

H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

May 20

D3.3 First prototype of the MUSKETEER
platform

 D3.3 First prototype of the MUSKETEER platform 1

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 31 May 2020

Author(s): Mathieu Sinn (IBM), Mark Purcell (IBM), Minh Ngoc Tran

(IBM), Susanna Bonura (ENG)
Participant(s): TREE; IMP; ENG; UC3M; IDSA; COMAU; FCA
Reviewer(s): Antoine Garnier (IDSA), Marcos Fernández (TREE)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP3
Dissemination level: Public
Version: 1.0

Contact: mathsinn@ie.ibm.com
Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-
Preserving Scenarios (MUSKETEER) has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 824988. The
sole responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only
be made with reference to the publisher.

 D3.3 First prototype of the MUSKETEER platform 2

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

In this document we provide a report which describes the demonstration of a first prototype of
the MUSKETEER platform. The demonstration involves the end-to-end execution of data
sharing and federated machine learning on synthetic data and one real-world use case. It
supports different privacy operating modes and uses a basic dashboard to support user
interactions with the platform.

Document History

Version Date Status Author Comment
1 08 May 2020 First version for

internal review
Mathieu Sinn First draft

2 15 May 2020 Final version for
internal review

Mathieu Sinn Draft for
review

3 Review inputs Antoine Garnier Update
4 Review inputs Marcos Fernández Update
5 Final Version Update
6 23 May 2020 Clean and submission Gal Weiss Final

 D3.3 First prototype of the MUSKETEER platform 3

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES ... 4

LIST OF TABLES ... 4

LIST OF ACRONYMS AND ABBREVIATIONS ... 6

1 INTRODUCTION .. 7
1.1 Background ... 7
1.2 Federated learning .. 8
1.3 Related documents .. 8
1.4 Outline.. 8

2 PROTOTYPE COMPONENTS .. 9
2.1 Cloud platform .. 9
2.2 Local platform ... 10
2.3 Platform APIs .. 11
2.4 Client package ... 11

3 EXAMPLES OF END-TO-END EXECUTIONS .. 12
3.1 Motivation.. 12
3.2 Installation instructions .. 15
3.3 Synthetic data .. 17
3.3.1 Terminal windows ... 17
3.3.2 Jupyter notebooks .. 23
3.3.3 Graphical user interface mock-up ... 28
3.4 Use case: Smart manufacturing... 32
3.4.1 Data Science workflow ... 32
3.4.2 Integration with the MUSKETEER platform.. 36

4 CONCLUSIONS ... 39

5 REFERENCES.. 39

 D3.3 First prototype of the MUSKETEER platform 4

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures
Figure 1: MUSKETEER’s PERT diagram... 7
Figure 2: MUSKETEER platform architecture (final version) .. 10
Figure 3: User registration on the MUSKETEER platform ... 12
Figure 4: Create Federated ML task on the MUSKETEER platform 13
Figure 5: List tasks on the MUSKETEER platform .. 13
Figure 6: Join task on the MUSKETEER platform.. 14
Figure 7: Communication from the aggregator to task participants... 14
Figure 8: Communication from the task participants to the aggregator 15
Figure 9: Registering the aggregator user via terminal .. 18
Figure 10: Registering the participant-1 user via terminal ... 18
Figure 11: Registering the participant-2 user via terminal ... 19
Figure 12: Creating a federated learning task via terminal .. 19
Figure 13: Starting the aggregator process ... 20
Figure 14: Listing federated learning tasks .. 21
Figure 15: Joining a task as participant .. 21
Figure 16: Performing the federated learning on the aggregator side (start) 21
Figure 17: Performing the federated learning on the participant side (start) 22
Figure 18: Termination of the federated learning on the aggregator side 22
Figure 19: Termination of the federated learning on the participant 1 side 23
Figure 20: Termination of the federated learning on the participant 2 side 23
Figure 21: Jupyter notebook tree view ... 24
Figure 22: Demonstrator notebooks ... 24
Figure 23: Task creator notebook - loading prerequisites .. 24
Figure 24: Task creator notebook - registering user .. 25
Figure 25: Task creator notebook - listing existing tasks ... 25
Figure 26: Task creator notebook - creating a new task .. 26
Figure 27: Task creator notebook - aggregator process (start) ... 26
Figure 28: Task participant notebook - loading prerequisites .. 27
Figure 29: Task participant notebook – registering user .. 27
Figure 30: Task participant notebook - listing tasks .. 27
Figure 31: Task participant notebook - joining a task .. 28
Figure 32: Task participant notebook - participant process (start)... 28
Figure 33: Graphical user interface - login page .. 29
Figure 34: Graphical user interface - user registration ... 29
Figure 35: Graphical user interface - task listing ... 30
Figure 36: Graphical user interface - task creation .. 30
Figure 37: Graphical user interface - task operations .. 31
Figure 38: Graphical user interface - task execution settings .. 31
Figure 39: Graphical user interface - task result .. 32
Figure 40: Use case task creator notebook – task definition .. 37
Figure 41: Use case task participant notebook – training execution (start) 38

List of Tables
Table 1: Confusion matrix when training on FPS2 and testing on FPS2 34
Table 2: Confusion matrix when training on FPS2 and testing on FPD2 34

 D3.3 First prototype of the MUSKETEER platform 5

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Table 3: Confusion matrix when training on FPS2 and testing on FPS2 + FPD2 35
Table 4: Confusion matrix when training on FPD2 and testing on FPS2 35
Table 5: Confusion matrix when training on FPD2 and testing on FPD2 35
Table 6: Confusion matrix when training on FPD2 and testing on FPS2 + FPD2 35
Table 7: Confusion matrix when training on FPS2 + FPD2 and testing on FPS2 35
Table 8: Confusion matrix when training on FPD2 + FPS2 and testing on FPD2 35
Table 9: Confusion matrix when training on FPS2 + FPD2 and testing on FPS2 + FPD2 36
Table 10: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPS2 38
Table 11: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPD2 39
Table 12: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPS2 +
FPD2... 39

 D3.3 First prototype of the MUSKETEER platform 6

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CNN Convolutional Neural Network
HTTP HyperText Transfer Protocol
ML Machine Learning
POM Privacy Operation Mode
VM Virtual Machine
WP Work Package

 D3.3 First prototype of the MUSKETEER platform 7

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Background
The purpose of the MUSKETEER platform is to enable participants of the data economy to
participate in federated Machine Learning (ML) and thereby realize the value of their data
assets, while preventing the leakage of information that is proprietary, confidential, personally
sensitive, or that must not be shared because of other legal or regulatory requirements.
Functionally, the platform has to provide the infrastructure and implement the services that
are required to enable the secure and privacy-preserving federated ML algorithms developed
in WP4 and WP5 (see Figure 1 for an overview of the MUSKETEER work packages) in end-
to-end applications. It must also support the assessments to be carried it out in WP6 and
provide interfaces which allow for the development of client connectors and end-to-end
demonstration of the industrial use cases in WP7.

