018 Ability for an aggregator to broadcast a message to all the participants.

FR019 Ability for an aggregator to send a message to a specific participant.

FR020 Ability for a participant to send a message to the aggregator.

FR021 Ability for a participant to route a message to the “next” participant (according

to an underlying ring topology), without having to send it via the aggregator.

FR022 Ability for an aggregator to receive a message sent by a participant, together

with an identifier of the participant who sent it.

FR023 Ability for a participant to receive a message sent by the aggregator.

FR024 Ability for a participant to receive a message routed from the “previous”

participant (according to an underlying ring topology), including an identifier to

distinguish from messages sent by the aggregator.

FR025 Ability for an aggregator to store task status updates.

FR026 Ability for an aggregator to store intermediate or final versions of the trained

Federated ML model.

FR027 Ability for an aggregator to store information regarding the data value

contributions per participants.

 D3.2 Architecture Design – Final Version 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.2.3 Non-functional requirements

There are no additional non-functional requirements beyond those specified in D3.1. What

follows is a D3.3 readiness update for each requirement.

Table 4: Non-functional requirements

Some non-functional requirements (NR001, NR003, NR005) can only really be evaluated over

time. As such, at this point in time, they cannot be considered complete.

Others (NR006), are deemed partially complete already, but a more thorough review over a

longer period of time is also preferable.

ID Description of the requirement

NR001 High availability (D2.1-NR001).

NR002 Security, specifically regarding access control and adherence to industry

security standards (D2.1-NR002).

NR003 Robustness of the overall platform with respect to software errors (D2.1-

NR016).

NR004 Availability of appropriate logging mechanisms for all operations (D2.1-

NR010).

NR005 Recoverability, specifically of the training of Federated ML models, from

temporary system or component failures (D2.1-NR003, D2.1-NR004, D2.1-

NR005, D2.1-NR015).

NR006 Scalability, specifically the efficient execution of Federated ML training

algorithms (D2.1-NR006), and efficient handling of simultaneous requests

(D2.1-NR014).

NR007 High usability, specifically regarding the ease of software installation for end

users (D2.1-NR009) and the design of interfaces for interactions with the

platform, including their documentation (D2.1-NR008).

NR008 Maintainability, specifically the availability of mechanisms to efficiently

perform system or component updates with minimum downtime for the

overall platform (D2.1-NR007, D2.1-NR013).

 D3.2 Architecture Design – Final Version 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.3 Alignment with industrial data platform standards

The design of the MUSKETEER platform aligns with emerging standards for industrial

collaborative and data sharing platforms. The MUSKETEER platform, with the associated

ecosystem of external components, is converging with the International Data Space

Association (IDSA) reference architecture model (RAM) [11].

In particular, with reference to the System Layer, the MUSKETEER platform is designed to

operate as a broker, allowing the communication between the various participants of the

training process, which are operating as Data Apps according to the reference architecture.

As noted in D3.1, the MUSKETEER platform relies on client connectors’ certification to be more

adherent to the IDSA-RAM, and it is beyond the scope of this deliverable. Nonetheless, the

assessments that will be presented in Section 4 are in line with the required steps for the self-

assessment part of the certification required by the IDSA-RAM, and therefore suggested for

application to the evaluation of client connectors.

 D3.2 Architecture Design – Final Version 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3 Platform architecture

The architecture as presented in D3.1 is largely unchanged, and as such, this chapter will

primarily focus on the architecture evolutions during the prototyping phase detailed in D3.3.

Figure 2 shows a diagram of the final version of the architecture for the MUSKETEER

centralized server platform. The intention of this architecture is to show the inner workings of

the centralized server platform and to highlight where and how remote components provided

by other work packages interact with the platform.

The architecture is based on micro-services and places a significant emphasis on open

standards. Many of the underlying components used are open source. The use of open

standards and services avoids vendor lock-in to a significant extent, thereby enhancing the

prospect of utilising alternative cloud providers or on-premise deployments in the future, if

that is so desired.

It is intended that concrete instances of the architecture are deployed on the public cloud.

This is a natural fit for MUSKETEER operations, as several distinct organisations need to

collaborate on federated learning and a single, centrally manged, accessible and secure

platform is necessary. As the public cloud is internet addressable, all collaborating

organisations have access to the services (assuming no site-specific firewall restrictions).

As concrete instances of the architecture utilise existing public cloud services, these are

specifically referred to in the diagram. Internally, it is a micro-services architecture [1]. The

cloud infrastructure is provided by IBM, using the IBM® Cloud™ platform [2]. The platform

also contains a client package for interacting with these services. Using the public IBM®

Cloud™, many open source services are available in the IBM® Cloud™ catalogue. These

services are quite easy to provision and secure using the cloud dashboard or cloud command

line interface.

D3.3 demonstrates a simple prototype which enables end-to-end execution of federated

learning via the platform and the client package; the development of full-scale client

connectors lies within the scope of WP7.

Interoperability between components (cloud-based and remote) is through a messaging

system, based on the Publish / Subscribe Design Pattern [3]. This is backed by RabbitMQ [4].

Messages are published to RabbitMQ and routed to subscribed parties. RabbitMQ is

instantiated in the public cloud and is an internet addressable service, allowing remote clients

to connect. Remote clients require appropriate credentials which are obtained through the

registration process.

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article
https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article
https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article

 D3.2 Architecture Design – Final Version 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Using this messaging system, the initiation of all network connections is outbound only. This

means that no remote component (aggregator or participant system) accepts an incoming

connection with no network ports openly addressable to the internet.

Figure 2: MUSKETEER centralized server platform architecture

All access to platform services from remote components (provided by other work packages)

is through the Federated Machine Learning Framework (FMLF) package. This contains APIs to

simplify access to the platform and is installed at remote sites.

Users of these APIs must be authenticated, but first, the User Registration service allows users

to register with the platform. This service creates user accounts on the RabbitMQ instance.

These registration details allow users to subsequently authenticate with the platform,

providing access to the APIs and platform services. Access to individual APIs is also controlled

through an authorisation layer (see section 5.7).

3.1 Message Flow

As previously mentioned, the platform operates in response to messages received via the

FMLF package. Two examples of this flow are now discussed. Firstly, a control-plane example,

 D3.2 Architecture Design – Final Version 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

whereby a synchronous invocation of a platform service is detailed. And secondly, a data-

plane example, which is asynchronous in nature.

3.1.1 Control-plane

An example of a synchronous command is creating a task. There is an API in the FMLF package

called create_task which accepts a task name, a task topology and a task definition as inputs.

This command returns a status code reflecting the success of the command. It is in effect, an

atomic operation and must be synchronous. Either the creation of the task was successful, or

it was not. The flow is described below and a zoom-in on the architecture highlights which

components are involved.

