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Executive Summary 
 
In this document we provide a report which describes the demonstration of a first prototype of 
the MUSKETEER platform. The demonstration involves the end-to-end execution of data 
sharing and federated machine learning on synthetic data and one real-world use case. It 
supports different privacy operating modes and uses a basic dashboard to support user 
interactions with the platform.  
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1 Introduction 

1.1 Background 
The purpose of the MUSKETEER platform is to enable participants of the data economy to 
participate in federated Machine Learning (ML) and thereby realize the value of their data 
assets, while preventing the leakage of information that is proprietary, confidential, personally 
sensitive, or that must not be shared because of other legal or regulatory requirements. 
Functionally, the platform has to provide the infrastructure and implement the services that 
are required to enable the secure and privacy-preserving federated ML algorithms developed 
in WP4 and WP5 (see Figure 1 for an overview of the MUSKETEER work packages) in end-
to-end applications. It must also support the assessments to be carried it out in WP6 and 
provide interfaces which allow for the development of client connectors and end-to-end 
demonstration of the industrial use cases in WP7.  
 
In this document we provide a report which describes the demonstration of a first prototype of 
the MUSKETEER platform. The purpose of this document is to give readers a view on the 
main interactions with the MUSKETEER platform in order to perform end-to-end execution 
of data sharing and federated machine learning; the workflow is demonstrated on synthetic 
data and one real-world use case. Moreover the document provides instructions for setting up 
local instances and connectors to the platform, so that the reader can set up their own 
environment for experimenting with the platform functionality. Finally, the document 
presents a set of high-fidelity mock-ups of the platform’s user interface as a result of the task 
T3.5 - Interfaces: development of front-end / dashboards for standard reporting, showing the 
user interaction with the MUSKETEER server through the client connector. 
 

 
Figure 1: MUSKETEER’s PERT diagram 
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1.2 Federated learning 
Here we briefly recapitulate the key concepts of federated ML. For a more detailed review, 
we refer to D4.1. The goal of federated ML is to create a ML model, leveraging distributed 
data sets without having to centralize those. In the MUSKETEER project, federated ML is 
extended to support different Privacy Operation Modes (POMs), which control the amount 
of information that the data owners share during the model training and validation process. In 
POMs 1-3 (which closely follow conventional federated ML protocols), the model training is 
coordinated by a central instance, called aggregator, while the data owners act as 
participants. Model training is typically performed iteratively throughout a number of 
rounds which is either determined a priori, or dynamically, e.g. by considering a model 
convergence criterion. In each round, the aggregator dispatches the current central version of 
the model to all the participants. The participants then compute updates to that model based 
on their local data, and send the updates back to the aggregator. Model updates can either be 
in the form of gradients, or in the form of new versions of the model. Upon having received 
the updates from all participants, the aggregator incorporates them (e.g. by taking an average 
of all the updates) into the new version of the central model. After the training rounds have 
completed, the aggregator holds the final version of the model (which under certain POMs 
may be encrypted), which can then be centrally stored for later use and/or deployed by the 
participants in their local production environments. 
 

1.3 Related documents 
This deliverable is related to the following documents (also see Figure 1 for more context): 

• D3.1 and D3.2, describing the initial and final version of the 
MUSKETEER platform architecture, respectively. We will refer to 
these deliverables for detailed documentation of the technical 
requirements which drove the development of the platform, background 
on the cloud-based architecture, and a complete documentation of the 
Application Programming Interfaces (APIs) for interacting with the 
platform. 

• D2.1, describing the industrial and technical requirements for the 
MUSKETEER platform. We will refer to this deliverable for more 
background on the Smart Manufacturing use case which will be part of 
the demonstration described here. 

• D4.1 and D4.2, describing and demonstrating the types of federated ML 
algorithms to be developed during the project and to be supported by 
the MUSKETEER platform. 

• D7.1, describing the initial version of the client connectors’ architecture 

design. We will refer to this deliverable for more information about the 
envisioned packaging and deployment of the MUSKETEER platform 
client connectors in end users’ computational environments. 

 

1.4 Outline 
The remainder of this document is structured as follows:  

• In Section 2 we describe the components of the first prototype of the 
platform: the cloud platform, the alternative local platform, the APIs for 
interacting with the platform, the simple placeholder prototype for 
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client connectors (the full client connectors will be developed in WP7), 
and the mock-ups that were produced along with a brief description of 
the depicted functionalities and the user’s interactions with the 

platform. We note that the local platform, the APIs and the client 
connectors prototype are all available open source under an Apache 2.0 
license [1][2]. 

• Section 3 provides a walk-through of the two exemplary 
demonstrations on synthetic and real-world data; this section also 
recapitulates the steps for creating a local compute environment in 
which the reader can experiment with the open source software and the 
platform functionality. 

• In Section 4 we provide conclusions and an outlook on future work 
towards the final prototype of the MUSKETEER platform.  

 

2 Prototype components 

2.1 Cloud platform 
The MUSKETEER cloud platform is the central component enabling the creation and 
execution of data sharing and federated machine learning tasks among geographically 
dispersed participants. A diagram of the platform architecture is shown in Figure 2.  
 
For detailed information we refer to deliverable D3.2. Here we only note at a high level: 

• The cloud platform uses message queues for asynchronous exchange of 
information required for federated learning, such as the latest version of 
the central model computed by the aggregator, or model updates 
computed by the participants on their local data. The platform itself is 
agnostic to the semantics of this information (generally it will not even 
be aware whether or not the information is encrypted); it is parsed and 
interpreted in the context of the federated learning algorithm processes 
running on the aggregator and participants’ sides, respectively. 

• Besides the exchange of information for the execution of the actual 
federated learning tasks, the platform also provides services to manage 
tasks throughout their lifecycle, such as: creating new tasks, browsing 
created tasks, joining tasks as a participant, or deleting tasks. The meta 
information that is required for task management is stored in a cloud 
database. 

