

H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

January 20

D4.6 Machine Learning Algorithms over
Semi Honest Operation Modes algorithms

– Initial Version

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 31 Jan 2020

Author(s): Ángel Navia-Vázquez (UC3M), Francisco González-Serrano

(UC3M)

Participant(s): Jesús Cid Sueiro (UC3M), Manuel Vázquez López (UC3M)

Reviewer(s): Mathieu Sinn

Chiara Napione

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP4

Dissemination level: Internal

Version: 1.0

Contact: angel.navia@uc3m.es

Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-

Preserving Scenarios (MUSKETEER) has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 824988. The sole

responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only

be made with reference to the publisher.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

This deliverable (D4.6 Machine Learning Algorithms over Semi Honest Operation Modes –

Initial Version) comprises the Machine Learning Library needed to execute the distributed

learning under POMs 4, 5 and 6, as well as some demonstration scripts to check the correct

execution of the code. The list of available algorithms is as compromised for this deliverable

(Linear models, Kernel methods and Clustering). The full collection of training methods will

be available in the final version of the library (D4.7, M30). The design of the new models will

be analogous to the already available ones, so the integration and use will not be a problem.

We also provide the software documentation and description of the software components.

In future versions, more learning algorithms will be available and some redesign may be

necessary to facilitate the integration with the rest of MUSKETEER components, as well as

some code and algorithm optimization.

Document History

Version Date Status Author Comment
1 08 Jan 2020 For internal review Angel Navia-Vázquez First draft
2 14 Jan 2020 Internal review Chiara Napione
3 16 Jan 2020 Internal review Angel Navia-Vázquez
4 16 Jan 2020 Final review Mathieu Sinn
5 17 Jan 2020 Final review Gal Weiss Final

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES .. 5

LIST OF ACRONYMS AND ABBREVIATIONS ... 7

1 INTRODUCTION .. 8

1.1 Purpose ... 8

1.2 Related Documents .. 8

1.3 Document Structure ... 9

2 CONTEXT OF THE MACHINE LEARNING LIBRARY.. 10

3 POMS 4, 5 AND 6 REVISITED ... 12

3.1 POM 4 .. 12

3.2 POM 5 .. 13

3.3 POM 6 .. 15

4 METHODOLOGY ... 16

4.1 General development process .. 16

4.2 Current status of the library and future steps ... 16

5 LIBRARY DEMONSTRATION PRELIMINARY ASSUMPTIONS 19

6 MUSKETEER MACHINE LEARNING LIBRARY USAGE .. 23

6.1 Communications setup ... 23

6.2 Setting up the Worker Node (end user side) ... 23

6.3 Setting up the Master Node.. 25

7 MUSKETEER MACHINE LEARNING LIBRARY RESULTS ... 26

7.1 Cross-Correlation (XC) estimation ... 27

7.2 Ridge Regression (RR) estimation ... 28

7.3 Kernel Regression (KR) estimation .. 29

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.4 Logistic Classifier (LC) ... 30

7.5 Multiclass Logistic Classifier (MLC) .. 32

7.6 Budget Support Vector Machine (BSVM) .. 35

7.7 Clustering (K-means) .. 37

8 INSTALLING THE LIBRARY ... 38

9 EXECUTION OF THE DEMOS .. 39

9.1 Simple execution .. 40

9.2 Full detail execution ... 41

10 SOFTWARE DOCUMENTATION (SAMPLE) .. 44

11 CONCLUSIONS .. 48

12 REFERENCES ... 48

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1: MUSKETEER’s PERT diagram ... 8

Figure 2: Centralized (a) vs. distributed scenario (b). Every user provides a portion of the

training dataset. Data confidentiality must be preserved. .. 10

Figure 3: Detailed process interactions in a MUSKETEER learning process. 11

Figure 4: POM 4 general setup. .. 12

Figure 5: POM 5 general setup. .. 14

Figure 6: POM 6 general setup. .. 15

Figure 7: Normalized cross-correlation values among inputs for the redwine dataset. 27

Figure 8: Normalized cross-correlation values between inputs and outputs for the redwine

dataset. ... 28

Figure 9: Illustration of the target and predicted values using the Ridge Regression

estimation for the redwine dataset. .. 29

Figure 10: Results of the Kernel Regression model on the 1D synthetic dataset. 30

Figure 11: ROC curves for the Logistic Classifier model on the pima dataset. 31

Figure 12: ROC curves for the Logistic Classifier model on the binarized MNIST handwritten

digits dataset. ... 31

Figure 13: ROC curves for the Multiclass Logistic Classifier model on the MNIST handwritten

digits dataset. One ROC curve is shown here for every class value, under a one-vs-all

approach... 32

Figure 14: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST

handwritten digits dataset. .. 33

Figure 15: ROC curves for the Multiclass Logistic Classifier model on the MNIST fashion

dataset. One ROC curve is shown here for every class value, under a one-vs-all approach. .. 34