1. The user invokes the create_task function

a. A create_task message is published to RabbitMQ

b. The function blocks, awaiting a reply

2. The command router receives the message

a. The publishing user is validated

b. The message is routed to the User/Task micro-service

3. The User/Task micro-service receives the message

a. The database is checked for a duplicate task

b. The task is inserted into the database (no duplicates)

4. A response is published to the command response queue

5. The create_task function receives the reply and returns

Figure 3: Control-plane flow – Zoomed

 D3.2 Architecture Design – Final Version 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.1.2 Data-plane

An asynchronous command example is when an aggregator starts a round of federated

learning. Later, the aggregator determines that all participants have finished the training

round. It would not be ideal if the aggregator blocked, awaiting completion of all participants.

This process could take quite some time. Preferably, the aggregator issues the training start

command, and receives notifications upon participant completion. This way, the aggregator

could start to process notifications from faster participants or undertake other actions whilst

waiting for the quorum of participants to complete the round of training. There is an API in

the FMLF package called start_task which accepts a task name and an initial model as input.

The flow is described below and a zoom-in on the architecture highlights which components

are involved.

1. The aggregator user invokes the task_start function

a. It is assumed that a quorum of participants is available

b. A task_start message is published to RabbitMQ

c. The function returns

2. The aggregator user periodically checks for notifications

3. The command router receives the message

a. The publishing user is validated

b. The message is routed to the Modelling micro-service

4. The Modelling micro-service receives the message

a. The database is queried for all task participants

b. The task_start notification is published to RabbitMQ

i. To each participants’ private queue

5. The participant users receive the notification

a. Local training starts

b. A task_update message is published to RabbitMQ

6. The command router receives the message

a. The publishing user is validated

7. The message is routed to the Modelling micro-service

a. The database is queried for the task details

b. The task_update notification is published to RabbitMQ

i. To the aggregator users’ private queue

 D3.2 Architecture Design – Final Version 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

8. The aggregator user receives task_update notifications

Figure 4: Data-plane flow - Zoomed

3.2 Cloud-hosted Services

The MUSKETEER architecture utilises a number of services available on the public IBM®

Cloud™, each of which were described in D3.1. For the purposes of the MUSKETEER project,

the public cloud data centre is located in Germany and all interactions, services and data are

located and stored in this data centre.

3.2.1 Open Source/Standards

There are several open source services that are used by the platform. These are:

• IBM Cloud™ Messages for RabbitMQ

• IBM® Cloud Object Storage

• IBM Cloud™ Functions [5]

• IBM Cloud™ Kubernetes Service [6]

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article

 D3.2 Architecture Design – Final Version 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Additionally, a number of open standards are employed. They are:

• AMQP(S)

• HTTP(S)

• JSON

• SQL

Although the platform uses IBM® Db2® on Cloud, the underlying database schema for

representing MUSKETEER tasks is fully SQL compliant. This ensures compatibility with other

relational database providers.

By minimizing the effect of vendor lock-in, the use of open source components and open

standards supports greater flexibility and engagement with the platform.

3.3 Initial Security/Privacy Mitigations

An in-depth discussion of security and privacy issues is covered in section 4. In this section,

some of the considerations and mitigations that were put in place at a very early stage in the

architecture and prototyping phase are discussed.

3.3.1 Outbound-only network connections

For any remote component, hosted by federated learning aggregators or participants,

network connections are always initiated by that component. Through the FMLF package,

these network connections are either an AMQPS connection to RabbitMQ or a HTTPS

connection to Cloud Object Store. The architecture stipulates that no inbound network

connection attempts to aggregators or participants are required. This reduces the risk for

remote sites, due to the fact that there is no requirement for an Internet-addressable

endpoint to be available at the remote site. There are no new open ports and no need for

permissive inbound firewall rules.

3.3.2 Secure communications

The protection afforded by outbound-only connections is enhanced by the provision of secure

communication channels. All communication between remote components and the platform

(as well as between intra-platform components) use Transport Layer Security (TLS) v1.2, which

is the latest available version on IBM® Cloud™. This ensures that all data transmitted between

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article

 D3.2 Architecture Design – Final Version 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

components is encrypted. Additionally, cloud certificates are used by remote components to

establish the veracity of the cloud endpoint to which outbound network connections are

made.

3.3.3 Time-limited credentials

When models/updates are transferred between aggregator and participant users, IBM®

Cloud Object Storage is used to store the content. Messages are then dispatched to the user

FMLF package, detailing upload/download information for the given content. This information

contains temporary, automatically expiring, once-off credentials that are used to upload or

download the content. This is based on the S3 [7] standard pre-signed APIs. This mechanism

is used due to the fact that models or updates can be quite large, and it is preferable not to

have large content moving between multiple services.

3.3.4 User validation

Upon successful registration, an aggregator or participant user has their own unique

credentials for the platform. These credentials are then used by the FMLF package to initiate

a connection to RabbitMQ. Subsequently, when commands are issued by the user, the user is

validated by RabbitMQ against the user who initiated the connection. By using this RabbitMQ

feature, it becomes difficult for a given user to impersonate another user.

Additionally, in the command router (running in Kubernetes), an additional check is made to

ensure that this RabbitMQ validation was not bypassed (somehow) by the user. The command

router receives messages that originate from the aggregator or participant user. When these

messages are received, RabbitMQ provides meta-data, detailing the originating user. This is

checked to ensure the user is valid.

3.3.5 Queuing Policy

By applying write-only and read-only polices to RabbitMQ queues, it is not possible for users

to view the contents of, or publish to, queues that they have not been given explicit access to.

For example, in the control-plane, any command messages published to the single command

write-only queue, are not readable by any standard user. Read access to this queue is only

granted to a single system administration user. This ensures that standard users cannot

determine the services that other users are requesting.

 D3.2 Architecture Design – Final Version 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.3.6 Avoidance of SQL Injection attacks

Often, these attacks [13] target SQL string concatenation vulnerabilities in the underlying

software. This is where the SQL code is built using techniques in languages such as Java and

user input can be effectively concatenated directly into the SQL (e.g. SELECT statement).

The MUSKETEER platform micro-services that connect to the database do not use another

language for building SQL statements. Instead, all SQL is contained in stored procedures which

are deployed at database schema creation time. Higher-level languages invoke one of these

stored procedures. This provides the benefit of presenting the underlying table structure as

an API, whereby other components only interact with the database through this defined API.

Internal details of how the tables are structured is not used by other components, which

encapsulates the database schema design specifics behind this API. Internally, the stored

procedures use standard SQL statements to interact with the database. A second benefit of

this approach is that SQL injection attacks are less likely to succeed, due to the stored

procedure API obfuscation of the underlying SQL statements. The SQL statements within the

stored procedures are always based on static cursors, and string concatenation for SELECT-

WHERE clauses are never used.