 
For the duration of the MUSKETEER project, four instances of the cloud platform have been 
instantiated, running in the IBM® Cloud™ [3] hosted in Frankfurt, Germany. One instance is 
used for continuous integration and testing of new platform features (within WP3), one 
instance for the development and testing of federated learning algorithms (within WP4, WP5, 
WP6), and two dedicated instances to support the real-world use cases in Smart 
Manufacturing and Healthcare, respectively (within WP7). 
 
As we will see in the end-to-end walk-through in Section 3, credentials provided by IBM are 
required to avail of the cloud platform’s services. 

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article
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Figure 2: MUSKETEER platform architecture (final version) 

 
 

2.2 Local platform 
As an alternative to the cloud platform, we have also developed, in WP3, a local platform for 
enabling federated learning. The purpose of the local platform is to enable lightweight local 
development and experimentation with federated learning algorithms. The designated use 
case is when the aggregator and participants’ compute processes are all running within the 

same local network, e.g. on the same laptop or within the same compute cluster. Thus, the 
local platform does not support the execution of federated learning algorithms in real-world 
scenarios where participants are geographically dispersed or hosted in separate compute 
environments.  
The local platform provides advantages for the rapid development, testing and performance 
evaluation of federated learning algorithms. In particular, it doesn’t incur the communication 

overhead of transmitting information between federated learning aggregators and participants 
via the central communication services hosted in the IBM® Cloud™. Another purpose of the 
local platform is to allow researchers to experiment with the federated learning algorithms 
developed in WP4 and WP5 without having to rely on the cloud platform or requiring 
credentials to access it. 
 
The local platform is implemented using the Python Flask framework [4], where a lightweight 
webserver is deployed on the local compute host, and the aggregator and participants of the 
federated ML task exchange information via HTTP requests to that server. The 
implementation of the local platform is released open source in [1] under an Apache 2.0 
license. 

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article
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2.3 Platform APIs 
The cloud platform exposes Application Programming Interfaces (APIs) allowing algorithm 
and web developers to create federated ML algorithms and user interfaces for end users 
leveraging the platform’s functionality. At a low level, the APIs use the Advanced Message 
Queuing Protocol (AMQP) for communicating with the platform over the internet (see D3.2 
for more details). To facilitate rapid development and to abstract from details of the message 
protocol, a higher-level Python API has been developed and open sourced under WP3 [2]. It 
provides Python function calls, e.g., to create new federated ML tasks in the platform, browse 
available tasks, join tasks, and execute actual training algorithms as aggregator or participant. 
The API is designed to work both with cloud and local platform deployments. This way, for 
example, algorithm developers can use a local platform deployment for development and 
testing, and then their algorithms can be used with the cloud platform for real-world 
deployments. A complete documentation of this API is included in D3.2.  
 

2.4 Client package 
As last component of the demonstrator, a light-weight client package has been developed in 
WP3 and – same as the platform Python API – released open source under an Apache 2.0 
license [1]. We note that the final, full-scale client package for MUSKETEER is to be 
developed under WP7; the client package demonstrated in this deliverable only provides 
minimum functionality and serves only as a basic example of how the MUSKETEER 
platform enables end-to-end data sharing and federated learning workflows. The client 
package contains a simple federated learning algorithm for training a Convolutional Neural 
Network (CNN) classifier implemented in Keras [5]. The final WP7 client package will 
contain the full suite of algorithms developed in WP4; again, the package demonstrated in this 
deliverable only serves as a simple working example. 
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3 Examples of end-to-end executions 
In this section we present actual examples demontrating the end-to-end execution of data 
sharing and federated learning via the MUSKETEER platform. In Section 3.1, we first 
explain the workflow at a high-level. Section 3.2 provides instructions for setting up local 
compute environments to execute the demonstrator; finally, Section 3.3 and 3.4 provide 
detailed walk-throughs of the demonstrations on synthetic data and on real-world data from 
the Smart Manufacturing use case, respectively. 
 

3.1 Motivation 
 
As a motivation, and to explain the basic interactions with the MUSKETEER platform at a 
high level, we provide a fictious example. Consider Alice, a fictious Data Scientist in a 
fictious organization A, who has an ML task for which she would like to train a model, but no 
training data available within her organization. Therefore, she would like to harness the 
MUSKETEER platform to leverage training data owned by other parties. John and Jack, from 
organizations B and C, have access to local data that may be valuable for Alice’s task. 

Together, they can use the MUSKETEER platform to collaboratively train a ML model in a 
federated fashion, without having to share or centralize the actual data. Thereby, they will be 
able to unlock additional value of their data, and all will benefit from creating and training of 
the ML model. 
 
In order to use the MUSKETEER platform, Alice, John and Jack first must register their own 
respective user names and password (Figure 3). Once registered, all their subsequent 
interactions with the platform will utilize those credentials.  
 
 

 

Figure 3: User registration on the MUSKETEER platform 

 
After registering with the platform, Alice will create a federated ML task in the 
MUSKETEER platform. The task creation process requires Alice to define the machine 
learning task in detail as shown in Figure 4. The task definition may contain information such 
as the number of participants, the number of training epochs and rounds, and other common 
parameters of ML model training such as batch sizes, learning rates, etc. Upon successful 
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creation, the task will be assigned with a unique name (“Task005” in this example). In the 
following, Alice will be playing the role of a task creator in the MUSKETEER platform. 

 

Figure 4: Create Federated ML task on the MUSKETEER platform 

 
As task creator, Alice will also execute the aggregator side of the federated training process in 
her computational environment. In this example, the training quorum is 2 (see Figure 4), i.e. 
exactly two participants need to have joined the task before the training begins. 
 
John and Jack can avail of the MUSKETEER platform services to explore federated ML tasks 
created by other users, including the task “Task005” that was created by Alice. By inspecting 
the definition of the task (which could also include meta information provided in full text), 
they can determine whether their available data fits the task’s requirements and ultimately 
decide whether they want to join that task as participant (Figure 5).  
 