Figure 16: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST fashion

dataset. ... 34

Figure 17: ROC curves for the Budget Support Vector Machine model on the 2D synthetic

dataset. ... 35

Figure 18: Contour plots (decision boundary) for the Support Vector Machine model on the

2D synthetic dataset... 36

Figure 19: ROC curves for the Support Vector Machine model on the 2D synthetic dataset. 36

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 20: Obtained centroids for the MNIST handwritten digit dataset using K-means. 37

Figure 21: Obtained centroids for the MNIST fashion dataset using K-means........................ 37

Figure 22: The local communications terminal (Flask Server) ... 40

Figure 23: The demo execution of a Kernel Regression under POM6 in a single terminal 41

Figure 24: The local communications terminal (Flask Server) ... 42

Figure 25: The demo execution of a Kernel Regression under POM6 in full detail

(WorkerNode) .. 43

Figure 26: The demo execution of a Kernel Regression under POM6 in full detail

(MasterNode) ... 43

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition

AUC Area Under (ROC) Curve
BSVM Budget SVM
CA Consortium Agreement

CN Cryptonode
DC Data Connector
FML Federated Machine Learning
FR Functional Requirements

GA Grant Agreement

HBC Honest But Curious (a.k.a SH)
IDR Intermediate Data Representation
KM Kernel Method

KR Kernel Regression
LC Logistic Classifier
LM Linear Model

LR Logistic Regression
ML Machine Learning
MMLL Musketeer Machine Learning Library
MLC Multiclass Logistic Classifier
MN Master Node
OS Operating System

PERT Program evaluation and review technique
POM Privacy Operation Mode
PP Privacy Preserving

PPML Privacy Preserving Machine Learning (a.k.a.
Privacy Preserving Data Mining)

ROC Receiver Operating Characteristics

RR Ridge Regression

SH Semi Honest (a.k.a HBC)
SQL Structured Query Language
UI User Interface

WN Worker Node

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

This deliverable comprises the first preliminary version of the Machine Learning Library to be

integrated in the MUSKETEER platform, under POMs 4, 5 and 6. From now on we will name

this library as “MUSKETEER Machine Learning Library” (MMLL). Some demos to illustrate the

behaviour of the library are also provided. These demos are not intended to be a benchmark

of the library, they are provided for illustration purposes (the complete benchmark will be

carried out in WP6). This deliverable will help other partners in the understanding of the

POM 4, 5 and 6 algorithms design and usage, to facilitate their integration and use in the

MUSKETEER platform.

1.2 Related Documents

D4.6 is the first deliverable associated to the task T4.4 (Algorithms over semi-honest privacy

preserving operation modes), as indicated in the PERT diagram below. It uses as input

previous outcomes of WP4 (D4.1 and D4.2), where a preliminary version of the library design

has been described, as well as a possible usage in the form of a MUSKETEER demonstrator. It

also takes as inputs the requirements and specifications detailed in WP2, and, although not

indicated in the PERT diagram, it is also respectful with the functional requirements FR017-

FR024 described in D3.1 in relationship with the communications library.

Figure 1: MUSKETEER’s PERT diagram

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1.3 Document Structure

This document is structured as follows:

• The current section (Introduction), presents the general aspects about this document

and its relationship with other developments in the project.

• The section "Context of the Machine Learning Library" briefly revisits the main

objectives of MUSKETEER from a Machine Learning point of view. We revisit some of

the basic concepts about the platform execution, the participant processes and the

corresponding objects. We also summarize the behaviour of every Privacy Operation

Mode (POM) and how it will operate once integrated in the platform.

• The section 5: "Methodology" describes the development process of the software, its

current state and the future goals.

• In Section 6 “Library Usage” we briefly describe the main steps needed to use the

MMLL outside of the demos, to ease the integration step into the MUSKETEER

platform. By now, some aspects still need to be re-engineered, but this could serve to

get a general understanding of the library design and behaviour.

• In Section 7: "Results", we include some of the results of the algorithms applied on

some selected datasets. This will serve as a first reference of the library behaviour,

before proceeding with the execution of the demos in the following sections.

• The Section 8: "Installation" describes on a step-by-step basis the procedure to

correctly install and execute the library in different Operating Systems (Windows,

Linux and Mac OS).

• In Section 8: “Execution of the demos” we provide further detailed explanation about

the demo execution process.

• In Section 9: “Sample software documentation” we provide some examples of the

produced software documentation. The full version of the documentation is provided

along with the code, and can be read with any web browser (html format).

• In Section 10: Conclusions, we provide a summary on the contents of the deliverable

and the obtained results.

• Finally, some references are included in the last section.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2 Context of the Machine Learning Library

The library developed in this deliverable and described in this document is a preliminary yet

fully operable version of the Machine Learning Library to be used in MUSKETEER under

POMs 4, 5 and 6. Essentially, it aims at deploying a distributed ML setup (Figure 2b) such that

a model equivalent to the one obtained in the centralized setup (Figure 2a) is obtained.

Figure 2: Centralized (a) vs. distributed scenario (b). Every user provides a portion of the training dataset. Data
confidentiality must be preserved.