 D3.2 Architecture Design – Final Version 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4 Security & Privacy

Since its inception, the MUSKETEER platform has been developed by leveraging elements of

the IBM Security and Privacy by Design (SPbD) practice. An introduction of the SPbD concepts

is given in this section, along with a detailed discussion of the Threat Modelling and

Architecture Review exercise.

4.1 Security and Privacy by Design principles

Security and Privacy by Design (SPbD) is a simplified and agile set of focused security and

privacy practices, including threat models, privacy assessments, security testing, and

vulnerability management. As shown in Figure 5: Security and Privacy by Design, the SPbD

process includes the following tasks:

• Threat Model: identifies, communicates, and understands threats and

mitigations within the context of protecting something of value.

• Privacy Assessment: is the process to evaluate new projects, policies,

and practices for privacy, confidentiality, or security risks associated

with the collection, processing, or disclosure of personal information. It

also includes developing measures that are intended to mitigate and

eliminate identified risks. In particular, this assessment process must

meet GDPR requirements.

• Code Scan: helps programmers locate potential flaws and determine

areas of improvement within the codebase. Code scans must be

performed during development and test, cover IBM developed code,

and include Open Source Software.

• Security Tests: a key component of the overall test cycle which is

intended to ensure that the development process resulted in secure

code and that, where possible, threats identified as part of the threat

model were properly addressed. Security testing helps validate that the

information system in question protects data and functions as intended.

• Penetration Test (also called pen testing): an authorized simulated

attack on a computer system, application, or IT environment. It can

involve automated tools and must involve a form of ethical hacking.

Vulnerability Management is the process of searching for software

vulnerabilities in applications by using an automated security program.

 D3.2 Architecture Design – Final Version 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Vulnerability scanning: can be used to find vulnerabilities and remediate

them before they are exploited.

Figure 5: Security and Privacy by Design (from [8])

For more detailed information, the reader is referred to [8].

4.2 SPbD in the MUSKETEER centralized server platform

During the early stages in the Software Development Life Cycle of the MUSKETEER centralized

server platform, an internal SPbD assessment was conducted. The outcome of this assessment

can be summarized as follows:

1. Several security controls were already implemented since the platform

inception, in order to guarantee the security of the platform and its

users. However, a Threat Model and Security Architecture Review of the

platform is now required. A combined Threat Model and Architecture

Review exercise is sufficient in order to have a reasonable

understanding of the security posture of the MUSKETEER platform.

2. If there are design changes between the initial creation and release,

another review will be required, or when significant architectural

changes are made to the platform, a new Threat Model and Security

Architecture Review must be conducted.

3. Code Scan and Security Tests should be performed at a later stage, and

a Penetration Test of the platform is also recommended. The scope of

 D3.2 Architecture Design – Final Version 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

these could include the work of other WPs (for example, the

development of client connector software in WP7).

4. Security Vulnerabilities reported by the activities described in Steps 2

and 3 will be tracked in the MUSKETEER Github Repository, along with

their remediation plan.

4.2.1 Threat Model and Security Architecture Review

In order to ensure that the MUSKETEER platform is designed from the ground up with security

and privacy in mind, and to ensure that privacy and regulatory requirements are met by

design, we have chosen to adopt a combined Security Architecture Review and targeted

Threat Modelling approach that leverages common elements from both techniques, while

remaining relatively light weight.

As part of the initial Threat Modelling and Architecture Security Review exercise, an

Architecture overview Diagram has been produced, providing a high-level overview of the

platform design including internal components, inputs, outputs and users (see Figure 2).

Following the Architecture Overview Diagram, an Inventory and Threat Model document has

been produced, which in turn includes the following:

• Application Information – Background information about the platform.

• Component Inventory – Listing of components, deployment type,

security logging methodology for each.

• Process Inventory – Identifies the actual application processes running

on each component as part of the solution and privilege level of each.

• Datastore Inventory – List of all places where data is persisted in the

solution, including type of store, data classification, tenancy model,

encryption/protection method and backup type.

• Interface Inventory – Enumerates all interfaces (UI, APIs, Admin

interfaces, etc) exposed by components in the solution. Highlights

interface type, authentication method, access protocol and data

classification.

• Credential Inventory – Identifies locations in the solutions in which

credentials (keys, passwords, certificates, etc) are stored and how

they are protected.

• Actors – Listing of users or systems which interface with the solution.

 D3.2 Architecture Design – Final Version 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Data Flows – Identifies the authentication method(s), protocols, data-

classification and encryption methods for all flows which are part of the

system.

• Threat Assessment – Inventory of weaknesses to assess the target

system against, built from a combination of SAN 25 [9], OWASP Top 10

[10] and most frequently identified penetration test

vulnerabilities. Each item needs to be assessed and mitigation and

testing plans described.

Below is the Threat Assessment table, which includes comments and suggestions from

reviewer(s), where applicable:

Table 5: Threat Assessment

CWE Description Mitigation description Recommendation

CWE
-89

Improper
Neutralizatio
n of Special
Elements
used in an
SQL
Command
('SQL
Injection')

Interaction with the DB is done exclusively via
Stored Procedures, and these are invoked via
IBM DB2 Python Package.

Inspect stored
procedures and
confirm there are no
SQL statements being
generated in an unsafe
manner (e.g. via
concatenation).

CWE
-78

Improper
Neutralizatio
n of Special
Elements
used in an OS
Command
('OS
Command
Injection')

No OS commands being executed in any
component.

http://cwe.mitre.org/top25/#CWE-89
http://cwe.mitre.org/top25/#CWE-89
http://cwe.mitre.org/top25/#CWE-78
http://cwe.mitre.org/top25/#CWE-78

 D3.2 Architecture Design – Final Version 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

CWE
-120

Buffer Copy
without
Checking Size
of Input
('Classic
Buffer
Overflow')

Dependencies are not known to be vulnerable
to Buffer Overflow. Messages greater than
5MB are discarded by the Router.

Investigate if it is
possible to enforce the
5MB limit directly in
RabbitMQ rather than
discarding the
messages at the
Router.

CWE
-79

Improper
Neutralizatio
n of Input
During Web
Page
Generation
('Cross-site
Scripting')

This weakness could be in scope for the client
connectors.

Handled in other work
packages.

CWE
-306

Missing
Authenticatio
n for Critical
Function

All the components in scope are subject to
authentication, either via internal user
database or via IBM SSO.

CWE
-862

Missing
Authorization

RabbitMQ: we have policies in place to enforce
write-only access or read-only access. These
policies, along with the separation of the
queues, guarantee a good level of isolation
and authorisation.

Router: no authorisation is being performed,
messages are only being forwarded.

Cloud Functions: authorisation is performed to
limit the user to specific commands.