 

 

Figure 5: List tasks on the MUSKETEER platform 

 

Once they make the decision to participate in a specific task (typically independently and 
unbeknownst of each other), they can avail of the platform services to join that task (Figure 6) 
and assuming the role of task participants in the following. 
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Figure 6: Join task on the MUSKETEER platform 

With two participants having joined, the starting criterion of Alice‘s task has been satisfied, 
and so the training process of the machine learning task can start and run throughout the 
number of iterations specified in the task definition. The exact flow of information among 
participants and aggregators during the training process depends on the specific POM; in the 
following, we use standard federated ML training in accordance to POM1 (see D4.1) as a 
running example. 
 
Firstly, the aggregator sends an initial version of the ML model to both participants. This can 
be done via a broadcast function in order to save communication costs, as illustrated in Figure 
7. Without a broadcast function, the aggregator would have to send the same model 
repeatedly to the platform (once per participant) which will then relay the model to the 
specific designated sender. In practice, a model update could size up to tens of gigabytes, and 
therefore transferring such a large model several times through a cloud network would 
consume a lot of bandwidth. After broadcasting the model, the aggregator waits for incoming 
model updates from each of the participants. 
 
 

 

Figure 7: Communication from the aggregator to task participants 

 
Secondly, each participant – after receiving the model from the aggregator – will update its 
local model, continue to train the model locally with their local data and obtain a new local 
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model update. Then, this local model update will be transferred back to the aggregator 
through the MUSKETEER platform as shown in Figure 8. The aggregator will then collect 
these new model updates from all the participants, average them to produce a new model 
update, which then is broadcasted again to the participants for the next iteration. After a 
specified number of such iterations, the training will end and the aggregator will obtain a final 
version of the trained model, thus completing the federated ML task created by Alice. 
 

 

Figure 8: Communication from the task participants to the aggregator 

 
Upon completion, the final trained model could be stored by the aggregator in the 
MUSKETEER platform for later use, and/or sent to task participants who could then deploy 
the model in their respective local production environments. 
 

3.2 Installation instructions 
 
Before turning to the actual demonstrations in Section 3.3 and 3.4, we first provide 
instructions for setting up a local compute environment within which the interactions with the 
MUSKETEER platform can be performed. The instructions can also be found on the 
README page of the open source repository [1]. 
 
It is assumed that all development (e.g., of federated learning algorithms or of platform 
interfaces for end users) takes place in Python, using at least version 3.6. To speed up the 
creation of a development environment and generally for ease of use, an automated way for 
provisioning a virtual machine (VM) is provided. During the provisioning of the VM, all 
appropriate dependencies are installed. To take advantage of this automated build process, 
Vagrant [6] must be installed on the local compute system, and backed by a hypervisor such 
as VirtualBox [7]. 

For Mac users, these installations can be performed using HomeBrew [8]: 

brew cask install virtualbox 

brew cask install vagrant 

vagrant plugin install vagrant-vbguest 
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Or, on Windows, using the following resources: 

Install VirtualBox - https://www.virtualbox.org/wiki/Downloads 

Install Vagrant - https://www.vagrantup.com/downloads.html 

vagrant plugin install vagrant-vbguest 

 

Users who choose not to bring up a VM should refer to the Vagrantfile in [1] for 
dependencies to manually install. 

In the following it is assumed that the user has cloned or downloaded the repository [1] and 
has opened a terminal and navigated to the root directory of the local replica of the 
repository. At the time of writing, tag v0.1 in the repository is the latest release. 

To create the VM, from the terminal, run: 

vagrant up 

This will take a few minutes. Upon completion, to log into the VM, run: 

vagrant ssh 

that the current directory will be shared between the host and the VM. To stop the VM: 

vagrant halt 

And to delete the VM: 

vagrant destroy 

 

Note: In order to avail of the MUSKETEER cloud platform’s services, credentials and the 
server certificate must be available. Those are available upon request from the IBM team. 

There is a test provided which will verify access to the platform based on the available 
credentials. Logged into the VM, run: 

python3 -m pytest tests/basic.py --credentials=<CREDENTIALS FILE> -srx -s 

to perform the test, where <CREDENTIALS FILE> should be replaced by the name of the file 
containing the credentials and server certificate provided by IBM. 
 
To facilitate research and rapid prototyping without dependency on cloud resources, we 
provide a local version of the MUSKETEER platform (see Section 2.2). This local version 
has the limitation that only one federated learning task can be running at a time. In order to 
instantiate the local platform, run: 
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python3 local_platform/musketeer.py 

 

Finally, for this demonstrator we use Jupyter notebooks [9] as a simple dashboard and user 
interface for interacting with the MUSKETEER platform (the final client package developed 
in WP7 will provide more advanced graphical user interfaces). To start the Jupyter 
notebook server, run the following two commands in the terminal: 

jupyter notebook password 

jupyter notebook --ip=0.0.0.0 & 

The first command will result in a prompt to enter (and verify) a password for the Jupyter 
notebooks. After executing the second command, open 127.0.0.1:8881 in your host 
browser (tested with Chrome and Firefox), enter the password you chose and then you should 
see the navigation tree. The notebooks/ subfolder contains the actual notebooks that will be 
used to drive the demos in the following sections. 
 
For users who do not use the VM and run the demo directly in their local environment, the 
Jupyter notebook server should be started as follows: 

jupyter notebook --ip=127.0.0.1 & 

3.3 Synthetic data 
 
In this section, we present the demonstration on a synthetic example: training a CNN 
classifier on the MNIST dataset [10]. In this synthetic example, the aggregator and training 
participants will all have different random subsets of the MNIST dataset and use them for 
their local model updates and evaluations.  
 
We first show how to run the demo via Python scripts in terminal windows, then walk 
through the demo driven by Jupyter notebooks, and finally show a mock-up of user 
interactions via a graphical user interface. 
 