The centralized solution requires that the data from different users is gathered in a common

location, something that is not always possible due to privacy/confidentiality restrictions. On

the other hand, the distributed privacy preserving approach requires to exchange some

information (intermediate data representation1, IDR) among the participating users such

that a Master Node (MN) obtains the final ML model without ever receiving/seeing the raw

data of the users.

In a second level of detail, we can describe the interaction among nodes as shown in the

next Figure:

1 Any intermediate data representation should carry some information about the data it is derived from (to

allow learning), while hiding the actual raw data values to the participants in the protocol. Averaged

gradients, auto-correlation matrices or cross-correlation vectors could be examples of IDR, each one

revealing different partial information about the datasets. Any form of (homomorphic) encryption can also

be considered as an IDR, since it allows to compute some operations on the data, while protecting the raw

data.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 3: Detailed process interactions in a MUSKETEER learning process.

We observe the participation of several actors in a learning process, everyone marked as a

dashed box and supposedly running on a different (remote) machine:

- The MUSKETEER main process: it is the process that orchestrates the training

procedure, identifies the potential contributors and obtains the final model. It runs

the “MasterNode” object (dark orange circle) from the MMLL. It communicates by

means of the communication object (yellow circle) with the other participants

through the Communications Service at the Cloud.

- The MUSKETEER client: it is the process that every participant must locally execute. It

runs the “WorkerNode” object (light orange circle) from the MMLL. The Worker has

access to the local data through the specific data connector (red circle) provided by

the end user and communicates with the MasterNode by means of the

communication object (yellow circle) through the Communications Service at the

Cloud.

In the next Section we describe in a deeper detail the structure of the objects participating in

POMs 4, 5 and 6, as well as the expected interactions among the different types of nodes.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3 POMs 4, 5 and 6 revisited

General aspects:

The following nodes (objects) are to be executed:

Common to POMs 4, 5 and 6:

- Master Node (MN): a central object (process) that controls the execution of the

training procedure

- Worker Node (WN): an object to be executed in the end user side, possibly as a part

of the MUSKETEER client. It is the only node that has a direct access to the raw data

provided by every user, through an ‘ad-hoc’ Data Connector (DC).

Specific to POM 4:

- Crypto Node (CN): an object providing some cryptographic operations. It can be run

anywhere but it cannot collude with the Master Node. It is only needed in POM 4,

because POM6 does not use encryption and in POM5 the Master Node plays the role

of Crypto Node.

In what follows we describe the normal operation of a training algorithm under every

POM.

3.1 POM 4

This POM uses an additively homomorphic cryptosystem to protect the confidentiality of

the data. The CN will help in some of the unsupported operations. The scheme is

cryptographically secure if we guarantee that there is no collusion between the MN and

the CN. In the next Figure we represent the interaction among the participants.

Figure 4: POM 4 general setup.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The steps to train a given model are:

1. The MN asks to the CN some general public parameters, and distributes them to

the WNs.

2. Every Node will use those parameters to generate public and private keys. The

public keys are distributed. The CN generates a Master key, able to decrypt

anything.

3. Every WN encrypts the data with their secret keys and sends the encrypted data

to the MN.

4. The MN sends the data with blinding to the CN, to re-encrypt it to the Master

key. The re-encrypted data is returned to the MN.

5. The MN starts the training procedure by operating on the (encrypted) model

parameters and (encrypted) users data. The initial model parameters are

generated at random by the MN.

6. The MN is able to perform some operations on the encrypted data (the

homomorphically supported ones).

7. For the unsupported ones, it needs to establish a secure protocol with the CN

consisting in:

a. The MN sends some data with blinding to the CN

b. The CN decrypts the data and computes the unsupported operation in

clear text. Then it encrypts the result.

c. The MN receives the encrypted result and removes the blinding.

As a result of this protocol, the MN never sees the data or the result in clear

text and the CN only sees the clear text of a blinded message, different from

the raw data.

8. The procedure goes back to 5 until a stopping criterion is met.

POM 4 is a cryptographically secure procedure, providing that MN and CN do not collude.

3.2 POM 5

This POM has been re-engineered to better comply with some of the platform requisites:

improved performance and no need to run non-colluding nodes. It uses an additively

homomorphic cryptosystem to protect the confidentiality of the data and model. The

MN will help in some of the unsupported operations, this is, the MN will play the role of

CN. The scheme is cryptographically secure. In the next Figure we represent the

interaction among the participants.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 5: POM 5 general setup.

The steps to train a given model are:

1. The MN generates public and private keys. The public keys are distributed to all

participants.

2. The initial model parameters are generated at random by the MN. The MN

encrypts the model parameters with his secret keys and sends the encrypted

model to the WNs.

3. The WN starts the training procedure by operating on the (encrypted) model and

(un-encrypted) users data.

4. The WN is able to perform some operations on the encrypted data (the

homomorphically supported ones).