Some Cloud Functions
have only minimal
authorisation and deny
certain actions. A more
complete authorisation
is preferable.

CWE
-798

Use of Hard-
coded
Credentials

The only "hardcoded" credentials, if
hardcoded can be considered, are for the
guest account which we are circulating to the
MUSKETEER consortium partners in order to
enable them to register new users with the
platform.

Given the current Trust
Model (See Trust
Model section 4.3.1 of
this document), this is
acceptable. However,
should the Trust Model
change, this needs to
be reconsidered.

Investigate the usage of
an external source (i.e.
an SSO, such as the IBM
SSO via IBM Id).

http://cwe.mitre.org/top25/#CWE-120
http://cwe.mitre.org/top25/#CWE-120
http://cwe.mitre.org/top25/#CWE-79
http://cwe.mitre.org/top25/#CWE-79
http://cwe.mitre.org/top25/#CWE-306
http://cwe.mitre.org/top25/#CWE-306
http://cwe.mitre.org/top25/#CWE-862
http://cwe.mitre.org/top25/#CWE-862
http://cwe.mitre.org/top25/#CWE-798
http://cwe.mitre.org/top25/#CWE-798

 D3.2 Architecture Design – Final Version 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Investigate the need to
create a new REST API
endpoint for tokens /
credentials generation.

CWE
-311

Missing
Encryption of
Sensitive Data

RabbitMQ: Messages are stored in cleartext
(but transmitted over SSL). Some messages
(i.e. user registration) may contain sensitive
data, and leaving this data unencrypted on the
RabbitMQ queue may raise some concern.
Likelihood of RabbitMQ being breached is low.

IBM COS: Payloads communicated through the
platform by aggregators/participants are not
encrypted at this level. If required, encryption
is implemented in other work packages, e.g. at
the algorithmic level.

IBM DB2: database encryption is left to the
IBM Cloud DB2 service. Usernames are being
stored for authorisation against the queues.

Investigate the
feasibility of adding a
component that adds
an encryption layer to
the COS uploads, so
that no payloads are
left unencrypted on
COS. The likelihood of
COS being breached is
very low.

CWE
-434

Unrestricted
Upload of File
with
Dangerous
Type

After credentials for upload have been granted
to the participant, there is no validation in
place for checking what the participant is
uploading on COS.

Given the current Trust
Model (See Trust
Model section 4.3.1),
this is acceptable.
However, should the
Trust Model change,
this needs to be
reconsidered.

CWE
-807

Reliance on
Untrusted
Inputs in a
Security
Decision

The only security decision currently
implemented relies on the username
submitted along with the messages to
RabbitMQ. This username is verified and
validated by RabbitMQ and can be trusted.

Investigate the
robustness of Routers
and Cloud Functions via
manual Pentest, by
means of a fuzzer or
other techniques.

CWE
-250

Execution
with
Unnecessary
Privileges

No sudo/administrative/high privilege
commands are being executed.

CWE
-352

Cross-Site
Request
Forgery
(CSRF)

This weakness could be in scope for the client
connectors.

However, some administrative UI interfaces
might be in scope, but they should not be
publicly accessible.

Handled in other work
packages.

Investigate with a
manual Pentest if any
administrative UI is

http://cwe.mitre.org/top25/#CWE-311
http://cwe.mitre.org/top25/#CWE-311
http://cwe.mitre.org/top25/#CWE-434
http://cwe.mitre.org/top25/#CWE-434
http://cwe.mitre.org/top25/#CWE-807
http://cwe.mitre.org/top25/#CWE-807
http://cwe.mitre.org/top25/#CWE-250
http://cwe.mitre.org/top25/#CWE-250
http://cwe.mitre.org/top25/#CWE-352
http://cwe.mitre.org/top25/#CWE-352

 D3.2 Architecture Design – Final Version 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

vulnerable to CSRF, e.g.
[12]

CWE
-22

Improper
Limitation of
a Pathname
to a
Restricted
Directory
('Path
Traversal')

Participants receive a set of URL + credentials
for downloading and uploading content
from/to COS and these credentials are bound
to the URL - there should be no way to
perform path traversals to other buckets and
upload/download content to/from other
buckets. COS is not known to be vulnerable.

CWE
-494

Download of
Code Without
Integrity
Check

Docker images are being built on a trusted
Travis environment. Dependencies are being
downloaded at build time only, and the
likelihood of a Man-in-the-Middle attack is
very low.

No code/dependencies are being resolved at
runtime and/or on untrusted environments.

CWE
-863

Incorrect
Authorization

See CWE-862 comment above.

CWE
-829

Inclusion of
Functionality
from
Untrusted
Control
Sphere

In the centralized server platform, there are no
features that rely on the execution of code
transmitted by the users of the platform.

This weakness could be in scope for the ML
library implementation.

Handled in other work
packages.

CWE
-732

Incorrect
Permission
Assignment
for Critical
Resource

N/A

CWE
-676

Use of
Potentially
Dangerous
Function

A high level code review that we have
performed did not highlight any obvious
dangerous function or code block. However,
this will be covered either with a deep source
code review or a static source code analysis
(i.e. appscan)

This will be confirmed
by Static Source Code
Analysis.

http://cwe.mitre.org/top25/#CWE-22
http://cwe.mitre.org/top25/#CWE-22
http://cwe.mitre.org/top25/#CWE-494
http://cwe.mitre.org/top25/#CWE-494
http://cwe.mitre.org/top25/#CWE-863
http://cwe.mitre.org/top25/#CWE-863
http://cwe.mitre.org/top25/#CWE-829
http://cwe.mitre.org/top25/#CWE-829
http://cwe.mitre.org/top25/#CWE-732
http://cwe.mitre.org/top25/#CWE-732
http://cwe.mitre.org/top25/#CWE-676
http://cwe.mitre.org/top25/#CWE-676

 D3.2 Architecture Design – Final Version 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

CWE
-327

Use of a
Broken or
Risky
Cryptographic
Algorithm

We use TLS1.2 for SSL channels. In the future,
a network scan of the interfaces might reveal if
there are deprecated crypto algorithms being
used. To our knowledge, the IBM Cloud
services are following the best practices.

In the platform code, there are no
cryptographic algorithms being leveraged.

This will be confirmed
by Network
Vulnerability Scan.

CWE
-131

Incorrect
Calculation of
Buffer Size

See CWE-120 comment above.

CWE
-307

Improper
Restriction of
Excessive
Authenticatio
n Attempts

We are relying on RabbitMQ and IBM COS
authentication.

Investigate the
feasibility to mitigate
this on RabbitMQ and
IBM COS. Alternatively,
investigate the
feasibility to implement
an additional layer that
abstracts RabbitMQ
and also COS, where
authentication
attempts could be
checked for.