3.3.1 Terminal windows 
 
This demo is driven by the Python scripts contained in the demo/ subdirectory. Three different 
terminal windows need to be opened to run this demo. (If the local platform is used, then a 
fourth terminal needs to be opened to instantiate it; see above.) When using the VM, one 
needs to ssh into the VM in each of the three terminals. In the following, we will refer to the 
three terminals as aggregator terminal, participant-1 terminal and participant-2 terminal, 
respectively. In all three terminals, we first change to the demo/ subdirectory. 
 
As first step in the aggregator terminal, we will register the user who is going to serve as task 
creator and aggregator: 
 
python3 register.py --credentials <CREDENTIALS FILE> --user <AGGREGATOR USERNAME> 
--password <AGGREGATOR PASSWORD> --org <AGGREGATOR ORGANIZATION> --platform <CLOUD 
OR LOCAL> 
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The parameters here should be set as follows: 

• <CREDENTIALS FILE>  should be replaced by the name of the file 
containing the credentials and server certificate provided by IBM. If the 
local platform is used, set this to the ../local_credential_sample.json 

• <AGGREGATOR USERNAME> should be replaced by the username under 
which the aggregator registers. We recommend this to be a string of 8-
16 characters without spaces or escape characters. Note: the same 
username can only be used once, i.e. if a user had registered with the 
same before, an error will be thrown. 

• <AGGREGATOR PASSWORD> should be replaced by the password chosen by 
the aggregator user which will be used for authentication in further 
interactions with the platform. We recommend this to be a string of 8-
16 characters without spaces or escape characters.  

• <AGGREGATOR ORGANIZATION> should be replaced by the organization of 
the user. This parameter isn’t strictly required for further platform 

interactions but rather for information purposes. 

• <CLOUD OR LOCAL> should be replaced by either cloud or local, 
indicating whether the cloud or local platform is to be used. The 
credentials file above needs to be set accordingly. 

 
An example of this step is shown in the screenshot in Figure 9. 
 

 
Figure 9: Registering the aggregator user via terminal 

 
Next, we will register the two designated participants of this demonstration task, using the 
same command as for registering the aggregator except that the usernames, passwords and 
organization are those for the participants. Example of these registration steps are shown in 
Figure 10 and Figure 11. 
We note that, while in this simple demonstration the two participants could register from the 
same terminal as the aggregator and use the same credentials file, in real-world scenarios the 
participants will register from different hosts, possibly belonging to different organizations 
and located in different geographies, and use their own dedicated cloud credentials. 
 

 
Figure 10: Registering the participant-1 user via terminal 
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Figure 11: Registering the participant-2 user via terminal 

 

Next, the aggregator user will create the federated learning task via the following command: 
 
python3 creator.py --credentials <CREDENTIALS FILE> --user <AGGREGATOR USERNAME> -
-password <AGGREGATOR PASSWORD> --task_name <TASK NAME> --platform <CLOUD OR 
LOCAL> 

 

Here <CREDENTIALS FILE> and <CLOUD OR LOCAL> are the same as before, and <AGGREGATOR 
USERNAME> and <AGGREGATOR PASSWORD> are the username and password provided in the 
registration step above. <TASK NAME> is a name for the newly created task chosen by the 
aggregator, with the same recommendations regarding string length and escape characters as 
before; also, same as for usernames, task names need to be unique, hence, if a task of the 
same name had been created before, the platform will return an error message.  
 
Figure 12 shows an example of the task creation step. We note that the message returned by 
the platform contains meta information that the platforms stores about the newly created task, 
such as its name, by whom and when it was created, and the actual task definition, which is in 
the form of a dictionary. Deciding on the specifics of the task definition is up to the task 
creator; in the above command for task creation the task definition does not explicitly occur; 
it is hard-coded in the creator.py script, lines 89-98. 
 

 
Figure 12: Creating a federated learning task via terminal 

 
Here we look at the task definition more carefully: 
 
{  
   "aggregator": "neural_network.Aggregator", 
   "participant": "neural_network.Participant", 
   "quorum": 2, 
   "round": 5, 
   "epoch": 2, 
   "batch_size": 256, 
   "learning_rate": 0.001, 
   "training_size": 10000, 
   "test_size": 1000 
} 
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The "aggregator" and "participant" fields reference the code that the aggregator and 
participants shall execute as part of the actual federated learning. It refers to the classes 
Aggregator and Participant in the Python module neural_network.py, which is located 
under the fl_algorithm/ directory in the client package. In the final version of the 
MUSKETEER platform, algorithms from the federated ML library developed under WP4 will 
be developed at this place. 
The "quorum" parameter specifies the number of participants that need to have joined the task 
before the training will start. "round" is the number of rounds during which participants 
locally compute updates on the latest model shared by the aggregator (compare with the high-
level description of federated learning algorithms provided in Section 1.2), where the updates 
are obtained over "epoch" number of epochs, using batches of size "batch_size" and the 
learning rate "learning_rate". "training_size" and "test_size" specify the number of 
data points from the MNIST dataset that will be used locally by the participants for 
training/updating and testing the ML model. 
 
Upon creation of the task, the aggregator can now initiate the training process by locally 
starting the aggregator process: 
 
python3 aggregator.py --credentials <CREDENTIALS FILE> --user <AGGREGATOR 
USERNAME> --password <AGGREGATOR PASSWORD> --task_name <TASK NAME> --platform 
<CLOUD OR LOCAL> 

 
Here <TASK NAME> refers to the task created above by its unique name. Effectively, in line 91, 
the aggregator.py script will retrieve the corresponding task definition from the 
MUSKETEER platform, and in line 102 execute the .start() method implemented by the 
neural_network.Aggregator class. We note that in that method (line 176 in the 
neural_network.Aggregator class), the aggregator training process will wait until the number 
of participants specified in the "quorum" field of the task definition has joined the task; this 
can also be seen in the log message after starting the aggregator process (see Figure 13). 
Inspecting the log messages, we can also see that the aggregator process has already started 
the Keras TensorFlow backend, which will be used later on for performing machine learning 
operations, and downloaded the MNIST dataset from https://s3.amazonaws.com/img-
datasets/mnist.npz. 
 

