H2020 - ICT-13-2018-2019

MUSKETTEER

Machine Learning to Augment Shared Knowledge in
Federated Privacy-Preserving Scenarios (MUSKETEER)
Grant No 824988

D4.6 Machine Learning Algorithms over
Semi Honest Operation Modes algorithms

— Initial Version

January 20

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 31Jan 2020

Author(s): Angel Navia-Vazquez (UC3M), Francisco Gonzalez-Serrano
(UC3M)

Participant(s): Jesus Cid Sueiro (UC3M), Manuel Vazquez Lépez (UC3M)

Reviewer(s): Mathieu Sinn

Chiara Napione

Project: Machine learning to augment shared knowledge in
federated privacy-preserving scenarios (MUSKETEER)

Work package: WP4

Dissemination level: Internal

Version: 1.0

Contact: angel.navia@uc3m.es
Website: www.MUSKETEER.eu

Legal disclaimer

The project Machine Learning to Augment Shared Knowledge in Federated Privacy-
Preserving Scenarios (MUSKETEER) has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 824988. The sole
responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication — also of extracts thereof — may only
be made with reference to the publisher.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKE'-]T[I'EER

Executive Summary

This deliverable (D4.6 Machine Learning Algorithms over Semi Honest Operation Modes —

Initial Version) comprises the Machine Learning Library needed to execute the distributed

learning under POMs 4, 5 and 6, as well as some demonstration scripts to check the correct

execution of the code. The list of available algorithms is as compromised for this deliverable

(Linear models, Kernel methods and Clustering). The full collection of training methods will

be available in the final version of the library (D4.7, M30). The design of the new models will

be analogous to the already available ones, so the integration and use will not be a problem.

We also provide the software documentation and description of the software components.

In future versions, more learning algorithms will be available and some redesign may be

necessary to facilitate the integration with the rest of MUSKETEER components, as well as

some code and algorithm optimization.

Document History

Version Date Status Author Comment
1 08 Jan 2020 For internal review Angel Navia-Vazquez First draft
2 14 Jan 2020 Internal review Chiara Napione

3 16 Jan 2020 Internal review Angel Navia-Vazquez

4 16 Jan 2020 Final review Mathieu Sinn

5 17 Jan 2020 Final review Gal Weiss Final

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKHTEEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES.........c o eieiiicieceteircettecenrecsecastecastassesassssassacassassasassacassassasassasassacnnsasnns 5
LIST OF ACRONYMS AND ABBREVIATIONS......ciiiiciiciiiiicciiceiessecetecestassasassecassacassansns 7
1 INTRODUCGTION. ...t iciiiiiitctrecerecetaseacarecassassssassesassesassassssassesassasassassesassasassasns 8
R I ¥ g Yo - Y 8
1.2 Related DOCUMENTES.....cccciiieiiiieiiiiiiiiiiree e reneereeserensssneseseasesensssssasessnssssnssssensanen 8
1.3 Document SErUCTUNE.....ccieiiiiiiiitiitiniiieiieirecrs st etsessesresrestesrastassasssessesressassante 9
2 CONTEXT OF THE MACHINE LEARNING LIBRARY....cciicieiiuieiiiiicniincenienscesiscaiossasannes 10
3 POMS 4,5 AND 6 REVISITEDccciciieiieiiiieiiincrecrenieiieresescescsssrastassassassnssessssssassansans 12
0 A =0 1|V Y 12
3.2 POM Sttt ce e et e eesans e e e s e s esannsse s ssesannnsssssssseteannnssssssssesennnnnssnesenannnn 13
3.3 POM Bu..coecieeeenicieeiiteennneceeeeeeennnssesessesesnnsssssssssssannnssssssssssssnnssssssssssssnnnnsssssssssannns 15
4 IMETHODOLOGY ...ccieiiiiiiienienirenieiieiieiiaiiestescssssestassassassessssssssssssassassassasssssssssassassans 16
4.1 General develOpPMENT PrOCESSccveeeereerereeriereeereanereeseerensereassersssersasessassssssssssnsesenne 16
4.2 Current status of the library and future stepscccceeeurereecrrenierencereenertenceeenceenneeenns 16
5 LIBRARY DEMONSTRATION PRELIMINARY ASSUMPTIONS........cciciieiieieniincinnianianiens 19
6 MUSKETEER MACHINE LEARNING LIBRARY USAGE.......ccccitcituiiuiinniniieienecianianianiens 23
6.1 CoOmMMUNICAtIONS SELUP ..ccuireuirenirenireeireeirenirenerentrestressressressrensrenssesssnserassrasarenssanssnnns 23
6.2 Setting up the Worker Node (end uSer Side)cceeueeereenieereenncereenneeeeennneeeeennneeeens 23
6.3 Setting up the Master NOde.......ccceveuiieeiirieiiienietenereeeereenereeseereanerenseesaseesnssessnsessnne 25
7 MUSKETEER MACHINE LEARNING LIBRARY RESULTScccccciriruninniniieneecicnesnaniannans 26
7.1 Cross-Correlation (XC) estimation........ccceuiiiieeniiiieenniciitennieerennneeeeennseeeeensseeesenseessees 27
7.2 Ridge Regression (RR) eStimationccccceeireeniiieennieiieennceerennneeeeennseeeeennseeesenseeseees 28
7.3 Kernel Regression (KR) estimationccceeeeeieiiiiiiiinenniiiiiniineenenssissnnneeesssssseneseeens 29