In this document we provide a report which describes the demonstration of a first prototype of
the MUSKETEER platform. The purpose of this document is to give readers a view on the
main interactions with the MUSKETEER platform in order to perform end-to-end execution
of data sharing and federated machine learning; the workflow is demonstrated on synthetic
data and one real-world use case. Moreover the document provides instructions for setting up
local instances and connectors to the platform, so that the reader can set up their own
environment for experimenting with the platform functionality. Finally, the document
presents a set of high-fidelity mock-ups of the platform’s user interface as a result of the task
T3.5 - Interfaces: development of front-end / dashboards for standard reporting, showing the
user interaction with the MUSKETEER server through the client connector.

Figure 1: MUSKETEER’s PERT diagram

 D3.3 First prototype of the MUSKETEER platform 8

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

1.2 Federated learning
Here we briefly recapitulate the key concepts of federated ML. For a more detailed review,
we refer to D4.1. The goal of federated ML is to create a ML model, leveraging distributed
data sets without having to centralize those. In the MUSKETEER project, federated ML is
extended to support different Privacy Operation Modes (POMs), which control the amount
of information that the data owners share during the model training and validation process. In
POMs 1-3 (which closely follow conventional federated ML protocols), the model training is
coordinated by a central instance, called aggregator, while the data owners act as
participants. Model training is typically performed iteratively throughout a number of
rounds which is either determined a priori, or dynamically, e.g. by considering a model
convergence criterion. In each round, the aggregator dispatches the current central version of
the model to all the participants. The participants then compute updates to that model based
on their local data, and send the updates back to the aggregator. Model updates can either be
in the form of gradients, or in the form of new versions of the model. Upon having received
the updates from all participants, the aggregator incorporates them (e.g. by taking an average
of all the updates) into the new version of the central model. After the training rounds have
completed, the aggregator holds the final version of the model (which under certain POMs
may be encrypted), which can then be centrally stored for later use and/or deployed by the
participants in their local production environments.

1.3 Related documents
This deliverable is related to the following documents (also see Figure 1 for more context):

• D3.1 and D3.2, describing the initial and final version of the
MUSKETEER platform architecture, respectively. We will refer to
these deliverables for detailed documentation of the technical
requirements which drove the development of the platform, background
on the cloud-based architecture, and a complete documentation of the
Application Programming Interfaces (APIs) for interacting with the
platform.

• D2.1, describing the industrial and technical requirements for the
MUSKETEER platform. We will refer to this deliverable for more
background on the Smart Manufacturing use case which will be part of
the demonstration described here.

• D4.1 and D4.2, describing and demonstrating the types of federated ML
algorithms to be developed during the project and to be supported by
the MUSKETEER platform.

• D7.1, describing the initial version of the client connectors’ architecture

design. We will refer to this deliverable for more information about the
envisioned packaging and deployment of the MUSKETEER platform
client connectors in end users’ computational environments.

1.4 Outline
The remainder of this document is structured as follows:

• In Section 2 we describe the components of the first prototype of the
platform: the cloud platform, the alternative local platform, the APIs for
interacting with the platform, the simple placeholder prototype for

 D3.3 First prototype of the MUSKETEER platform 9

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

client connectors (the full client connectors will be developed in WP7),
and the mock-ups that were produced along with a brief description of
the depicted functionalities and the user’s interactions with the

platform. We note that the local platform, the APIs and the client
connectors prototype are all available open source under an Apache 2.0
license [1][2].

• Section 3 provides a walk-through of the two exemplary
demonstrations on synthetic and real-world data; this section also
recapitulates the steps for creating a local compute environment in
which the reader can experiment with the open source software and the
platform functionality.

• In Section 4 we provide conclusions and an outlook on future work
towards the final prototype of the MUSKETEER platform.

2 Prototype components

2.1 Cloud platform
The MUSKETEER cloud platform is the central component enabling the creation and
execution of data sharing and federated machine learning tasks among geographically
dispersed participants. A diagram of the platform architecture is shown in Figure 2.

For detailed information we refer to deliverable D3.2. Here we only note at a high level:

• The cloud platform uses message queues for asynchronous exchange of
information required for federated learning, such as the latest version of
the central model computed by the aggregator, or model updates
computed by the participants on their local data. The platform itself is
agnostic to the semantics of this information (generally it will not even
be aware whether or not the information is encrypted); it is parsed and
interpreted in the context of the federated learning algorithm processes
running on the aggregator and participants’ sides, respectively.

• Besides the exchange of information for the execution of the actual
federated learning tasks, the platform also provides services to manage
tasks throughout their lifecycle, such as: creating new tasks, browsing
created tasks, joining tasks as a participant, or deleting tasks. The meta
information that is required for task management is stored in a cloud
database.

For the duration of the MUSKETEER project, four instances of the cloud platform have been
instantiated, running in the IBM® Cloud™ [3] hosted in Frankfurt, Germany. One instance is
used for continuous integration and testing of new platform features (within WP3), one
instance for the development and testing of federated learning algorithms (within WP4, WP5,
WP6), and two dedicated instances to support the real-world use cases in Smart
Manufacturing and Healthcare, respectively (within WP7).

As we will see in the end-to-end walk-through in Section 3, credentials provided by IBM are
required to avail of the cloud platform’s services.

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article

 D3.3 First prototype of the MUSKETEER platform 10

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 2: MUSKETEER platform architecture (final version)

2.2 Local platform
As an alternative to the cloud platform, we have also developed, in WP3, a local platform for
enabling federated learning. The purpose of the local platform is to enable lightweight local
development and experimentation with federated learning algorithms. The designated use
case is when the aggregator and participants’ compute processes are all running within the

same local network, e.g. on the same laptop or within the same compute cluster. Thus, the
local platform does not support the execution of federated learning algorithms in real-world
scenarios where participants are geographically dispersed or hosted in separate compute
environments.
The local platform provides advantages for the rapid development, testing and performance
evaluation of federated learning algorithms. In particular, it doesn’t incur the communication

overhead of transmitting information between federated learning aggregators and participants
via the central communication services hosted in the IBM® Cloud™. Another purpose of the
local platform is to allow researchers to experiment with the federated learning algorithms
developed in WP4 and WP5 without having to rely on the cloud platform or requiring
credentials to access it.

The local platform is implemented using the Python Flask framework [4], where a lightweight
webserver is deployed on the local compute host, and the aggregator and participants of the
federated ML task exchange information via HTTP requests to that server. The
implementation of the local platform is released open source in [1] under an Apache 2.0
license.