CWE
-601

URL
Redirection to
Untrusted
Site ('Open
Redirect')

This weakness could be in scope for the client
connectors.

Handled in other work
packages.

CWE
-134

Uncontrolled
Format String

Format strings are being used mainly for
logging purposes and hardcoded. No format
strings are being received by the end users of
the platform.

CWE
-190

Integer
Overflow or
Wraparound

See CWE-120 comment above.

CWE
-759

Use of a One-
Way Hash
without a Salt

Passwords are only being stored in RabbitMQ.
It should be confirmed whether or not
RabbitMQ is using a salted hash.

Investigate and confirm
RabbitMQ is storing
passwords in a secure
manner. Alternatively,
investigate the usage of
an external LDAP.

http://cwe.mitre.org/top25/#CWE-327
http://cwe.mitre.org/top25/#CWE-327
http://cwe.mitre.org/top25/#CWE-131
http://cwe.mitre.org/top25/#CWE-131
http://cwe.mitre.org/top25/#CWE-307
http://cwe.mitre.org/top25/#CWE-307
http://cwe.mitre.org/top25/#CWE-601
http://cwe.mitre.org/top25/#CWE-601
http://cwe.mitre.org/top25/#CWE-134
http://cwe.mitre.org/top25/#CWE-134
http://cwe.mitre.org/top25/#CWE-190
http://cwe.mitre.org/top25/#CWE-190
http://cwe.mitre.org/top25/#CWE-759
http://cwe.mitre.org/top25/#CWE-759

 D3.2 Architecture Design – Final Version 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

CWE
-521

Use of
default, weak
or well-
known
passwords

All the management passwords we have are
strong and randomly generated.

We are currently not enforcing any password
complexity policy in RabbitMQ.

Investigate the
feasibility of
implementing a
password complexity
logic in the Router
Component, unless
RabbitMQ allows a
password complexity
policy.

CWE
-640

Uses weak or
ineffective
credential
recovery and
forgotten
password
processes

We currently do not have any credential
recovery process in place for RabbitMQ
passwords.

CWE
-308

Missing or
ineffective
multi-factor
authenticatio
n for
administrativ
e access or
access to
sensitive
data.

No MFA is enabled on RabbitMQ.

From administration perspective, DB2 and
RabbitMQ do not have any multi factor
authentication.

Investigate the
feasibility of using
external sources (e.g.
LDAP or SSO) for
authenticating against
RabbitMQ and DB2.

CWE
-312

Clear text
storage of
sensitive
data.
(Including
keys and
credentials)

RabbitMQ: unauthorized access to RabbitMQ
is very unlikely. The queues are only used for
transient storage of commands.

DB2: usernames are currently stored in
cleartext. Passwords are not stored and only
used by RabbitMQ.

Propose to store
username via a
hash/salt combination.

CWE
-611

Improper
restriction of
XML External
Entities (XXE)

 N/A

CWE
-16

A6: Security
Misconfigurat
ion /
Improper
Hardening

We rely on IBM Cloud hardening practices. This will be confirmed
by Penetration Testing
and Network
Vulnerability Scan.

http://cwe.mitre.org/top25/#CWE-521
http://cwe.mitre.org/top25/#CWE-521
http://cwe.mitre.org/top25/#CWE-640
http://cwe.mitre.org/top25/#CWE-640
http://cwe.mitre.org/top25/#CWE-308
http://cwe.mitre.org/top25/#CWE-308
http://cwe.mitre.org/top25/#CWE-312
http://cwe.mitre.org/top25/#CWE-312
http://cwe.mitre.org/top25/#CWE-611
http://cwe.mitre.org/top25/#CWE-611
http://cwe.mitre.org/top25/#CWE-16
http://cwe.mitre.org/top25/#CWE-16

 D3.2 Architecture Design – Final Version 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

CWE
-502

A8: Insecure
Deserializatio
n

This weakness could be in scope for the ML
library implementation.

---- A9: Using
Component
with
unknown
vulnerabilities

No components are known to be vulnerable. This will be confirmed
by Static Source Code
Analysis.

CWE
-778

A10:
Insufficient
Logging &
Monitoring

Most of the components are logging locally to
whatever logging interface is provided by the
IBM Cloud service.

CWE
-532

Exposure of
sensitive
information
through logs.
(ie. Logging of
credentials)

A high level code review showed no concerns. Investigate all the
logging points and
ensure no sensitive
data is being logged.

---- Failure to
enforce HTTP
Strict
Transport
Security

We rely on IBM Cloud hardening practices. This will be confirmed
by Penetration Testing
and Network
Vulnerability Scan.

In addition to the previous list of known weaknesses, other WPs should assess the mitigations

against the following:

Threat Description Mitigation

CWE-1039: Automated Recognition Mechanism
with Inadequate Detection or Handling of
Adversarial Input Perturbations

This weakness could be in scope for the ML
library implementation.

ML Poisoning Attacks - ability for an attacker to
poison the training data by injecting carefully
designed samples to eventually compromise the
whole learning process

This weakness could be in scope for the ML
library implementation.

ML Extraction Attacks - ability for an attacker to
extract particular information from the model

This weakness could be in scope for the ML
library implementation.

http://cwe.mitre.org/top25/#CWE-502
http://cwe.mitre.org/top25/#CWE-502
http://cwe.mitre.org/top25/#CWE-778
http://cwe.mitre.org/top25/#CWE-778
http://cwe.mitre.org/top25/#CWE-532
http://cwe.mitre.org/top25/#CWE-532

 D3.2 Architecture Design – Final Version 35

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4.3 Threat Assessment Conclusions

The outcome of the Threat Assessment can be summarised as follows:

- Existing mitigations designed and implemented since the platform

inception are deemed effective in most cases.

- While no critical weaknesses have been identified, the implemented

Authorisation mechanism may need improvements.

- Other investigations have been recommended for future

improvements, and details can be found in the previous section.

- It is recommended that Static Source Code Analysis, Network

Vulnerability Scanning, and Penetration Testing be conducted in order

to confirm the implemented security controls.

The scope of the Threat Modelling and Security Architecture Review was limited to the

MUSKETEER platform and its components as per the architecture shown in Figure 2, with the

Participant / Aggregator component being the only exception: a security assessment of this

component should be conducted separately within the scope of the WPs responsible for

developing it.

The MUSKETEER “local platform”, not depicted in the diagram but included in D3.3, was also

deemed out of the scope of the Threat Modelling and Security Architecture Review. It is only

a development tool that facilitates testing during the development phase. It is not meant to

be used in a real-world environment.

4.3.1 Considerations on the current Trust Model

Some of the existing mitigations have been deemed as sufficiently secure based on the current

Trust Model. In the current phase of the MUSKETEER project, guest credentials for accessing

the platform are being shared with only a trusted set of parties who are collaborating on the

project.