 
Figure 13: Starting the aggregator process 

 
In parallel, from their respective terminal windows, participants 1 and 2 can list the available 
tasks in the platform using the following command: 
 
python3 listing.py --credentials <CREDENTIALS FILE> --user <PARTICIPANT USERNAME> 
--password <PARTICIPANT PASSWORD> --platform <CLOUD OR LOCAL> 
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For participant 1, this operation is shown in Figure 14. We note that, in general, many more 
tasks besides the one created above may be listed via this command, e.g. tasks created by 
other users in the past, including tasks for which the training may already have been 
completed. 
 

 
Figure 14: Listing federated learning tasks 

 
The next step is for participants 1 and 2, in their respective terminal windows to join the task 
task-demo3.3 that was created by the aggregator above. This is done using the following 
command: 
 
python3 join.py --credentials <CREDENTIALS FILE> --user <PARTICIPANT USERNAME> --
password <PARTICIPANT PASSWORD> --task_name <TASK NAME> --platform <CLOUD OR 
LOCAL> 

 

Figure 15 shows this step for participant 1.  
 

 
Figure 15: Joining a task as participant 

 

After both participant 1 and 2 have joined, we can see in the log messages from the 
aggregator process that the quorum of two participants is found to be present (see Figure 16). 
At this point, the aggregator process will start the actual training and – as can be seen from 
the log messages – send the initial version of the neural network to the participants for them 
to update it on their local data. 
 

 
Figure 16: Performing the federated learning on the aggregator side (start) 

 

In order to close the loop and initiate the corresponding actions on the participants’ side, 

participant 1 and 2 need to start their local training processes via the following command: 
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python3 participant.py --credentials <CREDENTIALS FILE> --user <PARTICIPANT 
USERNAME> --password <PARTICIPANT PASSWORD> --task_name <TASK NAME> --platform 
<CLOUD OR LOCAL> 

 
Figure 17 shows this step for participant 1. As can be seen, upon starting the participant’s 

training process it will immediately update the model received from the aggregator on the 
local data and then send the model update back to the aggregator. 
 

 
Figure 17: Performing the federated learning on the participant side (start) 

 

From this point onwards the training process between the aggregator and the two participants 
is performed iteratively as described in Section 1.2 throughout the total 5 rounds (numbered 0, 
1, 2, 3, 4) prescribed in the task definition. 
 
Figure 18, Figure 19 and Figure 20 show the log messages from the last round of updates and 
the termination messages for the aggregator, participant 1 and participant 2. As can be seen, 
the final testing accuracy (evaluated on the aggregator side) is around 99%. Before the 
termination, the aggregator dispatches the final model to the participants. In this simple 
demonstration, no further action is taken on their side, however, in future versions of the 
platform with the fully developed client connectors there may be end-to-end support for 
putting the trained models into production on the participants’ sides. 
 

 
Figure 18: Termination of the federated learning on the aggregator side 
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Figure 19: Termination of the federated learning on the participant 1 side 

 

 
Figure 20: Termination of the federated learning on the participant 2 side 

 

 

3.3.2 Jupyter notebooks 
 
Next, we show how to drive the interactions with the MUSKETEER platform through Jupyter 
notebooks. Here, we assume the Jupyter notebook server has been started and the tree view 
been opened in a local web browser (see Section 3.2), thus the user should see a screen 
similar to what is shown in Figure 21. 
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Figure 21: Jupyter notebook tree view 

 
Opening the notebooks/ folder, the user should then see the two notebooks that will drive the 
demonstrator: task_creator.ipnyb and task_participant.ipnyb (see Figure 22). 
 
 

 
Figure 22: Demonstrator notebooks 

 
First, we look at the notebook task_creator.ipnyb which drives the interactions of a task 
creator / aggregator with the MUSKETEER platform. The first cell (Figure 23) loads the 
required dependencies into the Python notebook environment. 
 

 
Figure 23: Task creator notebook - loading prerequisites 
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The next two cells (Figure 24) allow the task creator to register a username and a password 
with the MUSKETEER platform. The same comments as above regarding the length, escape 
characters and the uniqueness of the username apply. 
 

 
Figure 24: Task creator notebook - registering user 

 
 
The next three cells (Figure 25) let the task creator retrieve a list of existing federated learning 
tasks in the MUSKETEER platform, display the total number of existing tasks, and list details 
(name, creation time and status) of tasks that were created within the last 24 hours. Note: 
depending on the recent usage of the platform, this may be an extensive list. 
 

 
Figure 25: Task creator notebook - listing existing tasks 

 
The next five cells (Figure 26) drive the creation of a new federated learning task. The task 
definition is the same as in the previous section, and the same comment regarding task 
naming applies. As shown in the following cells, the task creator is able to confirm that the 
newly created task is indeed available in the MUSKETEER platform, along with its meta 
information and the task definition details. 
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Figure 26: Task creator notebook - creating a new task 

 
The final cell in this notebook (Figure 27) starts the aggregator part of the federated learning 
process. Same as in the previous sections, the first few log messages show that the aggregator 
is waiting for the quorum of two participants to be met. 
 
 

 
Figure 27: Task creator notebook - aggregator process (start) 

 
The second notebook, task_participant.ipnyb, drives the interactions of a task participant 
with the MUSKETEER platform. Since for this demonstration we need a quorum of two 
participants, we need to make a copy of this notebook and drive the interactions of the two 
participants through two different notebooks. (Note: a copy can simply be created, after 
opening the task_participant.ipnyb notebook, by selecting “File -> Make a Copy…” from 

the top menu in the notebook.) In the following, we show the interactions for participant 1. 
 
In the first cell (Figure 28), prerequisites are loaded, same as in the task creator notebook. 
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Figure 28: Task participant notebook - loading prerequisites 

 
The next two cells (Figure 29) drive the registration of the participant’s username and 

password, same as in the aggregator notebook. 
 