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article

 D3.3 First prototype of the MUSKETEER platform 11

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

2.3 Platform APIs
The cloud platform exposes Application Programming Interfaces (APIs) allowing algorithm
and web developers to create federated ML algorithms and user interfaces for end users
leveraging the platform’s functionality. At a low level, the APIs use the Advanced Message
Queuing Protocol (AMQP) for communicating with the platform over the internet (see D3.2
for more details). To facilitate rapid development and to abstract from details of the message
protocol, a higher-level Python API has been developed and open sourced under WP3 [2]. It
provides Python function calls, e.g., to create new federated ML tasks in the platform, browse
available tasks, join tasks, and execute actual training algorithms as aggregator or participant.
The API is designed to work both with cloud and local platform deployments. This way, for
example, algorithm developers can use a local platform deployment for development and
testing, and then their algorithms can be used with the cloud platform for real-world
deployments. A complete documentation of this API is included in D3.2.

2.4 Client package
As last component of the demonstrator, a light-weight client package has been developed in
WP3 and – same as the platform Python API – released open source under an Apache 2.0
license [1]. We note that the final, full-scale client package for MUSKETEER is to be
developed under WP7; the client package demonstrated in this deliverable only provides
minimum functionality and serves only as a basic example of how the MUSKETEER
platform enables end-to-end data sharing and federated learning workflows. The client
package contains a simple federated learning algorithm for training a Convolutional Neural
Network (CNN) classifier implemented in Keras [5]. The final WP7 client package will
contain the full suite of algorithms developed in WP4; again, the package demonstrated in this
deliverable only serves as a simple working example.

 D3.3 First prototype of the MUSKETEER platform 12

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

3 Examples of end-to-end executions
In this section we present actual examples demontrating the end-to-end execution of data
sharing and federated learning via the MUSKETEER platform. In Section 3.1, we first
explain the workflow at a high-level. Section 3.2 provides instructions for setting up local
compute environments to execute the demonstrator; finally, Section 3.3 and 3.4 provide
detailed walk-throughs of the demonstrations on synthetic data and on real-world data from
the Smart Manufacturing use case, respectively.

3.1 Motivation

As a motivation, and to explain the basic interactions with the MUSKETEER platform at a
high level, we provide a fictious example. Consider Alice, a fictious Data Scientist in a
fictious organization A, who has an ML task for which she would like to train a model, but no
training data available within her organization. Therefore, she would like to harness the
MUSKETEER platform to leverage training data owned by other parties. John and Jack, from
organizations B and C, have access to local data that may be valuable for Alice’s task.

Together, they can use the MUSKETEER platform to collaboratively train a ML model in a
federated fashion, without having to share or centralize the actual data. Thereby, they will be
able to unlock additional value of their data, and all will benefit from creating and training of
the ML model.

In order to use the MUSKETEER platform, Alice, John and Jack first must register their own
respective user names and password (Figure 3). Once registered, all their subsequent
interactions with the platform will utilize those credentials.

Figure 3: User registration on the MUSKETEER platform

After registering with the platform, Alice will create a federated ML task in the
MUSKETEER platform. The task creation process requires Alice to define the machine
learning task in detail as shown in Figure 4. The task definition may contain information such
as the number of participants, the number of training epochs and rounds, and other common
parameters of ML model training such as batch sizes, learning rates, etc. Upon successful

 D3.3 First prototype of the MUSKETEER platform 13

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

creation, the task will be assigned with a unique name (“Task005” in this example). In the
following, Alice will be playing the role of a task creator in the MUSKETEER platform.

Figure 4: Create Federated ML task on the MUSKETEER platform

As task creator, Alice will also execute the aggregator side of the federated training process in
her computational environment. In this example, the training quorum is 2 (see Figure 4), i.e.
exactly two participants need to have joined the task before the training begins.

John and Jack can avail of the MUSKETEER platform services to explore federated ML tasks
created by other users, including the task “Task005” that was created by Alice. By inspecting
the definition of the task (which could also include meta information provided in full text),
they can determine whether their available data fits the task’s requirements and ultimately
decide whether they want to join that task as participant (Figure 5).

Figure 5: List tasks on the MUSKETEER platform

Once they make the decision to participate in a specific task (typically independently and
unbeknownst of each other), they can avail of the platform services to join that task (Figure 6)
and assuming the role of task participants in the following.

 D3.3 First prototype of the MUSKETEER platform 14

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 6: Join task on the MUSKETEER platform

With two participants having joined, the starting criterion of Alice‘s task has been satisfied,
and so the training process of the machine learning task can start and run throughout the
number of iterations specified in the task definition. The exact flow of information among
participants and aggregators during the training process depends on the specific POM; in the
following, we use standard federated ML training in accordance to POM1 (see D4.1) as a
running example.

Firstly, the aggregator sends an initial version of the ML model to both participants. This can
be done via a broadcast function in order to save communication costs, as illustrated in Figure
7. Without a broadcast function, the aggregator would have to send the same model
repeatedly to the platform (once per participant) which will then relay the model to the
specific designated sender. In practice, a model update could size up to tens of gigabytes, and
therefore transferring such a large model several times through a cloud network would
consume a lot of bandwidth. After broadcasting the model, the aggregator waits for incoming
model updates from each of the participants.

Figure 7: Communication from the aggregator to task participants

Secondly, each participant – after receiving the model from the aggregator – will update its
local model, continue to train the model locally with their local data and obtain a new local

 D3.3 First prototype of the MUSKETEER platform 15

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

model update. Then, this local model update will be transferred back to the aggregator
through the MUSKETEER platform as shown in Figure 8. The aggregator will then collect
these new model updates from all the participants, average them to produce a new model
update, which then is broadcasted again to the participants for the next iteration. After a
specified number of such iterations, the training will end and the aggregator will obtain a final
version of the trained model, thus completing the federated ML task created by Alice.

Figure 8: Communication from the task participants to the aggregator

Upon completion, the final trained model could be stored by the aggregator in the
MUSKETEER platform for later use, and/or sent to task participants who could then deploy
the model in their respective local production environments.

3.2 Installation instructions

Before turning to the actual demonstrations in Section 3.3 and 3.4, we first provide
instructions for setting up a local compute environment within which the interactions with the
MUSKETEER platform can be performed. The instructions can also be found on the
README page of the open source repository [1].

It is assumed that all development (e.g., of federated learning algorithms or of platform
interfaces for end users) takes place in Python, using at least version 3.6. To speed up the
creation of a development environment and generally for ease of use, an automated way for
provisioning a virtual machine (VM) is provided. During the provisioning of the VM, all
appropriate dependencies are installed. To take advantage of this automated build process,
Vagrant [6] must be installed on the local compute system, and backed by a hypervisor such
as VirtualBox [7].