5. For the unsupported ones, the WN needs to establish a secure protocol with the

MN consisting in:

a. The WN sends some encrypted data with blinding to the MN

b. The MN decrypts the data and computes the unsupported operation in

clear text. Then it encrypts the result.

c. The WN receives the encrypted result and removes the blinding.

As a result of this protocol, the MN never sees the data or the result in clear

text, and the WN only sees the encrypted model.

6. The procedure goes back to 5 until a stopping criterion is met.

POM 5 is a cryptographically secure procedure.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.3 POM 6

This POM does not use encryption; it relies on Secure Multiparty Computation and possibly

other (two-party) Secret Sharing protocols to solve some operations on distributed data. In

the next Figure we represent the interaction among the participants.

Figure 6: POM 6 general setup.

Under this POM, raw data is not encrypted, but it is never sent outside the WN. The model

trained in the MN can also be kept secret to the WN. Some transformations of the data can

be exchanged with the MN, such as aggregated values, correlation matrices, etc. Every

implemented algorithm will describe which information is revealed to the MN, for instance:

covariance matrices, number of training patterns, average of the training patterns, etc. In

any case, the raw data (individual training patterns) will not be revealed and cannot be

obtained by inverse engineering on the exchanged data.

Some of the operations can be directly implemented using SMC protocols such as secure dot

product, secure matrix multiplication, etc. The security of these operations will be as

described in the reference sources describing every protocol. POM6 is not a general

procedure, it requires that every algorithm is implemented from scratch, and it is not

guaranteed that any algorithm can be implemented under POM6. For some operations, a

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

“round robin” protocol is required; therefore direct connections among some of the WNs

are needed (ring network).

As an illustrative example, let’s imagine a training procedure that requires at every step to

receive the average covariance matrix among all the WNs and to compute one dot product.

The procedure could be as follows:

1. The MN asks the WNs to compute their covariance matrices.

2. The MN starts a round robin protocol with blinding to obtain the accumulated

covariance matrix

3. The MN starts a SMC protocol to obtain the dot product with the data from every

WN.

4. Using the received information the MN updates the model (the specific

correlation matrices of every worker are not revealed).

5. The procedure goes back to 1 until a stopping criterion is met.

4 Methodology

4.1 General development process

The library development follows these steps:

1. Develop an algorithm prototype without communications library

2. Adaptation to the provisional local communications library provided by IBM

3. Preliminary version with the code structure agreed between UC3M and TREE

4. MMLL 1.0: preliminary version of the library (provided with this Deliverable D4.6,

as long as some demos)

5. Algorithm & code optimization (mainly to be carried out during the next months)

6. Usage of the final communications service (IBM Cloud)

7. MMLL 2.0: final version of the library (to be provided in D4.7 (M30))

4.2 Current status of the library and future steps

We briefly describe here the current status of the algorithms/POMs, mainly concentrating

on some of the mentioned algorithms for the current Deliverable (D4.6): Linear models,

kernel methods and clustering (Kmeans).

Cross-correlation estimation

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Cross-correlation DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Ridge Regression

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Ridge Regression DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Linear Regression

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Linear Regression DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Logistic Classifier

1. Prototype without communications library Done

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Logistic Classifier DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Multiclass Logistic Classifier

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Multiclass Logistic Classifier DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Clustering (Kmeans)

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Clustering (Kmeans) DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Kernel Regression

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3. Preliminary version with common code structure Done

4. Kernel Regression DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Budget Support Vector Machine

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Budget Support Vector Machine DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

5 Library Demonstration preliminary assumptions

In what follows, we assume that a Machine Learning task has already been defined, and that

the MUSKETEER platform has already identified all the potential users participating in the

training process. In the complete, end-to-end version of the MUSKETEER platform, the

services which allow users to register to the platform, define tasks and join tasks will be

developed under WP3.

Therefore, for the purpose of this demonstrator, we will assume the following:

• General description of the task: All participants have access to this description and

agree to participate and contribute some data to the learning process. A preliminary

check procedure has already been executed to guarantee that the contributed data

follows the needed format (number and type of input features, number and type of

target values, etc.).

• User addresses and execution: the list of addresses of the participating nodes

(Worker Nodes (WN)) is available to the MasterNode, according to FR017 in D3.1. In

the final version every participant (Master/Cryptonode/Workers) will be a separate

process in a potentially different machine/location. The current version of the

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Communications Library (CL) is primarily designed to communicate between

processes in the same machine, and we have executed these simulations using this

approach, but in the future the experiments will also cover different remote

machines communicated through the IBM Cloud.

• Data: the data for training, validating and testing will be provided to MUSKETEER by

means of a Data Connector (DC). For illustration purposes we provide here a DC to be

used in the demonstrator that simply loads data from a file. The final DC for the user

cases will have to be developed in other parts of the project, possibly at WP7. For

future uses, any other compatible data connector can be used if provided by the end

user (SQL access, for instance). For the purpose of this demonstration we provide

some public datasets along with the specific needed Data Connector. Some other

larger datasets can also be downloaded if extra experiments are to be done.