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.4 Logistic ClasSifier (LC) .ucuuuueiiiiiieeennniiiiieiniennnnseiissinessnnssssssssessssnssssssssssssssnnsssssssssasnns 30
7.5 Multiclass Logistic Classifier (IMLC)........ccceeueereiiiiininnnnnnniiiniineesnesssssssssesssssssssssssssnns 32
7.6 Budget Support Vector Machine (BSVIM)cceiiiiiieeenniiiiiiinennnniiiininneeesssssssseeneens 35
7.7 Clustering (K-mMeEans) ..cccuuuiiiiiiiiiemeiiiiiiiiiennnsiiiiisiseeennssssssssesnssnsssssssssssssssssssssssssssens 37
8 INSTALLING THE LIBRARY ...ccuiiuiieiieiiniieiieiiiieiienioniaiiaiiessssiesissiasisssssssssssssssassassans 38
9 EXECUTION OF THE DEMOS.....cuciiieiiiiiniieiiiienieiieniaiisiieesicresiasianisiisssssssssssassassans 39
9.1 SIMPple eXECULION.....ccuiieeiiieciricirecrre e e s ene e reasesensssenesssensessnssssnnsesensasanns 40
9.2 Full detail eXeCUtioNcc.ciiiiieuiiiiiiiiiiiiieiiiiiirnrrss e resssssssaesssssensssssnes 41
10 SOFTWARE DOCUMENTATION (SAMPLE)........ccccteueciereennccriennneesennncesnennssessennssessennns 44
11 CONCLUSIONS.......cciiiticiititeierteneeertnnnestennssesssnnsssssensssssssnnssssssnnsssssennssssssnnsssssennes 48
12 REFERENCES.....cccuiiiiiieiiiieeieiteneeerennnestennssessennsssssennsssssennssessennsssssennsssssennsssssennes 48

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1: MUSKETEER’S PERT Qiagram ..c.cccuuuiiiiiiiieeiiiiiieeessiiee s seee st e e e nae e e s savae e s ssanneeeena 8
Figure 2: Centralized (a) vs. distributed scenario (b). Every user provides a portion of the
training dataset. Data confidentiality must be preserved.ccocceveiiii e, 10
Figure 3: Detailed process interactions in a MUSKETEER learning process........ccccceeeeeecvvnneen. 11
Figure 4: POM 4 g€NEIal SELUPD. ...uuiiiiiei ittt ettt e e e e et e e e e e e e e s eaarae e e e e e e e e e anaseaees 12
Figure 5: POM 5 SENEIal SELUP. ...uuiiiiiei ittt e e et e e e e e e e e st re e e e e e e e e e annneaees 14
Figure 6: POM 6 SENEIal SELUP. ...uuiiiiiei ittt e et e e e e e e e e e e e e e s e enarree e e e e e e eennnneraees 15
Figure 7: Normalized cross-correlation values among inputs for the redwine dataset. 27