For Mac users, these installations can be performed using HomeBrew [8]:

brew cask install virtualbox

brew cask install vagrant

vagrant plugin install vagrant-vbguest

 D3.3 First prototype of the MUSKETEER platform 16

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Or, on Windows, using the following resources:

Install VirtualBox - https://www.virtualbox.org/wiki/Downloads

Install Vagrant - https://www.vagrantup.com/downloads.html

vagrant plugin install vagrant-vbguest

Users who choose not to bring up a VM should refer to the Vagrantfile in [1] for
dependencies to manually install.

In the following it is assumed that the user has cloned or downloaded the repository [1] and
has opened a terminal and navigated to the root directory of the local replica of the
repository. At the time of writing, tag v0.1 in the repository is the latest release.

To create the VM, from the terminal, run:

vagrant up

This will take a few minutes. Upon completion, to log into the VM, run:

vagrant ssh

that the current directory will be shared between the host and the VM. To stop the VM:

vagrant halt

And to delete the VM:

vagrant destroy

Note: In order to avail of the MUSKETEER cloud platform’s services, credentials and the
server certificate must be available. Those are available upon request from the IBM team.

There is a test provided which will verify access to the platform based on the available
credentials. Logged into the VM, run:

python3 -m pytest tests/basic.py --credentials=<CREDENTIALS FILE> -srx -s

to perform the test, where <CREDENTIALS FILE> should be replaced by the name of the file
containing the credentials and server certificate provided by IBM.

To facilitate research and rapid prototyping without dependency on cloud resources, we
provide a local version of the MUSKETEER platform (see Section 2.2). This local version
has the limitation that only one federated learning task can be running at a time. In order to
instantiate the local platform, run:

 D3.3 First prototype of the MUSKETEER platform 17

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

python3 local_platform/musketeer.py

Finally, for this demonstrator we use Jupyter notebooks [9] as a simple dashboard and user
interface for interacting with the MUSKETEER platform (the final client package developed
in WP7 will provide more advanced graphical user interfaces). To start the Jupyter
notebook server, run the following two commands in the terminal:

jupyter notebook password

jupyter notebook --ip=0.0.0.0 &

The first command will result in a prompt to enter (and verify) a password for the Jupyter
notebooks. After executing the second command, open 127.0.0.1:8881 in your host
browser (tested with Chrome and Firefox), enter the password you chose and then you should
see the navigation tree. The notebooks/ subfolder contains the actual notebooks that will be
used to drive the demos in the following sections.

For users who do not use the VM and run the demo directly in their local environment, the
Jupyter notebook server should be started as follows:

jupyter notebook --ip=127.0.0.1 &

3.3 Synthetic data

In this section, we present the demonstration on a synthetic example: training a CNN
classifier on the MNIST dataset [10]. In this synthetic example, the aggregator and training
participants will all have different random subsets of the MNIST dataset and use them for
their local model updates and evaluations.

We first show how to run the demo via Python scripts in terminal windows, then walk
through the demo driven by Jupyter notebooks, and finally show a mock-up of user
interactions via a graphical user interface.

3.3.1 Terminal windows

This demo is driven by the Python scripts contained in the demo/ subdirectory. Three different
terminal windows need to be opened to run this demo. (If the local platform is used, then a
fourth terminal needs to be opened to instantiate it; see above.) When using the VM, one
needs to ssh into the VM in each of the three terminals. In the following, we will refer to the
three terminals as aggregator terminal, participant-1 terminal and participant-2 terminal,
respectively. In all three terminals, we first change to the demo/ subdirectory.

As first step in the aggregator terminal, we will register the user who is going to serve as task
creator and aggregator:

python3 register.py --credentials <CREDENTIALS FILE> --user <AGGREGATOR USERNAME>
--password <AGGREGATOR PASSWORD> --org <AGGREGATOR ORGANIZATION> --platform <CLOUD
OR LOCAL>

 D3.3 First prototype of the MUSKETEER platform 18

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

The parameters here should be set as follows:

• <CREDENTIALS FILE> should be replaced by the name of the file
containing the credentials and server certificate provided by IBM. If the
local platform is used, set this to the ../local_credential_sample.json

• <AGGREGATOR USERNAME> should be replaced by the username under
which the aggregator registers. We recommend this to be a string of 8-
16 characters without spaces or escape characters. Note: the same
username can only be used once, i.e. if a user had registered with the
same before, an error will be thrown.

• <AGGREGATOR PASSWORD> should be replaced by the password chosen by
the aggregator user which will be used for authentication in further
interactions with the platform. We recommend this to be a string of 8-
16 characters without spaces or escape characters.

• <AGGREGATOR ORGANIZATION> should be replaced by the organization of
the user. This parameter isn’t strictly required for further platform

interactions but rather for information purposes.

• <CLOUD OR LOCAL> should be replaced by either cloud or local,
indicating whether the cloud or local platform is to be used. The
credentials file above needs to be set accordingly.

An example of this step is shown in the screenshot in Figure 9.

Figure 9: Registering the aggregator user via terminal

Next, we will register the two designated participants of this demonstration task, using the
same command as for registering the aggregator except that the usernames, passwords and
organization are those for the participants. Example of these registration steps are shown in
Figure 10 and Figure 11.
We note that, while in this simple demonstration the two participants could register from the
same terminal as the aggregator and use the same credentials file, in real-world scenarios the
participants will register from different hosts, possibly belonging to different organizations
and located in different geographies, and use their own dedicated cloud credentials.

Figure 10: Registering the participant-1 user via terminal

 D3.3 First prototype of the MUSKETEER platform 19

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 11: Registering the participant-2 user via terminal

Next, the aggregator user will create the federated learning task via the following command:

python3 creator.py --credentials <CREDENTIALS FILE> --user <AGGREGATOR USERNAME> -
-password <AGGREGATOR PASSWORD> --task_name <TASK NAME> --platform <CLOUD OR
LOCAL>

Here <CREDENTIALS FILE> and <CLOUD OR LOCAL> are the same as before, and <AGGREGATOR
USERNAME> and <AGGREGATOR PASSWORD> are the username and password provided in the
registration step above. <TASK NAME> is a name for the newly created task chosen by the
aggregator, with the same recommendations regarding string length and escape characters as
before; also, same as for usernames, task names need to be unique, hence, if a task of the
same name had been created before, the platform will return an error message.

Figure 12 shows an example of the task creation step. We note that the message returned by
the platform contains meta information that the platforms stores about the newly created task,
such as its name, by whom and when it was created, and the actual task definition, which is in
the form of a dictionary. Deciding on the specifics of the task definition is up to the task
creator; in the above command for task creation the task definition does not explicitly occur;
it is hard-coded in the creator.py script, lines 89-98.