• Confidentiality requirements: We will assume that the raw data is never sent (in

clear text, or unencrypted) outside of the owner’s context and that the trained model

is kept secret (only known to the Master Node). We will allow to exchange among

the participants some IDR, transformations of the data (such as aggregations, cross-

correlation matrices, encrypted values, etc.), but in any case that information cannot

be used to reconstruct the raw input data or targets. The final end users will be

aware in advance of the type of information exchanged under every Privacy

Operation Mode (POM), and it is their ultimate responsibility to choose among one

POM or another.

• Communications library: The MMLL needs a Comms object to operate and it is

agnostic with the particular implementation of the communication service whenever

the Functional Requirements FR017-FR024 in D3.1 have been respected. Namely, the

Comms object must provide basic “send/receive” functionalities, and its interface

needs to contain, as a minimum, the following methods2:

o At Master Node (MN):

Send a message

Functional description: send a message from the MN to the

worker identified with “worker_id”:

Input:

message: the message to be sent. It can be of any type,

the Comms object must serialize/deserialize it if needed.

2 We will use the term MN (Master Node) here, but it can also be interpreted as the Aggregator

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

worker_id: the recipient id, type=string

Output:

 None

Example of use:

comms.send(message, worker_id)

Broadcast:

Functional description: send a message from the MN to all

workers:

 Input:

message: the message to be sent. It can be of any type,

the Comms object must serialize/deserialize it if needed.

Output:

 None

Example of use:

comms.broadcast(message)

Send over ring:

Functional description: Send a message through all workers (the

order is irrelevant), following the ring topology, starting and

ending in the MN (MN -> worker1 -> worker2 -> … -> workerN -

> MN):

 Input:

message: the message to be sent. It can be of any type,

the Comms object must serialize/deserialize it if needed.

Output:

 None

Example of use:

comms.send_ring(message)

Receive:

Functional description: enter in a “receive” state until a

message is received or a timeout is passed):

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Input:

 None

Output:

message: the received message, in the same format as

sent by the sender.

Example of use:

message = comms.receive()

o At any Worker Node (WN):

Send:

Functional description: send a message from the Worker Node

to the MN:

 Input:

message: the message to be sent. It can be of any type,

the Comms object must serialize/deserialize it if needed.

Output:

 None

Example of use:

 comms.send(message)

Receive:

Functional description: enter in a “receive” state until a

message is received or a timeout is passed):

Input:

 None

 Output:

message: the received message, in the same format as

sent by the sender.

Example of use:

message = comms.receive()

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6 MUSKETEER Machine Learning Library Usage

In this section we will briefly describe the potential usage of the library outside of the

demos, to ease its integration in the final prototypes.

Important note: the pseudocode shown in this section is only for illustrative purposes and

library comprehension, it is not intended to work as it is. The interested reader will need

to look into one of the demo scripts to fully understand all the needed parameters.

6.1 Communications setup

As mentioned before, we will restrict by now to using different processes in the same

machine and interconnect them with the local communications library provided by IBM

(Flask Server). Therefore, we need to start that server, by running:

python3 local_flask_server.py

The communications system is now ready to exchange messages among the participating

nodes. In the future, when the Cloud Communications service and the corresponding API will

be completed according to FR017-FR024 in D3.1, it will be possible to communicate

processes among different machines.

6.2 Setting up the Worker Node (end user side)

The Worker Node is the object that controls the behaviour of the MMLL on the end-user

side. First of all we need to import it from the library:

from MMLL.nodes.WorkerNode import WorkerNode

Before instantiating it, we need some extra objects3: the data connector (DC), the

Communications object (Comms) and, in some POMs, the Crypto object. We start importing

them from the library:

from MMLL.data_connectors.Load_from_file import Load_From_File as DC

from MMLL.comms.comms_local_Flask import Comms

3 We will restrict here to the description of the main variables, the interested reader may read the code of one

of the demos for a full understanding.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

from MMLL.crypto.CryptoBCP_beta import CryptoBCP

We instantiate the DC object. In the “load from file” case, we need to provide as input

parameter the filename where the data is stored, in other cases, the DC will need

parameters to access the data. The DC must have a “get_data_Worker” that returns one 2D

array with the input features (Number of patterns x Number of features), and a 1D array

with the targets (if the task is a supervised one). This method will be used by the

WorkerNode to get the training data.

data_file = ‘./mydata.txt’

dc = DC(data_file)

We then instantiate the Comms object, which needs as input parameter the Worker ID (any

unique string will serve in this case):

worker_id = ‘worker_1’

comms = Comms(worker_id)

Algorithms in POMs 4 and 5 need a Cryptographic object to operate, the key_size

parameters determines the strength of the encryption:

cr = CryptoBCP(key_size=512)

The next step is to create the WorkerNode itself, and we pass as parameters the selected

pom, the worker ID, the address of the Master Node, the Comms object, the DC object and

the Cryptographic object:

pom = 5

wn = WorkerNode(pom, worker_id, comms, dc, master_address=’ma’,

cr=cr)

We load the data:

wn. load_data()

We create the model of the selected type:

model_type = ‘Kmeans’

wn.create_model_worker(model_type)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

And we execute the training loop at the worker:

wn. run()

The worker will enter into a listening state, waiting for instructions from the Master Node. It

will stop when the training is completed.