Figure 8: Normalized cross-correlation values between inputs and outputs for the redwine

Figure 9: lIllustration of the target and predicted values using the Ridge Regression

estimation for the redwine dataset.coooiii i 29
Figure 10: Results of the Kernel Regression model on the 1D synthetic dataset.................... 30
Figure 11: ROC curves for the Logistic Classifier model on the pima dataset.ccccuuuueeee. 31

Figure 12: ROC curves for the Logistic Classifier model on the binarized MNIST handwritten
Lo [T o =) = <] PRSPPIt 31

Figure 13: ROC curves for the Multiclass Logistic Classifier model on the MNIST handwritten
digits dataset. One ROC curve is shown here for every class value, under a one-vs-all
o] oY o = Yol s FUUUR PP PURPRN 32

Figure 14: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST
handwritten digits dataset.c.uueiiiiiiie e 33

Figure 15: ROC curves for the Multiclass Logistic Classifier model on the MNIST fashion
dataset. One ROC curve is shown here for every class value, under a one-vs-all approach... 34

Figure 16: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST fashion
(o - 1 = 1= SR TPR 34

Figure 17: ROC curves for the Budget Support Vector Machine model on the 2D synthetic

Figure 18: Contour plots (decision boundary) for the Support Vector Machine model on the
P DY oY Yoy d ol =1 - 1Y PR 36

Figure 19: ROC curves for the Support Vector Machine model on the 2D synthetic dataset. 36

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version

Machine Learning to Augment Shared Knowledge in
gronte & MUSKEirrEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 20: Obtained centroids for the MNIST handwritten digit dataset using K-means. 37
Figure 21: Obtained centroids for the MNIST fashion dataset using K-means...........cccccuue.e... 37
Figure 22: The local communications terminal (Flask SErver)ccoccovveevieeevieecccee e, 40
Figure 23: The demo execution of a Kernel Regression under POM6 in a single terminal 41
Figure 24: The local communications terminal (Flask SErver)cccccoecoieeeecciee e, 42

Figure 25: The demo execution of a Kernel Regression under POMG6 in full detail
ATV oY =T\ oo [=) ISR 43

Figure 26: The demo execution of a Kernel Regression under POMG6 in full detail
(Y S =T\ (oo [=) SRR 43

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKE'-]T[I'EER

List of Acronyms and Abbreviations

Abbreviation Definition

AUC Area Under (ROC) Curve

BSVM Budget SVM

CA Consortium Agreement

CN Cryptonode

DC Data Connector

FML Federated Machine Learning

FR Functional Requirements

GA Grant Agreement

HBC Honest But Curious (a.k.a SH)

IDR Intermediate Data Representation

KM Kernel Method

KR Kernel Regression

LC Logistic Classifier

LM Linear Model

LR Logistic Regression

ML Machine Learning

MMLL Musketeer Machine Learning Library

MLC Multiclass Logistic Classifier

MN Master Node

(01 Operating System

PERT Program evaluation and review technique

POM Privacy Operation Mode

PP Privacy Preserving

PPML Privacy Preserving Machine Learning (a.k.a.
Privacy Preserving Data Mining)

ROC Receiver Operating Characteristics

RR Ridge Regression

SH Semi Honest (a.k.a HBC)

sQL Structured Query Language

Ul User Interface

WN Worker Node

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

This deliverable comprises the first preliminary version of the Machine Learning Library to be
integrated in the MUSKETEER platform, under POMs 4, 5 and 6. From now on we will name
this library as “MUSKETEER Machine Learning Library” (MMLL). Some demos to illustrate the
behaviour of the library are also provided. These demos are not intended to be a benchmark
of the library, they are provided for illustration purposes (the complete benchmark will be
carried out in WP6). This deliverable will help other partners in the understanding of the
POM 4, 5 and 6 algorithms design and usage, to facilitate their integration and use in the
MUSKETEER platform.