 
Figure 29: Task participant notebook – registering user 

 
The next three cells (Figure 30) allow the task participant to retrieve a list of all federated 
learning tasks available in the MUSKETEER platform, show their total number, and display 
details of tasks that were created within the last 24 hours. Among those, the task participant 
should be able to see the task that was just created by the task creator. 
 

 
Figure 30: Task participant notebook - listing tasks 

 
In the next five cells (Figure 31), the task participant can first inspect details of a task that she 
is interested in, join the task, and finally confirm that the MUSKETEER platform has 
correctly registered her participation. 
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Figure 31: Task participant notebook - joining a task 

 
The final cell in the notebook (Figure 32) will launch the participant’s part of the federated 
learning process.  
 
 

 
Figure 32: Task participant notebook - participant process (start) 

 
The log messages that are displayed in the aggregator and the participants’ notebooks follow 

the same format as in the terminal-driven demo described in the previous section (they result 
from the execution of the same code implemented in the neural_network.Aggregator and 
neural_network.Participant classes; the exact numerical results may slightly differ though 
due to different random initializations of the neural network, different random sampling of 
local training / test data, and different random shuffling of local training data during the local 
model updates). 
 

3.3.3 Graphical user interface mock-up 
 
Finally, we show how the user interactions with the platform could be performed via a 
graphical user interface, using the platform Python APIs in the backend. Figure 33 shows the 
login phase where an already registered user can login to the platform by entering her 
credentials and will receive an error message in case the user name or password are wrong. 
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Figure 33: Graphical user interface - login page 

 
Figure 34 shows a screen which allows a new user to register by providing a user name, 
password (which has to be confirmed in an extra field), and an organization. 
 
 

 
Figure 34: Graphical user interface - user registration 

 
Figure 35 shows the tasks listing page that is available to the user after logging in. The page 
displays all the created tasks; they are marked by their name, an icon to show their current 
status, the privacy operation mode chosen for that task (if available as part of the task 
definition), further details of the task and the task creation date. By clicking on the task, it is 
possible to obtain additional information about the task. The page allows for task browsing 
and searching for specific tasks via a search bar or through different filters. Finally, using the 
button on the right side allows the user to create a new task. 
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Figure 35: Graphical user interface - task listing 

 
Figure 36 shows the task creation page. In this mock-up example, the following task 
definition information can be provided: 

• Task name: the name under which the task should be displayed; 
• Federated Machine Learning algorithm: once the algorithm is selected it is possible to 

set the parameters of that algorithm; 
• Privacy level: indicated by a privacy operation modes number (where for each mode a 

brief description and summary of its specifications is available); 
• Quorum: the minimum number of participants required for the task. 
 

 

 
Figure 36: Graphical user interface - task creation 

 
The screen in Figure 37 displays a task summary, including its status and the operations that 
the user can perform on this task. Next to the summary on the right hand side are four buttons 
which allow the users to inspect details of the task definition, run the task as a participant, run 
the task as an aggregator (this option is only available if the user is the creator of that task), 
delete the task (this feature is not supported by the first prototype of the platform, but it will 
be in the final version). 
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Figure 37: Graphical user interface - task operations 

 
Upon clicking on the join/participate button, the dialogue box shown in Figure 38 will appear. 
Here, on the left side, the user can choose a dataset to use for that task, while on the right side 
the user can add new datasets from the local file system. 
 

 
Figure 38: Graphical user interface - task execution settings 

 
The screen in Figure 39 shows a chart with the result of a task execution. In this example the 
result is the clustering of the data obtained using the K-Means algorithm, shown in a scatter-
plot with the two resulting clusters displayed in different colors. 
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Figure 39: Graphical user interface - task result 

 
 

3.4 Use case: Smart manufacturing 
 
In this section, we explain how to use the prototype of the MUSKETEER platform to support 
a real-world use case: training predictive models with data from Smart manufacturing 
devices. For detailed background on this use case we refer to D2.1. We would also like to 
note that the final development of the MUSKETEER use cases is outside the scope of this 
deliverable but will be performed under WP7 (see Figure 1). 
 
Here we briefly recapitulate the motivation at a high level: the context of this use case is the 
deployment of manufacturing robots (supplied by COMAU) in car manufacturing plants 
(owned and operated by FCA). More specifically, the robots considered in this use case are 
applied in the car welding process. Whilst operating, the welding guns collect meta 
information and sensor data for each welding point. From a business perspective, the goal of 
this use case is to harness those data to automatically identify potential quality issues during 
the welding process as soon as possible, and to optimize robot maintenance schedules. If the 
operational data from all robots was centrally available, COMAU could create predictive or 
prescriptive analytical models for this purpose following conventional Data Science 
methodologies. However, since the data is proprietary to FCA, this is not possible. Federated 
learning therefore offers a compromise where COMAU can leverage operational data from 
the robots to create ML models for the aforementioned purpose, while the data resides within 
FCA and no proprietary or confidential information is revealed. 
 
In this demonstration we will utilize data from two robots applying welding points to the car: 
FPS2, operating on the left side, and FPD2, operating on the right side. The two robots 
symmetrically apply 5 welding points to each car model passing through the assembly line, 
denoted by P081, P082, P083, P085, P086. For the purpose of this demo, we will focus on the 
welding point P083. 
 

3.4.1 Data Science workflow 
Before demonstrating how the MUSKETEER platform can support this use case, we will first 
walk through the Data Science workflow. For complete documentation, we refer to the 
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Jupyter notebook in [11], however, note that because of their proprietary nature the actual 
data and the code for parsing the raw data are not included in this deliverable, therefore the 
reader will not be able to run the notebook. 
 
The raw meta-information and sensor data from the robots is stored in .xml files, where each 
file contains the information for one car door. For this analysis, 49,627 files from the left door 
(FPS2) and 30,983 files from the right door (FPD2) were used. The first step in the workflow 
is to extract from the raw data the fields that are relevant for creating the ML models: 

• WELCNT: This is a counter which tracks how many welding points 
the robot has been applied since the last dressing of the welding 
electrode. 