6.3 Setting up the Master Node

The Master Node is the object that orchestrates the training procedure among all other

participating nodes. First of all we need to import it from the library:

from MMLL.nodes. MasterNode import MasterNode

Before instantiating it, we need some extra objects4: the data connector (DC) is only needed

if some validation or test data is to be used by the MasterNode, the Communications object

(Comms) and, in some POMs, the Crypto object. We start importing them from the library:

from MMLL.data_connectors.Load_from_file import Load_From_File as DC

from MMLL.comms.comms_local_Flask import Comms

from MMLL.crypto.CryptoBCP_beta import CryptoBCP

We instantiate the DC object. In the “load from file” case, we need to provide as input

parameter the filename where the data is stored, in other cases, the DC will need

parameters to access the data. The DC must have a “get_data_Master” that returns one 2D

array with the input features (Number of patterns x Number of features), and a 1D array

with the targets (if the task is a supervised one), for both validation and test cases. This

method will be used by the MasterNode to get the training data.

data_file = ‘./mydata.txt’

dc = DC(data_file)

We then instantiate the Comms object, which needs as input parameter the MasterNode ID

(any unique string will serve in this case):

4 We will restrict here to the description of the main variables, the interested reader may read the code of one

of the demos for a full understanding.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

master_address = ‘ma’

comms = Comms(master_address)

Algorithms in POMs 4 and 5 need a Cryptographic object to operate, the key_size

parameters determines the strength of the encryption:

cr = CryptoBCP(key_size=512)

The next step is to create the MasterNode itself, and we pass as parameters the selected

POM, the worker ID, the address of the Master Node, the Comms object, the DC object and

the Cryptographic object:

pom = 5

master_address = ‘ma’

mn = MasterNode(pom, master_address, comms, dc, cr=cr)

(Note: some extra parameters may be needed, depending on the model to be trained…)

We load the data:

mn. load_data()

We create the model of the selected type:

model_type = ‘Kmeans’

mn.create_model_worker(model_type)

And we start the training procedure:

mn.fit()

7 MUSKETEER Machine Learning Library results

In the upcoming sections we will describe the steps to install the library and run the

experiments on a variety of simulations to evaluate the correct operation of the library. In

this section we anticipate some of the results of Machine Learning experiments using the

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

developed Machine Learning Library, so the reader can see some results before running

some experiments by him/herself.

The results shown here are for illustration purpose, they do not represent any kind of

benchmark of the library, such a task will be completed during WP 6. All the datasets used

here have already been described in D6.1. Anyhow, the observed results are as expected and

they represent solutions comparable to those obtainable in the centralized case.

All the results shown here have been obtained using the MUSKETEER Machine Learning

Library under privacy constraints, this is, the data provided by the users is always protected

and kept as confidential, not revealed to the training algorithm (at least in clear text form).

The experiments have been run using 5 data providers (5 worker nodes, hence every training

dataset has been split into 5 separate participants).

7.1 Cross-Correlation (XC) estimation

We provide means to securely estimate the normalized cross-correlation (XC in short)

among inputs and between input and output following the Pearson correlation definition

[Pearson_Corr]. As an example, we show here the results obtained for the first 10 highest (in

absolute value) correlation values among variables in the redwine dataset:

Figure 7: Normalized cross-correlation values among inputs for the redwine dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 8: Normalized cross-correlation values between inputs and outputs for the redwine dataset.

7.2 Ridge Regression (RR) estimation

We have implemented a Ridge Regression model (RR in short, also known as Tikhonov

regularization) operating under privacy constraints, which is essentially a linear model that

includes a regularization term, providing robustness against overfitting [Ridge_Regression].

We have applied that model to the redwine dataset to estimate the quality of the wine,

obtaining the following performance results:

NMSE on validation set = 0.0167

NMSE on test set = 0.0144

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 9: Illustration of the target and predicted values using the Ridge Regression estimation for the redwine dataset.

7.3 Kernel Regression (KR) estimation

This is the result of a Kernel Regression model (KR in short) on a synthetic 1-D signal. Kernel

regression uses a nonlinear transformation of the data (here using a Gaussian Kernel), to

improve the prediction capabilities of the model. The cost function used in the output layer

is the quadratic loss.

NMSE on validation set = 0.0053

NMSE on test set = 0.0055

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 10: Results of the Kernel Regression model on the 1D synthetic dataset.

7.4 Logistic Classifier (LC)

A Logistic Regression model can easily be converted into a Logistic Classifier (LC in short) by

simple adding a threshold on the outputs after training [Logistic Classifier]. It is a very

popular model in the Machine Learning Community because of its simplicity and good

performance in many tasks. We show in the next Figure the results for the pima dataset,

where the ROC curves (on validation and test sets) are shown:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 11: ROC curves for the Logistic Classifier model on the pima dataset.