1.2 Related Documents

D4.6 is the first deliverable associated to the task T4.4 (Algorithms over semi-honest privacy
preserving operation modes), as indicated in the PERT diagram below. It uses as input
previous outcomes of WP4 (D4.1 and D4.2), where a preliminary version of the library design
has been described, as well as a possible usage in the form of a MUSKETEER demonstrator. It
also takes as inputs the requirements and specifications detailed in WP2, and, although not
indicated in the PERT diagram, it is also respectful with the functional requirements FRO17-
FR024 described in D3.1 in relationship with the communications library.

TE- | Casigm @t TE] Adsiiortog aduidbiey sl
e TN e || Simee maescoses T
sipesieit sk ThR, sspeerhimg
TES Dmign, dpociostion -~ TED chslergen
Tt deged i e hEnsgy o s ::-u.. TR Ammaring e punny 1ol Blising LG g piomiting
Fpr— v WP | TR, of T, lgpaithen [——
» = x
WA Design of Tii Libary Tl B W " ans 2.1 Daagr of
et Tim e ‘mcknEcTaE s A I awkss TG choTs consscton
Ti-2 Developaun T gt v pruser Bl B St e
el b o oparTar M PEELEATY] DRSO Taxiey T7.3 D1
pa—— il A L
TLY Colariasiariny Tl Threa snaban and P TEmsT] m
L] laaming T A b fmiea
T1 iramropembsiny slgorrihem Bh,) Ednaneasi ol Slaiari] Lt
e TE & ot of bedarated maihen S A Mk ‘
e rarg AT T e A Tl Vsl sl
H;-_l—h- ‘aHman LR
dlarhiyrard Thdl e g bdatee M nagh
TH.§ Dt hun anst aweageium o
m rrashe iz LinEr] m
DCVIICEATNT T Sverridic TR Lrpistgzon rirersgy. o mods]
e rw [T FLE g [P
L., WAL [ThATEvalmlron ani THA Cimrmm st wlretied arsd
e ARSI ELRMHT [T et i vl Dt Ptz mm m

Figure 1: MUSKETEER’s PERT diagram

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

1.3 Document Structure

This document is structured as follows:

e The current section (Introduction), presents the general aspects about this document
and its relationship with other developments in the project.

e The section "Context of the Machine Learning Library" briefly revisits the main
objectives of MUSKETEER from a Machine Learning point of view. We revisit some of
the basic concepts about the platform execution, the participant processes and the
corresponding objects. We also summarize the behaviour of every Privacy Operation
Mode (POM) and how it will operate once integrated in the platform.

e The section 5: "Methodology" describes the development process of the software, its
current state and the future goals.

e In Section 6 “Library Usage” we briefly describe the main steps needed to use the
MMLL outside of the demos, to ease the integration step into the MUSKETEER
platform. By now, some aspects still need to be re-engineered, but this could serve to
get a general understanding of the library design and behaviour.

e In Section 7: "Results", we include some of the results of the algorithms applied on
some selected datasets. This will serve as a first reference of the library behaviour,
before proceeding with the execution of the demos in the following sections.

e The Section 8: "Installation" describes on a step-by-step basis the procedure to
correctly install and execute the library in different Operating Systems (Windows,
Linux and Mac 0S).

e In Section 8: “Execution of the demos” we provide further detailed explanation about
the demo execution process.

e In Section 9: “Sample software documentation” we provide some examples of the
produced software documentation. The full version of the documentation is provided
along with the code, and can be read with any web browser (html format).

e In Section 10: Conclusions, we provide a summary on the contents of the deliverable
and the obtained results.

e Finally, some references are included in the last section.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version

Machine Learning to Augment Shared Knowledge in

MUSKE']E‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

2 Context of the Machine Learning Library

The library developed in this deliverable and described in this document is a preliminary yet
fully operable version of the Machine Learning Library to be used in MUSKETEER under
POMs 4, 5 and 6. Essentially, it aims at deploying a distributed ML setup (Figure 2b) such that
a model equivalent to the one obtained in the centralized setup (Figure 2a) is obtained.