Figure 12: Creating a federated learning task via terminal

Here we look at the task definition more carefully:

{
 "aggregator": "neural_network.Aggregator",
 "participant": "neural_network.Participant",
 "quorum": 2,
 "round": 5,
 "epoch": 2,
 "batch_size": 256,
 "learning_rate": 0.001,
 "training_size": 10000,
 "test_size": 1000
}

 D3.3 First prototype of the MUSKETEER platform 20

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

The "aggregator" and "participant" fields reference the code that the aggregator and
participants shall execute as part of the actual federated learning. It refers to the classes
Aggregator and Participant in the Python module neural_network.py, which is located
under the fl_algorithm/ directory in the client package. In the final version of the
MUSKETEER platform, algorithms from the federated ML library developed under WP4 will
be developed at this place.
The "quorum" parameter specifies the number of participants that need to have joined the task
before the training will start. "round" is the number of rounds during which participants
locally compute updates on the latest model shared by the aggregator (compare with the high-
level description of federated learning algorithms provided in Section 1.2), where the updates
are obtained over "epoch" number of epochs, using batches of size "batch_size" and the
learning rate "learning_rate". "training_size" and "test_size" specify the number of
data points from the MNIST dataset that will be used locally by the participants for
training/updating and testing the ML model.

Upon creation of the task, the aggregator can now initiate the training process by locally
starting the aggregator process:

python3 aggregator.py --credentials <CREDENTIALS FILE> --user <AGGREGATOR
USERNAME> --password <AGGREGATOR PASSWORD> --task_name <TASK NAME> --platform
<CLOUD OR LOCAL>

Here <TASK NAME> refers to the task created above by its unique name. Effectively, in line 91,
the aggregator.py script will retrieve the corresponding task definition from the
MUSKETEER platform, and in line 102 execute the .start() method implemented by the
neural_network.Aggregator class. We note that in that method (line 176 in the
neural_network.Aggregator class), the aggregator training process will wait until the number
of participants specified in the "quorum" field of the task definition has joined the task; this
can also be seen in the log message after starting the aggregator process (see Figure 13).
Inspecting the log messages, we can also see that the aggregator process has already started
the Keras TensorFlow backend, which will be used later on for performing machine learning
operations, and downloaded the MNIST dataset from https://s3.amazonaws.com/img-
datasets/mnist.npz.

Figure 13: Starting the aggregator process

In parallel, from their respective terminal windows, participants 1 and 2 can list the available
tasks in the platform using the following command:

python3 listing.py --credentials <CREDENTIALS FILE> --user <PARTICIPANT USERNAME>
--password <PARTICIPANT PASSWORD> --platform <CLOUD OR LOCAL>

 D3.3 First prototype of the MUSKETEER platform 21

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

For participant 1, this operation is shown in Figure 14. We note that, in general, many more
tasks besides the one created above may be listed via this command, e.g. tasks created by
other users in the past, including tasks for which the training may already have been
completed.

Figure 14: Listing federated learning tasks

The next step is for participants 1 and 2, in their respective terminal windows to join the task
task-demo3.3 that was created by the aggregator above. This is done using the following
command:

python3 join.py --credentials <CREDENTIALS FILE> --user <PARTICIPANT USERNAME> --
password <PARTICIPANT PASSWORD> --task_name <TASK NAME> --platform <CLOUD OR
LOCAL>

Figure 15 shows this step for participant 1.

Figure 15: Joining a task as participant

After both participant 1 and 2 have joined, we can see in the log messages from the
aggregator process that the quorum of two participants is found to be present (see Figure 16).
At this point, the aggregator process will start the actual training and – as can be seen from
the log messages – send the initial version of the neural network to the participants for them
to update it on their local data.

Figure 16: Performing the federated learning on the aggregator side (start)

In order to close the loop and initiate the corresponding actions on the participants’ side,

participant 1 and 2 need to start their local training processes via the following command:

 D3.3 First prototype of the MUSKETEER platform 22

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

python3 participant.py --credentials <CREDENTIALS FILE> --user <PARTICIPANT
USERNAME> --password <PARTICIPANT PASSWORD> --task_name <TASK NAME> --platform
<CLOUD OR LOCAL>

Figure 17 shows this step for participant 1. As can be seen, upon starting the participant’s

training process it will immediately update the model received from the aggregator on the
local data and then send the model update back to the aggregator.

Figure 17: Performing the federated learning on the participant side (start)

From this point onwards the training process between the aggregator and the two participants
is performed iteratively as described in Section 1.2 throughout the total 5 rounds (numbered 0,
1, 2, 3, 4) prescribed in the task definition.

Figure 18, Figure 19 and Figure 20 show the log messages from the last round of updates and
the termination messages for the aggregator, participant 1 and participant 2. As can be seen,
the final testing accuracy (evaluated on the aggregator side) is around 99%. Before the
termination, the aggregator dispatches the final model to the participants. In this simple
demonstration, no further action is taken on their side, however, in future versions of the
platform with the fully developed client connectors there may be end-to-end support for
putting the trained models into production on the participants’ sides.

Figure 18: Termination of the federated learning on the aggregator side

 D3.3 First prototype of the MUSKETEER platform 23

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 19: Termination of the federated learning on the participant 1 side

Figure 20: Termination of the federated learning on the participant 2 side

3.3.2 Jupyter notebooks

Next, we show how to drive the interactions with the MUSKETEER platform through Jupyter
notebooks. Here, we assume the Jupyter notebook server has been started and the tree view
been opened in a local web browser (see Section 3.2), thus the user should see a screen
similar to what is shown in Figure 21.

 D3.3 First prototype of the MUSKETEER platform 24

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 21: Jupyter notebook tree view

Opening the notebooks/ folder, the user should then see the two notebooks that will drive the
demonstrator: task_creator.ipnyb and task_participant.ipnyb (see Figure 22).

Figure 22: Demonstrator notebooks

First, we look at the notebook task_creator.ipnyb which drives the interactions of a task
creator / aggregator with the MUSKETEER platform. The first cell (Figure 23) loads the
required dependencies into the Python notebook environment.

Figure 23: Task creator notebook - loading prerequisites

 D3.3 First prototype of the MUSKETEER platform 25

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

The next two cells (Figure 24) allow the task creator to register a username and a password
with the MUSKETEER platform. The same comments as above regarding the length, escape
characters and the uniqueness of the username apply.

Figure 24: Task creator notebook - registering user

The next three cells (Figure 25) let the task creator retrieve a list of existing federated learning
tasks in the MUSKETEER platform, display the total number of existing tasks, and list details
(name, creation time and status) of tasks that were created within the last 24 hours. Note:
depending on the recent usage of the platform, this may be an extensive list.

Figure 25: Task creator notebook - listing existing tasks

The next five cells (Figure 26) drive the creation of a new federated learning task. The task
definition is the same as in the previous section, and the same comment regarding task
naming applies. As shown in the following cells, the task creator is able to confirm that the
newly created task is indeed available in the MUSKETEER platform, along with its meta
information and the task definition details.