Device trust, user trust, transport/session trust, application trust and data trust need to be

reconsidered should a Zero Trust Model approach be adopted in the future. Some of the

mitigations should be reviewed as suggested in the Threat Assessment excerpt.

 D3.2 Architecture Design – Final Version 36

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5 Proposed API

Section 3 described the platform and the messaging-based interoperability. In this section the

messages for each individual service/API are described. This is not intended as a definitive API

guide, but rather a synthesis of functionality required to build a full end-end API. The per-API

parameters and results are in-line with what each API requires, but API service names etc. are

instructive rather than definitive, leaving platform API developers some leeway in determining

their implementation. Additionally, this API is programming language agnostic, affording

considerable flexibility for future implementations.

5.1 Basic Message Structure

There is an underlying message structure that is common to all messages. It is based on JSON

notation.

5.1.1 Service Request

Each message for a service request is based on a JSON structure as follows:

{
 "service": {
 "name": "<service name>",
 "args": {
 "cmd": "<command name>", "params": [<p1>, <p2>, … <pn>]
 }
 }
}

Figure 6: Service Request

• <service name> - the platform service to invoke, used by the Router

• <command name> - the service command

• <p1> etc. - parameters to the service command

5.1.2 Service Response

Each response from a service is based on a JSON structure as follows:

{
 "service": {
 "name": "<service name>",
 "method": "<command name>",
 "params": [<p1>, <p2>, … <pn>],
 "count": "<points>",
 "data": [{<data1>}, {<dataN>}]
 }
}

 D3.2 Architecture Design – Final Version 37

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 7: Service Response

• <command name> - the service command originally requested

• <p1> etc. - parameters to the service command

• <points> - the number of entries in the “data” array

• <data1> etc – row of data

5.2 Control-plane APIs

This is backed by a micro-service based on IBM Cloud™ Functions which provides machine

learning task management services invoked through the control-plane. The service records

task details in the database. All of the control-plane APIs are synchronous and expect to

receive a response from the platform.

5.2.1 Change User Password

Allows the authenticated user to change their password.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "ChangePassword", "params": ["<Password>"]
 }
 }
}

Figure 8: Join Task Request

{
 "service": {
 ...
 "data": [{"status": "<Status>"}]
 }
}

Figure 9: Join Task Response

• <Password> - the new password (string)

• <Status> - the status, e.g. “OK” (string)

5.2.2 List Tasks

Query for a list of all tasks.

 D3.2 Architecture Design – Final Version 38

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "GetTasks", "params": [None]
 }
 }
}

Figure 10: List Tasks Command

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>",
 "status": "<Status>",
 "topology": "<Topology>",
 "definition": "<Definition>"
 }]
 }
}

Figure 11: Task Listing Response

• <TaskName> - the name of the task (string)

• <Status> - the current task status (string)

• <Topology> - relates to POM type, e.g. “STAR” (string)

• <Definition> - parameters for the task (JSON, optional)

5.2.3 Create Task

Create a new task with the authenticated user as the designated task owner.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "CreateTask", "params": ["<TaskName>", "<Topology>", <Definition>]
 }
 }
}

Figure 12: Create Task Request

{
 "service": {
 ...
 "data": [{"status": "<Status>"}]
 }
}

Figure 13: Create Task Response

 D3.2 Architecture Design – Final Version 39

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• <TaskName> - the name of the task (string)

• <Topology> - relates to POM type, e.g. “STAR” (string)

• <Definition> - parameters for the task (JSON, optional)

• <Status> - the current task status, e.g. “CREATED” (string)

5.2.4 Stop Task

Stop a task previously created by the authenticated user (task creator).

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "StopTask, "params": ["<TaskName>"]
 }
 }
}

Figure 14: Stop Task Request

{
 "service": {
 ...
 "data": [{"status": "<Status>"}]
 }
}

Figure 15: Stop Task Response

• <TaskName> - the name of the task (string)

• <Status> - the current task status, e.g. “COMPLETE” (string)

5.2.5 Join Task

Join a specific task with the authenticated user details as a new participant.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "JoinTask", "params": ["<TaskName>"]
 }
 }
}

Figure 16: Join Task Request

{
 "service": {

 D3.2 Architecture Design – Final Version 40

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 ...
 "data": [{"status": "<Status>"}]
 }
}

Figure 17: Join Task Response

• <TaskName> - the name of the task (string)

• <Status> - the current task status, e.g. “CREATED” (string)

5.2.6 Leave Task

Leave a task previously joined by the authenticated user.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "LeaveTask, "params": ["<TaskName>"]
 }
 }
}

Figure 18: Leave Task Request

{
 "service": {
 ...
 "data": [{"status": "<Status>"}]
 }
}

Figure 19: Leave Task Response

• <TaskName> - the name of the task (string)

• <Status> - the status, e.g. “OK” (string)

5.2.7 Task Info

Query for the task information for a specific task.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "TaskInfo", "params": ["<TaskName>"]
 }
 }
}

Figure 20: Task Info Request

 D3.2 Architecture Design – Final Version 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>",
 "status": "<Status>",
 "topology": "<Topology>",
 "definition": "<Definition>"
 }]
 }
}

Figure 21: Task Info Response

• <TaskName> - the name of the task (string)

• <Status> - the current task status, e.g. “CREATED” (string)

• <Topology> - relates to POM type, e.g. “STAR” (string)

• <Definition> - parameters for the task (JSON, optional)

5.2.8 Joined Tasks

Query for a list of all tasks joined by the authenticated user.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "JoinedTasks, "params": [None]
 }
 }
}

Figure 22: Joined Tasks Request

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>",
 "status": "<Status>",
 "topology": "<Topology>",
 "definition": "<Definition>"
 }]
 }
}

Figure 23: Joined Tasks Response

• <TaskName> - the name of the task (string)

• <Status> - the current task status, e.g. “CREATED” (string)

• <Topology> - relates to POM type, e.g. “STAR” (string)

 D3.2 Architecture Design – Final Version 42

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• <Definition> - parameters for the task (JSON, optional)

5.2.9 Created Tasks

Query for a list of all tasks created by the authenticated user.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "CreatedTasks, "params": [None]
 }
 }
}

Figure 24: Created Tasks Request

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>",
 "status": "<Status>",
 "topology": "<Topology>",
 "definition": "<Definition>"
 }]
 }
}

Figure 25: Created Tasks Response

• <TaskName> - the name of the task (string)

• <Status> - the current task status, e.g. “CREATED” (string)

• <Topology> - relates to POM type, e.g. “STAR” (string)

• <Definition> - parameters for the task (JSON, optional)

5.2.10 Download Model

Query for the model for a specific task. The authenticated user must be the task aggregator

or a participant in the task.