{a)

Figure 2: Centralized (a) vs. distributed scenario (b). Every user provides a portion of the training dataset. Data

confidentiality must be preserved.
The centralized solution requires that the data from different users is gathered in a common
location, something that is not always possible due to privacy/confidentiality restrictions. On
the other hand, the distributed privacy preserving approach requires to exchange some
information (intermediate data representation:, IDR) among the participating users such
that a Master Node (MN) obtains the final ML model without ever receiving/seeing the raw
data of the users.

In a second level of detail, we can describe the interaction among nodes as shown in the
next Figure:

1 Any intermediate data representation should carry some information about the data it is derived from (to
allow learning), while hiding the actual raw data values to the participants in the protocol. Averaged
gradients, auto-correlation matrices or cross-correlation vectors could be examples of IDR, each one
revealing different partial information about the datasets. Any form of (homomorphic) encryption can also
be considered as an IDR, since it allows to compute some operations on the data, while protecting the raw
data.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 10

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘E ER

Federated Privacy-Preserving Scenarios (MUSKETEER)

is]
P i . MUSKETEER

Figure 3: Detailed process interactions in a MUSKETEER learning process.

We observe the participation of several actors in a learning process, everyone marked as a
dashed box and supposedly running on a different (remote) machine:

- The MUSKETEER main process: it is the process that orchestrates the training
procedure, identifies the potential contributors and obtains the final model. It runs
the “MasterNode” object (dark orange circle) from the MMLL. It communicates by
means of the communication object (yellow circle) with the other participants
through the Communications Service at the Cloud.

- The MUSKETEER client: it is the process that every participant must locally execute. It
runs the “WorkerNode” object (light orange circle) from the MMLL. The Worker has
access to the local data through the specific data connector (red circle) provided by
the end user and communicates with the MasterNode by means of the
communication object (yellow circle) through the Communications Service at the
Cloud.

In the next Section we describe in a deeper detail the structure of the objects participating in
POMs 4, 5 and 6, as well as the expected interactions among the different types of nodes.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 11

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

3 POMs 4, 5 and 6 revisited

General aspects:

The following nodes (objects) are to be executed:

Common to POMs 4, 5 and 6:
- Master Node (MN): a central object (process) that controls the execution of the
training procedure
- Worker Node (WN): an object to be executed in the end user side, possibly as a part
of the MUSKETEER client. It is the only node that has a direct access to the raw data
provided by every user, through an ‘ad-hoc’ Data Connector (DC).

Specific to POM 4:

- Crypto Node (CN): an object providing some cryptographic operations. It can be run
anywhere but it cannot collude with the Master Node. It is only needed in POM 4,
because POM®6 does not use encryption and in POMS5 the Master Node plays the role
of Crypto Node.

In what follows we describe the normal operation of a training algorithm under every
POM.

3.1 POM4

This POM uses an additively homomorphic cryptosystem to protect the confidentiality of
the data. The CN will help in some of the unsupported operations. The scheme is
cryptographically secure if we guarantee that there is no collusion between the MN and

the CN. In the next Figure we represent the interaction among the participants.

POMA
I S B T r
I/ﬂ | Cliemt
fis a : !
] i
] i

T oS
i i

Clieml

MH = Maiter Mode
WH = Wprioer Noda
CH = Crypla Node

Figure 4: POM 4 general setup.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 12

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

The steps to train a given model are:

1. The MN asks to the CN some general public parameters, and distributes them to
the WNs.

2. Every Node will use those parameters to generate public and private keys. The
public keys are distributed. The CN generates a Master key, able to decrypt
anything.

3. Every WN encrypts the data with their secret keys and sends the encrypted data
to the MN.

4. The MN sends the data with blinding to the CN, to re-encrypt it to the Master
key. The re-encrypted data is returned to the MN.

5. The MN starts the training procedure by operating on the (encrypted) model
parameters and (encrypted) users data. The initial model parameters are
generated at random by the MN.