 D3.3 First prototype of the MUSKETEER platform 26

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 26: Task creator notebook - creating a new task

The final cell in this notebook (Figure 27) starts the aggregator part of the federated learning
process. Same as in the previous sections, the first few log messages show that the aggregator
is waiting for the quorum of two participants to be met.

Figure 27: Task creator notebook - aggregator process (start)

The second notebook, task_participant.ipnyb, drives the interactions of a task participant
with the MUSKETEER platform. Since for this demonstration we need a quorum of two
participants, we need to make a copy of this notebook and drive the interactions of the two
participants through two different notebooks. (Note: a copy can simply be created, after
opening the task_participant.ipnyb notebook, by selecting “File -> Make a Copy…” from

the top menu in the notebook.) In the following, we show the interactions for participant 1.

In the first cell (Figure 28), prerequisites are loaded, same as in the task creator notebook.

 D3.3 First prototype of the MUSKETEER platform 27

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 28: Task participant notebook - loading prerequisites

The next two cells (Figure 29) drive the registration of the participant’s username and

password, same as in the aggregator notebook.

Figure 29: Task participant notebook – registering user

The next three cells (Figure 30) allow the task participant to retrieve a list of all federated
learning tasks available in the MUSKETEER platform, show their total number, and display
details of tasks that were created within the last 24 hours. Among those, the task participant
should be able to see the task that was just created by the task creator.

Figure 30: Task participant notebook - listing tasks

In the next five cells (Figure 31), the task participant can first inspect details of a task that she
is interested in, join the task, and finally confirm that the MUSKETEER platform has
correctly registered her participation.

 D3.3 First prototype of the MUSKETEER platform 28

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 31: Task participant notebook - joining a task

The final cell in the notebook (Figure 32) will launch the participant’s part of the federated
learning process.

Figure 32: Task participant notebook - participant process (start)

The log messages that are displayed in the aggregator and the participants’ notebooks follow

the same format as in the terminal-driven demo described in the previous section (they result
from the execution of the same code implemented in the neural_network.Aggregator and
neural_network.Participant classes; the exact numerical results may slightly differ though
due to different random initializations of the neural network, different random sampling of
local training / test data, and different random shuffling of local training data during the local
model updates).

3.3.3 Graphical user interface mock-up

Finally, we show how the user interactions with the platform could be performed via a
graphical user interface, using the platform Python APIs in the backend. Figure 33 shows the
login phase where an already registered user can login to the platform by entering her
credentials and will receive an error message in case the user name or password are wrong.

 D3.3 First prototype of the MUSKETEER platform 29

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 33: Graphical user interface - login page

Figure 34 shows a screen which allows a new user to register by providing a user name,
password (which has to be confirmed in an extra field), and an organization.

Figure 34: Graphical user interface - user registration

Figure 35 shows the tasks listing page that is available to the user after logging in. The page
displays all the created tasks; they are marked by their name, an icon to show their current
status, the privacy operation mode chosen for that task (if available as part of the task
definition), further details of the task and the task creation date. By clicking on the task, it is
possible to obtain additional information about the task. The page allows for task browsing
and searching for specific tasks via a search bar or through different filters. Finally, using the
button on the right side allows the user to create a new task.

 D3.3 First prototype of the MUSKETEER platform 30

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 35: Graphical user interface - task listing

Figure 36 shows the task creation page. In this mock-up example, the following task
definition information can be provided:

• Task name: the name under which the task should be displayed;
• Federated Machine Learning algorithm: once the algorithm is selected it is possible to

set the parameters of that algorithm;
• Privacy level: indicated by a privacy operation modes number (where for each mode a

brief description and summary of its specifications is available);
• Quorum: the minimum number of participants required for the task.

Figure 36: Graphical user interface - task creation

The screen in Figure 37 displays a task summary, including its status and the operations that
the user can perform on this task. Next to the summary on the right hand side are four buttons
which allow the users to inspect details of the task definition, run the task as a participant, run
the task as an aggregator (this option is only available if the user is the creator of that task),
delete the task (this feature is not supported by the first prototype of the platform, but it will
be in the final version).

 D3.3 First prototype of the MUSKETEER platform 31

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 37: Graphical user interface - task operations

Upon clicking on the join/participate button, the dialogue box shown in Figure 38 will appear.
Here, on the left side, the user can choose a dataset to use for that task, while on the right side
the user can add new datasets from the local file system.

Figure 38: Graphical user interface - task execution settings

The screen in Figure 39 shows a chart with the result of a task execution. In this example the
result is the clustering of the data obtained using the K-Means algorithm, shown in a scatter-
plot with the two resulting clusters displayed in different colors.

 D3.3 First prototype of the MUSKETEER platform 32

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 39: Graphical user interface - task result

3.4 Use case: Smart manufacturing

In this section, we explain how to use the prototype of the MUSKETEER platform to support
a real-world use case: training predictive models with data from Smart manufacturing
devices. For detailed background on this use case we refer to D2.1. We would also like to
note that the final development of the MUSKETEER use cases is outside the scope of this
deliverable but will be performed under WP7 (see Figure 1).

Here we briefly recapitulate the motivation at a high level: the context of this use case is the
deployment of manufacturing robots (supplied by COMAU) in car manufacturing plants
(owned and operated by FCA). More specifically, the robots considered in this use case are
applied in the car welding process. Whilst operating, the welding guns collect meta
information and sensor data for each welding point. From a business perspective, the goal of
this use case is to harness those data to automatically identify potential quality issues during
the welding process as soon as possible, and to optimize robot maintenance schedules. If the
operational data from all robots was centrally available, COMAU could create predictive or
prescriptive analytical models for this purpose following conventional Data Science
methodologies. However, since the data is proprietary to FCA, this is not possible. Federated
learning therefore offers a compromise where COMAU can leverage operational data from
the robots to create ML models for the aforementioned purpose, while the data resides within
FCA and no proprietary or confidential information is revealed.

In this demonstration we will utilize data from two robots applying welding points to the car:
FPS2, operating on the left side, and FPD2, operating on the right side. The two robots
symmetrically apply 5 welding points to each car model passing through the assembly line,
denoted by P081, P082, P083, P085, P086. For the purpose of this demo, we will focus on the
welding point P083.

3.4.1 Data Science workflow
Before demonstrating how the MUSKETEER platform can support this use case, we will first
walk through the Data Science workflow. For complete documentation, we refer to the

 D3.3 First prototype of the MUSKETEER platform 33

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

Jupyter notebook in [11], however, note that because of their proprietary nature the actual
data and the code for parsing the raw data are not included in this deliverable, therefore the
reader will not be able to run the notebook.

The raw meta-information and sensor data from the robots is stored in .xml files, where each
file contains the information for one car door. For this analysis, 49,627 files from the left door
(FPS2) and 30,983 files from the right door (FPD2) were used. The first step in the workflow
is to extract from the raw data the fields that are relevant for creating the ML models:

• WELCNT: This is a counter which tracks how many welding points
the robot has been applied since the last dressing of the welding
electrode.