• WDRSCNT: This is a counter which tracks the number of dressings of 
the welding electrode before its complete replacement. 

• WELR: Electric resistance when applying the electrode to this welding 
point. 

• WELCUR1_S: Electric current when applying the electrode to this 
welding point. 

• WCLSRES: An automatically generated quality index, with integer 
values between 0 and 10. Here, a quality index of 6 or 7 means that the 
performance of the welding electrode was within the permissible 
operating range; other values indicate that the welding electrode has 
three possible problems: “squeezed”, “pasted” or “short circuit”. 

After parsing the raw data, we obtain a total of 19,288 complete data records from FPS2, and 
11,143 from FPD2. Applying an 80:20 split, we divide those into 13,831 / 3,457 training / 
test samples for FPS2, and 8,915 / 2,228 training / test samples for FPD2. 
 
The ML problem that we would like to solve is predicting WCLSRES as a function of 
WELCNT, WDRSCNT, WELR and WELCUR1_S. From the business perspective, solving 
this ML problem would be valuable because it would allow us to predict quality indices for 
robots which do not automatically generate them, based on the available meta information and 
sensor data. 
 
In order to cast this ML problem as a 4-class classification task, we create a binned variable 
WCLSRES_BIN from WCLSRES as follows: 

• WCLSRES_BIN = 0 if WCLSRES is less than or equal to 3; 

• WCLSRES_BIN = 1 if WCLSRES is 4 or 5; 

• WCLSRES_BIN = 2 if WCLSRES quality is 6 or 7; 

• WCLSRES_BIN = 3 if WCLSRES is greater than 7. 
 
We note that the classes are highly imbalanced: class 0 does neither occur in FPS2 nor in 
FPD2, and class 1 only occurs in FPD2. The dominating class is 2, and class 3 has the second-
most occurrences. Despite the lack of observations for class 0, we still cast this as a 4-class 
classification task to make the model applicable in settings where all four classes occur. We 
do not undertake any measures (e.g. class weighting) to mitigate the imbalance during the ML 
model training, however, this could be an approach to be explored in future work to improve 
the model performance. 
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As ML model, we choose a fully-connected neural network with one hidden layer of 1,000 
units and ReLU activations, implemented in Keras [5]. For training, we use the Keras Adam 
optimizer on cross-entropy loss. We train for 64 epochs using a batch size of 128. 
 
We standardize each of the four feature columns WELCNT, WDRSCNT, WELR, 
WELCUR1_S to have zero mean and unit variance by subtracting the sample mean and 
dividing by the sample standard deviation computed on the training set. 
 
We run three different baseline experiments which we will use later as a comparison to the 
performance when performing the training in a federated setting on the MUSKETEER 
platform: 

1. We train the model on the training data from FPS2 and test it on the 
test data from FPS2 and FPD2. We obtain 92.68% test accuracy on 
FPS2, 79.35% on FPD2, and 87.46% on the combined testing data 
from FPS2 and FPD2. See Table 1, Table 2 and Table 3 for the 
respective confusion matrices. 

2. We train the model on the training data from FPD2 and test it on the 
test data from FPS2 and FPD2. We obtain 89.35% test accuracy on 
FPS2, 88.46% on FPD2, and 89.01% on the combined testing data 
from FPS2 and FPD2. See Table 4, Table 5 and Table 6 for the 
respective confusion matrices. 

3. We train the model on the combined training data from FPS2 and 
FPD2 and test it on the test data from FPS2 and FPD2. We obtain 
91.64% test accuracy on FPS2, 87.03% on FPD2, and 89.83% on the 
combined testing data from FPS2 and FPD2. See Table 7, Table 8 and 
Table 9 for the respective confusion matrices. 

 
 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 0 0 
2 0 0 2,964 52 
3 0 0 201 240 

Table 1: Confusion matrix when training on FPS2 and testing on FPS2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 29 0 
2 0 0 1,479 324 
3 0 0 107 289 

Table 2: Confusion matrix when training on FPS2 and testing on FPD2 
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True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 29 0 
2 0 0 4,443 376 
3 0 0 308 529 

Table 3: Confusion matrix when training on FPS2 and testing on FPS2 + FPD2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 0 0 
2 0 37 2,956 23 
3 0 0 308 133 

Table 4: Confusion matrix when training on FPD2 and testing on FPS2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 25 4 0 
2 0 3 1,714 86 
3 0 0 164 232 

Table 5: Confusion matrix when training on FPD2 and testing on FPD2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 25 4 0 
2 0 40 4,670 109 
3 0 0 472 365 

Table 6: Confusion matrix when training on FPD2 and testing on FPS2 + FPD2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 0 0 
2 0 2 2,988 26 
3 0 0 261 180 

Table 7: Confusion matrix when training on FPS2 + FPD2 and testing on FPS2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 11 18 0 
2 0 0 1,684 119 
3 0 0 152 244 

Table 8: Confusion matrix when training on FPD2 + FPS2 and testing on FPD2 
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True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 11 18 0 
2 0 2 4,672 145 
3 0 0 413 424 
Table 9: Confusion matrix when training on FPS2 + FPD2 and testing on FPS2 + FPD2 

 
The experiments suggest that training a model on the combined training data from FPS2 and 
FPD2 yields better performance on average than using a model that is trained on data only 
from FPS2 or FPD2.  
 

3.4.2 Integration with the MUSKETEER platform 
 
In this section we explain how to use the prototype of the MUSKETEER platform to set up 
and execute a federated learning task that trains a ML model on the combined training data 
from FPS2 and FPD2 without having to centralize those data. 
 
The attachments [12], [13], [14], [15] contain all the code that is required for executing this 
use case, however, because of their proprietary nature the actual data are not included in this 
deliverable, therefore the reader will not be able to run the code. 
 