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "GetModel", "params": ["<TaskName>"]
 }
 }

 D3.2 Architecture Design – Final Version 43

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

}
Figure 26: Task Info Request

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>",
 "model": {
 "url": "<ModelURL>",
 "model": {<Model>}
 }
 }]
 }
}

Figure 27: Task Info Response

• <TaskName> - the name of the task (string)

• <Model> - an initial model (JSON, optional)

• <ModelURL> - a URL to an initial model (string, optional)

5.3 Data-plane APIs

This is backed by a micro-service based on IBM Cloud™ Functions which provides machine

learning modelling services invoked through the data-plane. All of the data-plane APIs are

asynchronous and do not expect to receive a response from the platform immediately. Rather,

a series of notifications are expected at a later time.

5.3.1 Aggregator Start Training Round

As the task creator (the authenticated user), start a round of federated learning.

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "StartTraining",
 "params": ["<TaskName>", {<Model>}, "<ParticipantId>"]
 }
 }
}

Figure 28: Aggregator Start Training Round Request

• <TaskName> - the name of the task to start training (string)

• <Model> - an initial model (JSON, optional)

• <ParticipantId> - the id (obfuscated) of a participant (string, optional)

 D3.2 Architecture Design – Final Version 44

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.3.2 Aggregator Notification

The platform issues this notification to the aggregator in response to participant actions.

{
 "notification": {
 "type": "<NotificationType>",
 "participant": "<ParticipantId>",
 "status": "<Status>"
 }
 "params": {
 "model": {
 "url": "<ModelURL>",
 "model": {<Model>}
 }
}

Figure 29: Aggregator Received Notification

• <NotificationType> - “joined”, “updated”, “left” (string)

• <ParticipantId> - the id (obfuscated) of a specific participant (string)

• <Model> - an initial model (JSON, optional)

• <ModelURL> - a URL to an initial model (string, optional)

5.3.3 Participant Notification

The platform issues this notification to participants in response to aggregator actions.

{
 "notification": {
 "type": "<NotificationType>",
 }
 "params": {
 "model": {
 "url": "<ModelURL>",
 "model": {<Model>}
 }
}

Figure 30: Participant Received Notification

• <NotificationType> - “started”, “stopped” (string)

• <Model> - an initial model (JSON, optional)

• <ModelURL> - a URL to an initial model (string, optional)

 D3.2 Architecture Design – Final Version 45

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.3.4 Participant Training Round Complete

As a task participant (the authenticated user), inform the platform that local training is

complete.

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "TrainingComplete",
 "params": ["<TaskName>", <{Model}>]
 }
 }
}

Figure 31: Participant Training Round Complete

• <TaskName> - the name of the task (string)

• <Model> - a trained model (JSON, optional)

5.4 Registration APIs

In addition to the control-plane and data-plane APIs, a registration service also exists, allowing

users to both register with the platform and to reset their password if necessary.

As this is a rarely used service, a manual process to perform the action by a system

administrator could well be sufficient. Alternatively, it could be implemented similarly to the

control-plane service or as a dedicated stand-alone service linked to a user interface.

In any event, the service supports the following interactions and is described as if it were

implemented as a control-plane style service. Note: if implemented in the same manner as

the control-plane services, a guest user account is needed to allow minimal access to the

platform.

5.4.1 Register User

Allows a new user to register with the platform.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "AddUser", "params": ["<Name>", "<Password>"]
 }
 }
}

 D3.2 Architecture Design – Final Version 46

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 32: Register User - Request

{
 "service": {
 ...
 "data": [{"status": "<Status>"}]
 }
}

Figure 33: Register User - Response

• <Name> - the new username (string)

• <Password> - the user password (string)

• <Status> - the status, e.g. “CREATED” (string)

5.4.2 Reset User Password

Allows a previously registered user to reset their password.

{
 "service": {
 "name": "UserTaskService",
 "args": {
 "cmd": "ResetPassword", "params": ["<Name>"]
 }
 }
}

Figure 34: Reset User Password - Request

{
 "service": {
 ...
 "data": [{"password": "<Password"}]
 }
}

Figure 35: Reset User Password - Response

• <Name> - the username (string)

• <Password> - the newly reset password (string)

5.5 Administration APIs

It is envisaged that a certain number of administration APIs will be required. For example, an

administrator may wish to: list all users, remove a user, view all participants by task, expire an

inactive task. These administration APIs, if implemented, must be protected by an elevated

level of authorisation for specific users.

 D3.2 Architecture Design – Final Version 47

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.6 Federated Machine Learning Framework (FMLF) Package

This is a Python package that is installed at the aggregator and participant user sites. It

provides a high-level API that wraps the messaging control and data plane functions as

described in the previous sections. It is described in more details in D3.3.

From a platform user perspective, classes are provided to cover three modes of operation.

5.6.1 Basic User

This mode of operation only uses control-plane features. It is how authenticated users create,

join or list tasks. Ideal for use in a user interface, where, for example, tasks could be joined

with a click.

5.6.2 Aggregator User

This user starts (5.3.1), stops (5.2.4), and manages rounds of federated learning. It receives

notifications from participants (5.3.2) as rounds of training are progressing.

It is intended that this user primarily uses data-plane features, when modelling is underway.

5.6.3 Participant User

This user awaits notifications from the aggregator (5.3.3) before commencing a round of

federated learning. Upon completion of a round of training, a message (5.3.4) is issued to this

user.

It is intended that this user primarily uses data-plane features, when modelling is underway.

5.6.4 Open Source

As this package is the primary mechanism to interact with the platform, the intention is to

make it available as an open source contribution.

5.7 Authorisation

For every API available in the FMLF package, an authorisation on a per-user basis is enforced.

This is applied based on the user’s role and there are three user roles in the platform: guest,

standard, administrator. Upon invocation of any micro-service, this authorisation is applied

 D3.2 Architecture Design – Final Version 48

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

based on the authenticated user. An error is returned if the required level of authorisation is

not present. The table below specifies which API is available to which user role:

Table 6: Authorisation by Operation

Operation Authorisation Comments

5.2.1 Change User Password standard The authenticated user

5.2.2 List Tasks standard Any user can list tasks

5.2.3 Create Task standard Any user can create a task

5.2.4 Stop Task standard Task aggregator user only

5.2.5 Join Task standard Any user can join a task

5.2.6 Leave Task standard Success if previously joined

5.2.7 Task Info standard Any user can view task info

5.2.8 Joined Tasks standard All previously joined tasks

5.2.9 Created Tasks standard All previously created tasks

5.2.10 Download Model standard If previously joined task

5.3.1 Aggregator Start Training Round standard Task aggregator user only

5.3.2 Aggregator Notification standard Task aggregator user only

5.3.3 Participant Notification standard Task participant user only

5.3.4 Participant Training Round Complete standard Task participant user only

5.4.1 Register User guest Minimal permission

5.4.2 Reset User Password guest Minimal permission

List Users administrator May not be needed

Remove User administrator Obsolete user accounts

List Task Participants administrator All participants of all tasks

Expire Task administrator Prune abandoned tasks

 D3.2 Architecture Design – Final Version 49

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6 Conclusions and possible future extensions

To conclude this document, an outlook is given on possible future extensions to the platform.