We also show results for the LC model on the MNIST handwritten digits dataset (binary

transformation of the dataset, such that the new task is to separate between even and odd

numbers):

Figure 12: ROC curves for the Logistic Classifier model on the binarized MNIST handwritten digits dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.5 Multiclass Logistic Classifier (MLC)

We have implemented the multiclass extension of the Logistic Classifier (MLC in short), to

deal with datasets with multiple classification targets. We show here the results for the

MNIST dataset:

Figure 13: ROC curves for the Multiclass Logistic Classifier model on the MNIST handwritten digits dataset. One ROC

curve is shown here for every class value, under a one-vs-all approach.

We have also computed the confusion matrix for this task and we show the results on the

test set in the next Figure. That matrix indicates the number of confusions among target and

predicted classes. The larger the diagonal values, the better, the error are always shown off

the diagonal.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 14: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST handwritten digits dataset.

We also provide results for the MNIST-fashion dataset:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 15: ROC curves for the Multiclass Logistic Classifier model on the MNIST fashion dataset. One ROC curve is shown

here for every class value, under a one-vs-all approach.

Figure 16: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST fashion dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 35

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.6 Budget Support Vector Machine (BSVM)

Support Vector Machines [Support Vector Machine] are a very popular ML method, known

by their robustness in real world problems. They are one subtype of the ML approaches

broadly known as Kernel Methods. In this library we provide an implementation of the

Budget SVM version (BSVM in short), which relies on a previous transformation of the input

data (in our case, by using a clustering approach to define Gaussian Kernels). The main

advantage of this approach is that the complexity of the resulting model is bounded, since

the size of the machine is defined a priori. Furthermore, it represents a much secure

approach, since in the original formulation of the SVM, the model is constructed using

Support Vectors, which are representatives of the input training data, and hence it does not

preserve data confidentiality.

In the next Figures we show the results for a synthetic 2-D dataset: ROC curves and contour

plots.

Figure 17: ROC curves for the Budget Support Vector Machine model on the 2D synthetic dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 36

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 18: Contour plots (decision boundary) for the Support Vector Machine model on the 2D synthetic dataset.

We also show the results of BSVM on the pima dataset.

Figure 19: ROC curves for the Support Vector Machine model on the 2D synthetic dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 37

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.7 Clustering (K-means)

Results for MNIST (handwritten digits 0-9), showing 42 centroids obtained with a variety of

digit writing.

Figure 20: Obtained centroids for the MNIST handwritten digit dataset using K-means.

Figure 21: Obtained centroids for the MNIST fashion dataset using K-means.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 38

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

8 Installing the library

Before executing the Demos, it is necessary to correctly configurate a Python 3 environment

with all the required libraries. In the final version of the platform, such configuration will be

simplified, since the code will be embedded in a “docker” container.

Fully detailed installation instructions are included in the library, so please refer to the files:

Install_linux.txt

Install_Windows.txt

Install_macOS.txt

We also explain the process here (for the linux case):

It is advisable to install a python distribution like Anaconda (Python 3.7). Please proceed to

the Anaconda download page (https://www.anaconda.com/distribution/) and follow the

instructions according to your Operative System.

- Once Anaconda is correctly installed, open a bash/dash terminal and execute the following

commands:

conda update conda

conda update anaconda

- Next, we create a conda environment with all the required libraries (Note that the next

command is a single line)

conda create -n demo python=3.7.4 flask requests numpy ipython

scikit-learn matplotlib tqdm pytorch-cpu torchvision seaborn

transitions==0.6.9 pygraphviz==1.5 -c pytorch -c defaults -c

conda-forge --yes

You may need some assistance from a System Manager if you fail to install the Python

required libraries.

Uncompress the file D4_6.zip. In the D4_6 folder, you should find the following subfolder

structure:

demo/

documentation_html/

input_data/

MMLL/

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 39

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

results/

* demo: the folder where the execution scripts are.

* documentation_html: the folder where the software documentation is. To browse it, just

open the index file in it by double-clicking on it. The documentation will be shown in a web

browser.

* input_data: some small datasets are provided for running the demos. If you want to

execute any demo with a larger dataset, you must download them from this link

(https://drive.google.com/open?id=1NOMvmppt5qfGmGjA14hsdsTgB9KD7_Oz), but the

provided datasets are enough to explore the Machine Learning Library usage.

* MMLL: The MUSKETEER Machine Learning Library (POMs 4, 5 and 6).

* results: some output figures are saved here. Also a subfolder with execution logs is

available.

The installation process is complete, you may proceed with the demos execution, as

described in the next Section.

9 Execution of the demos

In this section we describe the steps needed to test the developed library in some selected

Machine Learning Tasks. All the tests and demos described here will use a local

communication mechanism among processes in the same machine, to ease the executions.

The communications library using the IBM cloud has already been partially tested and the

library is ready to easily replace the local communications by the IBM cloud based

communication.