Two main customizations of the demonstrator from Section 3.3 are required to port this use 
case to the MUSKETEER platform: 

• Modifications of the classes neural_network.Aggregator and 
neural_network.Participant to support the specific data preprocessing 
requirements and model definition for this use case; those are 
implemented in neural_network_usecase.py [12]. 

• Modifications of the user inputs in the notebooks for the task creator 
and participants; those are provided in task_creator_usecase.ipynb 
[13], task_participant_usecase_1.ipynb [14] and 
task_participant_usecase_2.ipynb [15]. 

 
We would like to emphasize, however, that those modifications are minimal; in future 
versions of the end-to-end MUSKETEER platform – with the fully developed algorithm 
library from WP4 and client connectors from WP7 – we expect that those modifications will 
only require changes to task definitions, connector configurations etc. and no changes to the 
actual code. 
 
First, we explain the customization that we made in the implementations of the Aggregator 
and Participant classes in the neural_network_usecase.py module [12] to execute this use 
case: 

• The first change is the implementation of the load_data function of the 
Participant class (lines 219-221), which loads the local training and 
testing data from the .pkl files prepared in the notebook [11]. 
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• The second change is the instantiation of the ML model described in the 
previous section as part of the start function of the Aggregator class 
(lines 142-145). 

• The final change is logic that we added in the Aggregator and 
Participant classes (lines 154-168 and 238-256, respectively) for 
appropriate standardization of the local training and test data. This is 
done via the following steps: (1) Each participant sends – for each 
feature – the sum of all values, mi, the sum of squares of all values, si, 
and the total number of training samples, ni, to the aggregator. (2) The 
aggregator uses this information to compute the total number of training 
samples n = (n1 + n2 + …), the global feature mean m = (m1 + m2 + …) 

/ n, and the global standard deviation s = sqrt( (s1 + s2 + … – n·m2) / (n-
1) ), and then broadcasts m and s to all participants. (3) The participants 
standardize their local training data using m and s. 

 
Besides those customizations, the logic is identical to the neural_network.py module used in 
the demonstrator on synthetic data in the previous section. We note that, through the 
contributions from WP4 and WP7, such hard-coded changes to algorithm implementation 
ultimately may not be necessary; in particular, the exact model definition and data 
standardization logic may be configurable through the task definition, and the logic for data 
loading and parsing may be configurable through data connector interfaces in the client 
package. 
 
Finally, let us look at the changes in the notebooks for the task creator and participants. In the 
task creator notebook [13], the only noteworthy customization is the change in the task 
definition (see Figure 40). In particular, the "aggregator" and "participant" fields here 
reference the Aggregator and Participant classes in the modified Python module 
neural_network_usecase.py [12]; moreover, the task definition contains a field 
"point" which allows the task creator to prescribe for which welding point the ML model 
shall be trained. All other fields have the same meaning as in the task definition for the 
synthetic use case. 
 

 
Figure 40: Use case task creator notebook – task definition 

  
In the participants’ notebooks ([14], [15]), it is worth noting that the .run function of the 
Participant class here takes an extra argument directory (see Figure 41). This argument 
allows the task participants to specify where in their local compute environment the .pkl file 
containing the processed training and testing data is located. This file is then loaded by the 
load_data function of the Participant class in preparation of the federated learning process. 
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As can be seen by the respective values of the directory argument, participant 1 loads the 
data from FPS2, and participant 2 the data from FPD2. 
 

 
Figure 41: Use case task participant notebook – training execution (start) 

 
The log messages shown in Figure 41 also report on the standardization of the local data by 
the global means and standard deviations computed via the federated approach described 
above. 
 
From the last log messages in the participants’ notebooks, we obtain that the final ML model 

– dispatched to the participants after the training process has ended – achieves 92.13% test 
accuracy on the data from FPS2, and 83.98% on the data from FPD2. On the combined test 
data from FPS2 and FPD2 (taking into account the different sample sizes of 3,457 and 2,228, 
respectively), the accuracy is 88.94%. The corresponding confusion matrices are shown in 
Table 10, Table 11 and Table 12, respectively. Compared to the baseline above, where the 
model was trained in a non-federated fashion on the combined training data from FPS2 and 
FPD2, the average accuracy is just about 1% lower. We would like to emphasize, however, 
that in this demonstration we did not attempt to fine-tune the hyperparameters of the ML 
model and the federated learning algorithm. We expect that, with more advanced algorithms 
developed in WP4, the accuracy of a model trained with federated learning may more closely 
match the accuracy of a conventionally trained model. 
 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 0 0 
2 0 0 2,982 34 
3 0 0 238 203 
Table 10: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPS2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 29 0 
2 0 0 1,577 226 
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3 0 0 102 294 
Table 11: Confusion matrix for federated training on FPS2 + FPD2 and testing on FPD2 

 
True/Predicted 0 1 2 3 
0 0 0 0 0 
1 0 0 29 0 
2 0 2 4,559 260 
3 0 0 340 497 

Table 12: Confusion matrix for federated training on FPS2 + FPD2 and testing on   
FPS2 + FPD2 

4 Conclusions 
In this deliverable we presented demonstrations of data sharing and federated learning via the 
MUSKETEER platform. We explained key components – the cloud platform, the local 
platform, the Python API and the sample client package – and demonstrated interactions with 
the platform via Python scripts and Jupyter notebooks. We used a synthetic example and a 
real-world Smart manufacturing use cases to demonstrate the workflow end-to-end. The 
sample client package and the Python API have been released open source on GitHub under 
an Apache 2.0 license, thus enabling the reader to experiment with the platform functionality. 
 
While the architecture of the MUSKETEER platform is finalized (and described in detail in 
D3.2), both functional and non-functional extensions and improvements are envisioned 
towards the final version of the platform. This may include, e.g., more advanced features for 
managing models created via federated learning tasks or for storing information about the 
estimated value of the data contributed by different task participants, as well as refinements of 
the platform APIs to improve the usability for algorithm and application developers. 
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