• WDRSCNT: This is a counter which tracks the number of dressings of
the welding electrode before its complete replacement.

• WELR: Electric resistance when applying the electrode to this welding
point.

• WELCUR1_S: Electric current when applying the electrode to this
welding point.

• WCLSRES: An automatically generated quality index, with integer
values between 0 and 10. Here, a quality index of 6 or 7 means that the
performance of the welding electrode was within the permissible
operating range; other values indicate that the welding electrode has
three possible problems: “squeezed”, “pasted” or “short circuit”.

After parsing the raw data, we obtain a total of 19,288 complete data records from FPS2, and
11,143 from FPD2. Applying an 80:20 split, we divide those into 13,831 / 3,457 training /
test samples for FPS2, and 8,915 / 2,228 training / test samples for FPD2.

The ML problem that we would like to solve is predicting WCLSRES as a function of
WELCNT, WDRSCNT, WELR and WELCUR1_S. From the business perspective, solving
this ML problem would be valuable because it would allow us to predict quality indices for
robots which do not automatically generate them, based on the available meta information and
sensor data.

In order to cast this ML problem as a 4-class classification task, we create a binned variable
WCLSRES_BIN from WCLSRES as follows:

• WCLSRES_BIN = 0 if WCLSRES is less than or equal to 3;

• WCLSRES_BIN = 1 if WCLSRES is 4 or 5;

• WCLSRES_BIN = 2 if WCLSRES quality is 6 or 7;

• WCLSRES_BIN = 3 if WCLSRES is greater than 7.

We note that the classes are highly imbalanced: class 0 does neither occur in FPS2 nor in
FPD2, and class 1 only occurs in FPD2. The dominating class is 2, and class 3 has the second-
most occurrences. Despite the lack of observations for class 0, we still cast this as a 4-class
classification task to make the model applicable in settings where all four classes occur. We
do not undertake any measures (e.g. class weighting) to mitigate the imbalance during the ML
model training, however, this could be an approach to be explored in future work to improve
the model performance.

 D3.3 First prototype of the MUSKETEER platform 34

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

As ML model, we choose a fully-connected neural network with one hidden layer of 1,000
units and ReLU activations, implemented in Keras [5]. For training, we use the Keras Adam
optimizer on cross-entropy loss. We train for 64 epochs using a batch size of 128.

We standardize each of the four feature columns WELCNT, WDRSCNT, WELR,
WELCUR1_S to have zero mean and unit variance by subtracting the sample mean and
dividing by the sample standard deviation computed on the training set.

We run three different baseline experiments which we will use later as a comparison to the
performance when performing the training in a federated setting on the MUSKETEER
platform:

1. We train the model on the training data from FPS2 and test it on the
test data from FPS2 and FPD2. We obtain 92.68% test accuracy on
FPS2, 79.35% on FPD2, and 87.46% on the combined testing data
from FPS2 and FPD2. See Table 1, Table 2 and Table 3 for the
respective confusion matrices.

2. We train the model on the training data from FPD2 and test it on the
test data from FPS2 and FPD2. We obtain 89.35% test accuracy on
FPS2, 88.46% on FPD2, and 89.01% on the combined testing data
from FPS2 and FPD2. See Table 4, Table 5 and Table 6 for the
respective confusion matrices.

3. We train the model on the combined training data from FPS2 and
FPD2 and test it on the test data from FPS2 and FPD2. We obtain
91.64% test accuracy on FPS2, 87.03% on FPD2, and 89.83% on the
combined testing data from FPS2 and FPD2. See Table 7, Table 8 and
Table 9 for the respective confusion matrices.

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2,964 52
3 0 0 201 240

Table 1: Confusion matrix when training on FPS2 and testing on FPS2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 29 0
2 0 0 1,479 324
3 0 0 107 289

Table 2: Confusion matrix when training on FPS2 and testing on FPD2

 D3.3 First prototype of the MUSKETEER platform 35

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 29 0
2 0 0 4,443 376
3 0 0 308 529

Table 3: Confusion matrix when training on FPS2 and testing on FPS2 + FPD2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 37 2,956 23
3 0 0 308 133

Table 4: Confusion matrix when training on FPD2 and testing on FPS2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 25 4 0
2 0 3 1,714 86
3 0 0 164 232

Table 5: Confusion matrix when training on FPD2 and testing on FPD2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 25 4 0
2 0 40 4,670 109
3 0 0 472 365

Table 6: Confusion matrix when training on FPD2 and testing on FPS2 + FPD2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 2 2,988 26
3 0 0 261 180

Table 7: Confusion matrix when training on FPS2 + FPD2 and testing on FPS2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 11 18 0
2 0 0 1,684 119
3 0 0 152 244

Table 8: Confusion matrix when training on FPD2 + FPS2 and testing on FPD2

 D3.3 First prototype of the MUSKETEER platform 36

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 11 18 0
2 0 2 4,672 145
3 0 0 413 424
Table 9: Confusion matrix when training on FPS2 + FPD2 and testing on FPS2 + FPD2

The experiments suggest that training a model on the combined training data from FPS2 and
FPD2 yields better performance on average than using a model that is trained on data only
from FPS2 or FPD2.

3.4.2 Integration with the MUSKETEER platform

In this section we explain how to use the prototype of the MUSKETEER platform to set up
and execute a federated learning task that trains a ML model on the combined training data
from FPS2 and FPD2 without having to centralize those data.

The attachments [12], [13], [14], [15] contain all the code that is required for executing this
use case, however, because of their proprietary nature the actual data are not included in this
deliverable, therefore the reader will not be able to run the code.

Two main customizations of the demonstrator from Section 3.3 are required to port this use
case to the MUSKETEER platform:

• Modifications of the classes neural_network.Aggregator and
neural_network.Participant to support the specific data preprocessing
requirements and model definition for this use case; those are
implemented in neural_network_usecase.py [12].

• Modifications of the user inputs in the notebooks for the task creator
and participants; those are provided in task_creator_usecase.ipynb
[13], task_participant_usecase_1.ipynb [14] and
task_participant_usecase_2.ipynb [15].

We would like to emphasize, however, that those modifications are minimal; in future
versions of the end-to-end MUSKETEER platform – with the fully developed algorithm
library from WP4 and client connectors from WP7 – we expect that those modifications will
only require changes to task definitions, connector configurations etc. and no changes to the
actual code.

First, we explain the customization that we made in the implementations of the Aggregator
and Participant classes in the neural_network_usecase.py module [12] to execute this use
case:

• The first change is the implementation of the load_data function of the
Participant class (lines 219-221), which loads the local training and
testing data from the .pkl files prepared in the notebook [11].

 D3.3 First prototype of the MUSKETEER platform 37

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

• The second change is the instantiation of the ML model described in the
previous section as part of the start function of the Aggregator class
(lines 142-145).