To facilitate those tests, we provide two execution alternatives5:

• Simple execution: single terminal: all needed processes to complete the machine

learning tasks are executed from a single terminal. In this case, the detailed messages

are hidden, to produce a clearer result in the terminal.

• Full detail execution: different terminals. In this case, every participating process will

be run on a different terminal, such that a detailed list of messages are shown in

every screen. This option is useful for easy monitoring of the operations and

protocols behaviour.

5 In both cases, the communications server process must be run in a separate terminal, as it will be described

later.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 40

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Both execution options rely on the execution of the same processes and libraries, so their

result is completely equivalent. The unique difference between them is the ease of

execution and the amount of messages shown on the screen.

The scripts needed to execute the demos are included in the library, named as (choose

accordingly your Operative System):

demo_linux.txt

demo_Windows.txt

demo_macOS.txt

You can easily copy-paste the scripts from those files, to ease the launch of experiments.

There are some extra advices in those files, worth reading before launching the demos.

9.1 Simple execution

For illustration purposes, we use here the Windows OS. We open two terminals, activate the

conda environment and move to the demo folder.

We execute in the first terminal:

python local_flask_server.py

and in the second:

demo_POM6_KR_sinc1D.bat

We observe the results in the terminals:

Figure 22: The local communications terminal (Flask Server)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 23: The demo execution of a Kernel Regression under POM6 in a single terminal

9.2 Full detail execution

For illustration purposes, we use here the Linux OS. We open seven terminals, activate the

conda environment and move to the demo folder.

We execute in the first terminal:

Python3 local_flask_server.py

And observe:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 42

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 24: The local communications terminal (Flask Server)

And in the rest of terminals:

Terminal 2: python3 pom6_KR_worker.py --id 0 --dataset sinc1D --verbose True

Terminal 3: python3 pom6_KR_worker.py --id 1 --dataset sinc1D --verbose True

Terminal 4: python3 pom6_KR_worker.py --id 2 --dataset sinc1D --verbose True

Terminal 5: python3 pom6_KR_worker.py --id 3 --dataset sinc1D --verbose True

Terminal 6: python3 pom6_KR_worker.py --id 4 --dataset sinc1D --verbose True

Terminal 7: python3 pom6_KR_master.py --dataset sinc1D --verbose True

Every worker produces:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 43

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 25: The demo execution of a Kernel Regression under POM6 in full detail (WorkerNode)

And the master produces:

Figure 26: The demo execution of a Kernel Regression under POM6 in full detail (MasterNode)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 44

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

10 Software documentation (sample)

The documentation of the software is provided in html format along with the code. The

documentation has been generated with Sphinx6, and it will be maintained and expanded as

the software project grows. We include in what follows some sample pages from that

documentation, but the interested reader should load into any web browser the index.html

file provided in the documentation_html/ folder.

6 sphinx-doc.org

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 45

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 46

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 47

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms –

Initial Version 48

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

11 Conclusions

In this deliverable (D4.6) we have presented a preliminary version of the MUSKETEER

Machine Learning Library under POMs 4, 5 and 6 (MMLL V1.0). We have implemented

Linear models, Clustering (Kmeans) and Kernel methods. This version 1.0 of the library uses

the local communications library and has been implemented using the final code structure.

The algorithms and code still need to be optimized, and some extra algorithms need to be

developed; these tasks will be carried out during the next months and delivered in M30

(D4.7) in the form of version 2.0 of the library (MMLL V2.0).

12 References

[Kernel Regression] https://en.wikipedia.org/wiki/Kernel_regression
[Logistic Classifier] https://en.wikipedia.org/wiki/Logistic_regression#Logistic_model
[Pearson_Corr] https://en.wikipedia.org/wiki/Correlation_coefficient
[Ridge_Regression] https://en.wikipedia.org/wiki/Tikhonov_regularization
[Sphinx] https://sphinx-doc.org
[Support Vector Machine] https://en.wikipedia.org/wiki/Support-vector_machine

https://sphinx-doc.org/

	List of Figures
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Document Structure

	2 Context of the Machine Learning Library
	3 POMs 4, 5 and 6 revisited
	3.1 POM 4
	3.2 POM 5
	3.3 POM 6

	4 Methodology
	4.1 General development process
	4.2 Current status of the library and future steps

	5 Library Demonstration preliminary assumptions
	6 MUSKETEER Machine Learning Library Usage
	6.1 Communications setup
	6.2 Setting up the Worker Node (end user side)
	6.3 Setting up the Master Node

	7 MUSKETEER Machine Learning Library results
	7.1 Cross-Correlation (XC) estimation
	7.2 Ridge Regression (RR) estimation
	7.3 Kernel Regression (KR) estimation
	7.4 Logistic Classifier (LC)
	7.5 Multiclass Logistic Classifier (MLC)
	7.6 Budget Support Vector Machine (BSVM)
	7.7 Clustering (K-means)

	8 Installing the library
	9 Execution of the demos
	9.1 Simple execution
	9.2 Full detail execution

	10 Software documentation (sample)
	11 Conclusions
	12 References