This was already covered in D3.1, and that content is still relevant. This section provides an

update to the D3.1 content and details additional extensions over and above what was

described in D3.1. This is in addition to the requirements not currently satisfied by the D3.3.

prototype. These new extensions may be implemented in due course or in the future.

Explore synergies and possible integration points with the AI4EU platform

Discussed in D3.1 and still applicable.

Organizing platform user access permissions in groups

Discussed in D3.1 and still applicable. This has progressed and is covered in sections 5.6 and

5.7.

Permissions for downloading models

Discussed in D3.1 and still applicable. This has progressed and is covered in section 5.2.10.

Model serialization

Discussed in D3.1 and still applicable. For the D3.3 prototype, to ensure a wide range of

compatibility, a base64 encoding scheme is used for model serialization. The evaluation of

D3.3 in conjunction with other work packages will guide future development.

Task lifecycles

Discussed in D3.1 and still applicable. The evaluation of D3.3 in conjunction with other work

packages will guide future development.

User roles

Discussed in D3.1 and resolved. The task creator is deemed to also be the designated

aggregator.

 D3.2 Architecture Design – Final Version 50

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Data value estimation

Discussed in D3.1 and still applicable. The evaluation of D3.3 in conjunction with other work

packages will guide future development.

Encryption / key management

Discussed in D3.1 and resolved. This is handled outside of the platform, within other work

packages.

Security Review Recommendations

After the security review is complete (see section 4), a number of possible enhancements may

come to light. These will be considered for future development.

Audit Trail

Somewhat related to task lifecycles, it could be interesting to have a full audit log of each task,

detailing training rounds, participants, aggregator insights, participant effectiveness etc.

Such a feature would effectively mean that tasks are never fully removed from the platform

upon completion, but rather are archived to a task history record.

External Authentication Services

If the MUSKETEER effort were to move towards a supported product, it would be desirable to

link the user authentication mechanism to an external (enterprise) authentication service.

RabbitMQ can use LDAP to perform authentication by deferring to an external LDAP provided

service. It could then be possible to use an enterprise single sign-on service to also provide

access to the Federated Learning platform. Alternatively, for inter-enterprise workloads, a

cloud-based authentication service could be used.

 D3.2 Architecture Design – Final Version 51

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7 References

[1] S. Newman (2015). Building Microservices – Designing Fined-Grained Systems, O’ Reilly.
[2] https://cloud.ibm.com/
[3] S. Tarkoma (2012). Publish/Subscribe Systems: Design and Principles, John Wiley & Sons,

Ltd.
[4] https://www.rabbitmq.com/
[5] https://openwhisk.apache.org/
[6] https://kubernetes.io/
[7] https://docs.aws.amazon.com/s3/index.html
[8] W. Grunbok, M. Cole, “Security in Development - The IBM Secure Engineering

Framework”, https://www.redbooks.ibm.com/redpapers/pdfs/redp4641.pdf
[9] CWE/SANS TOP 25 Most Dangerous Software Errors, https://www.sans.org/top25-

software-errors
[10] OWASP Top Ten, https://owasp.org/www-project-top-ten/
[11] International Data Spaces Association, “Reference Architecture Model – Version 3”,

April 2019, https://www.internationaldataspaces.org/wp-
content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf

[12] https://packetstormsecurity.com/files/148229/RabbitMQ-Web-Management-Cross-
Site-Request-Forgery.html

[13] https://owasp.org/www-community/attacks/SQL_Injection

https://cloud.ibm.com/
https://www.rabbitmq.com/
https://openwhisk.apache.org/
https://kubernetes.io/
https://docs.aws.amazon.com/s3/index.html
https://www.redbooks.ibm.com/redpapers/pdfs/redp4641.pdf
https://www.sans.org/top25-software-errors
https://www.sans.org/top25-software-errors
https://owasp.org/www-project-top-ten/
https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf
https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf
https://packetstormsecurity.com/files/148229/RabbitMQ-Web-Management-Cross-Site-Request-Forgery.html
https://packetstormsecurity.com/files/148229/RabbitMQ-Web-Management-Cross-Site-Request-Forgery.html
https://owasp.org/www-community/attacks/SQL_Injection

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related documents
	1.3 Outline

	2 Requirements
	2.1 Scope
	2.2 Industrial and technical requirements
	2.2.1 User roles
	2.2.2 Functional requirements
	2.2.2.1 Managing platform users
	2.2.2.2 Managing Federated ML tasks
	2.2.2.3 Executing Federated ML tasks

	2.2.3 Non-functional requirements

	2.3 Alignment with industrial data platform standards

	3 Platform architecture
	3.1 Message Flow
	3.1.1 Control-plane
	3.1.2 Data-plane

	3.2 Cloud-hosted Services
	3.2.1 Open Source/Standards

	3.3 Initial Security/Privacy Mitigations
	3.3.1 Outbound-only network connections
	3.3.2 Secure communications
	3.3.3 Time-limited credentials
	3.3.4 User validation
	3.3.5 Queuing Policy
	3.3.6 Avoidance of SQL Injection attacks

	4 Security & Privacy
	4.1 Security and Privacy by Design principles
	4.2 SPbD in the MUSKETEER centralized server platform
	4.2.1 Threat Model and Security Architecture Review

	4.3 Threat Assessment Conclusions
	4.3.1 Considerations on the current Trust Model

	5 Proposed API
	5.1 Basic Message Structure
	5.1.1 Service Request
	5.1.2 Service Response

	5.2 Control-plane APIs
	5.2.1 Change User Password
	5.2.2 List Tasks
	5.2.3 Create Task
	5.2.4 Stop Task
	5.2.5 Join Task
	5.2.6 Leave Task
	5.2.7 Task Info
	5.2.8 Joined Tasks
	5.2.9 Created Tasks
	5.2.10 Download Model

	5.3 Data-plane APIs
	5.3.1 Aggregator Start Training Round
	5.3.2 Aggregator Notification
	5.3.3 Participant Notification
	5.3.4 Participant Training Round Complete

	5.4 Registration APIs
	5.4.1 Register User
	5.4.2 Reset User Password

	5.5 Administration APIs
	5.6 Federated Machine Learning Framework (FMLF) Package
	5.6.1 Basic User
	5.6.2 Aggregator User
	5.6.3 Participant User
	5.6.4 Open Source

	5.7 Authorisation

	6 Conclusions and possible future extensions
	7 References