• The final change is logic that we added in the Aggregator and
Participant classes (lines 154-168 and 238-256, respectively) for
appropriate standardization of the local training and test data. This is
done via the following steps: (1) Each participant sends – for each
feature – the sum of all values, mi, the sum of squares of all values, si,
and the total number of training samples, ni, to the aggregator. (2) The
aggregator uses this information to compute the total number of training
samples n = (n1 + n2 + …), the global feature mean m = (m1 + m2 + …)

/ n, and the global standard deviation s = sqrt((s1 + s2 + … – n·m2) / (n-
1)), and then broadcasts m and s to all participants. (3) The participants
standardize their local training data using m and s.

Besides those customizations, the logic is identical to the neural_network.py module used in
the demonstrator on synthetic data in the previous section. We note that, through the
contributions from WP4 and WP7, such hard-coded changes to algorithm implementation
ultimately may not be necessary; in particular, the exact model definition and data
standardization logic may be configurable through the task definition, and the logic for data
loading and parsing may be configurable through data connector interfaces in the client
package.

Finally, let us look at the changes in the notebooks for the task creator and participants. In the
task creator notebook [13], the only noteworthy customization is the change in the task
definition (see Figure 40). In particular, the "aggregator" and "participant" fields here
reference the Aggregator and Participant classes in the modified Python module
neural_network_usecase.py [12]; moreover, the task definition contains a field
"point" which allows the task creator to prescribe for which welding point the ML model
shall be trained. All other fields have the same meaning as in the task definition for the
synthetic use case.

Figure 40: Use case task creator notebook – task definition

In the participants’ notebooks ([14], [15]), it is worth noting that the .run function of the
Participant class here takes an extra argument directory (see Figure 41). This argument
allows the task participants to specify where in their local compute environment the .pkl file
containing the processed training and testing data is located. This file is then loaded by the
load_data function of the Participant class in preparation of the federated learning process.

 D3.3 First prototype of the MUSKETEER platform 38

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

As can be seen by the respective values of the directory argument, participant 1 loads the
data from FPS2, and participant 2 the data from FPD2.

Figure 41: Use case task participant notebook – training execution (start)

The log messages shown in Figure 41 also report on the standardization of the local data by
the global means and standard deviations computed via the federated approach described
above.

From the last log messages in the participants’ notebooks, we obtain that the final ML model

– dispatched to the participants after the training process has ended – achieves 92.13% test
accuracy on the data from FPS2, and 83.98% on the data from FPD2. On the combined test
data from FPS2 and FPD2 (taking into account the different sample sizes of 3,457 and 2,228,
respectively), the accuracy is 88.94%. The corresponding confusion matrices are shown in
Table 10, Table 11 and Table 12, respectively. Compared to the baseline above, where the
model was trained in a non-federated fashion on the combined training data from FPS2 and
FPD2, the average accuracy is just about 1% lower. We would like to emphasize, however,
that in this demonstration we did not attempt to fine-tune the hyperparameters of the ML
model and the federated learning algorithm. We expect that, with more advanced algorithms
developed in WP4, the accuracy of a model trained with federated learning may more closely
match the accuracy of a conventionally trained model.

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2,982 34
3 0 0 238 203
Table 10: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPS2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 29 0
2 0 0 1,577 226

 D3.3 First prototype of the MUSKETEER platform 39

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)

3 0 0 102 294
Table 11: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPD2

True/Predicted 0 1 2 3
0 0 0 0 0
1 0 0 29 0
2 0 2 4,559 260
3 0 0 340 497

Table 12: Confusion matrix for federated training on FPS2 + FPD2 and testing on
FPS2 + FPD2

4 Conclusions
In this deliverable we presented demonstrations of data sharing and federated learning via the
MUSKETEER platform. We explained key components – the cloud platform, the local
platform, the Python API and the sample client package – and demonstrated interactions with
the platform via Python scripts and Jupyter notebooks. We used a synthetic example and a
real-world Smart manufacturing use cases to demonstrate the workflow end-to-end. The
sample client package and the Python API have been released open source on GitHub under
an Apache 2.0 license, thus enabling the reader to experiment with the platform functionality.

While the architecture of the MUSKETEER platform is finalized (and described in detail in
D3.2), both functional and non-functional extensions and improvements are envisioned
towards the final version of the platform. This may include, e.g., more advanced features for
managing models created via federated learning tasks or for storing information about the
estimated value of the data contributed by different task participants, as well as refinements of
the platform APIs to improve the usability for algorithm and application developers.

5 References
[1] https://github.com/IBM/Musketeer-Client
[2] https://github.com/IBM/pycloudmessenger
[3] https://cloud.ibm.com/
[4] https://flask.palletsprojects.com/en/1.1.x/
[5] https://keras.io/
[6] https://www.vagrantup.com/
[7] https://www.virtualbox.org/
[8] https://brew.sh/
[9] https://jupyter.org/
[10] http://yann.lecun.com/exdb/mnist/
[11] D3.3 attachment: welding_data_use_case_D3.3.ipynb
[12] D3.3 attachment: neural_network_usecase.py
[13] D3.3 attachment: task_creator_usecase.ipynb
[14] D3.3 attachment: task_participant_usecase_1.ipynb
[15] D3.3 attachment: task_participant_usecase_2.ipynb
[16] https://www.internationaldataspaces.org/wp-content/uploads/2020/01/IDSA-Strategy-

paper-certification-scheme-V.2.pdf p.13 et seq.

https://github.com/IBM/Musketeer-Client
https://github.com/IBM/pycloudmessenger
https://cloud.ibm.com/
https://flask.palletsprojects.com/en/1.1.x/
https://keras.io/
https://www.vagrantup.com/
https://www.virtualbox.org/
https://brew.sh/
https://jupyter.org/
http://yann.lecun.com/exdb/mnist/
https://www.internationaldataspaces.org/wp-content/uploads/2020/01/IDSA-Strategy-paper-certification-scheme-V.2.pdf%20p.13
https://www.internationaldataspaces.org/wp-content/uploads/2020/01/IDSA-Strategy-paper-certification-scheme-V.2.pdf%20p.13

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Background
	1.2 Federated learning
	1.3 Related documents
	1.4 Outline

	2 Prototype components
	2.1 Cloud platform
	2.2 Local platform
	2.3 Platform APIs
	2.4 Client package

	3 Examples of end-to-end executions
	3.1 Motivation
	3.2 Installation instructions
	3.3 Synthetic data
	3.3.1 Terminal windows
	3.3.2 Jupyter notebooks
	3.3.3 Graphical user interface mock-up

	3.4 Use case: Smart manufacturing
	3.4.1 Data Science workflow
	3.4.2 Integration with the MUSKETEER platform

	4 Conclusions
	5 References