6. The MN is able to perform some operations on the encrypted data (the
homomorphically supported ones).

7. For the unsupported ones, it needs to establish a secure protocol with the CN
consisting in:

a. The MN sends some data with blinding to the CN

b. The CN decrypts the data and computes the unsupported operation in
clear text. Then it encrypts the result.

c. The MN receives the encrypted result and removes the blinding.

As a result of this protocol, the MN never sees the data or the result in clear
text and the CN only sees the clear text of a blinded message, different from
the raw data.

8. The procedure goes back to 5 until a stopping criterion is met.

POM 4 is a cryptographically secure procedure, providing that MN and CN do not collude.

3.2 POMS5

This POM has been re-engineered to better comply with some of the platform requisites:
improved performance and no need to run non-colluding nodes. It uses an additively
homomorphic cryptosystem to protect the confidentiality of the data and model. The
MN will help in some of the unsupported operations, this is, the MN will play the role of
CN. The scheme is cryptographically secure. In the next Figure we represent the
interaction among the participants.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 13

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

POMES

e o
\ | Clignt :
MM = Master Node :

WHN = Worker Node . [u

Figure 5: POM 5 general setup.

The steps to train a given model are:

1. The MN generates public and private keys. The public keys are distributed to all
participants.

2. The initial model parameters are generated at random by the MN. The MN
encrypts the model parameters with his secret keys and sends the encrypted
model to the WNs.

3. The WN starts the training procedure by operating on the (encrypted) model and
(un-encrypted) users data.

4. The WN is able to perform some operations on the encrypted data (the
homomorphically supported ones).

5. For the unsupported ones, the WN needs to establish a secure protocol with the
MN consisting in:

a. The WN sends some encrypted data with blinding to the MN

b. The MN decrypts the data and computes the unsupported operation in
clear text. Then it encrypts the result.

c. The WN receives the encrypted result and removes the blinding.

As a result of this protocol, the MN never sees the data or the result in clear
text, and the WN only sees the encrypted model.
6. The procedure goes back to 5 until a stopping criterion is met.

POM 5 is a cryptographically secure procedure.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 14

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.3 POM6

This POM does not use encryption; it relies on Secure Multiparty Computation and possibly
other (two-party) Secret Sharing protocols to solve some operations on distributed data. In

the next Figure we represent the interaction among the participants.

POME

Client

D Clitnt
I
]

Wil = paster Mode e

WH = Worker Node L ; n

Figure 6: POM 6 general setup.

Under this POM, raw data is not encrypted, but it is never sent outside the WN. The model
trained in the MN can also be kept secret to the WN. Some transformations of the data can
be exchanged with the MN, such as aggregated values, correlation matrices, etc. Every
implemented algorithm will describe which information is revealed to the MN, for instance:
covariance matrices, number of training patterns, average of the training patterns, etc. In
any case, the raw data (individual training patterns) will not be revealed and cannot be
obtained by inverse engineering on the exchanged data.

Some of the operations can be directly implemented using SMC protocols such as secure dot
product, secure matrix multiplication, etc. The security of these operations will be as
described in the reference sources describing every protocol. POM6 is not a general
procedure, it requires that every algorithm is implemented from scratch, and it is not
guaranteed that any algorithm can be implemented under POMG6. For some operations, a

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 15

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKHTEEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

“round robin” protocol is required; therefore direct connections among some of the WNs
are needed (ring network).

As an illustrative example, let’s imagine a training procedure that requires at every step to
receive the average covariance matrix among all the WNs and to compute one dot product.
The procedure could be as follows:
1. The MN asks the WNs to compute their covariance matrices.
2. The MN starts a round robin protocol with blinding to obtain the accumulated
covariance matrix
3. The MN starts a SMC protocol to obtain the dot product with the data from every
WN.
4. Using the received information the MN updates the model (the specific
correlation matrices of every worker are not revealed).
5. The procedure goes back to 1 until a stopping criterion is met.

4 Methodology

4.1 General development process

The library development follows these steps:
1. Develop an algorithm prototype without communications library
2. Adaptation to the provisional local communications library provided by IBM
3. Preliminary version with the code structure agreed between UC3M and TREE

4. MMLL 1.0: preliminary version of the library (provided with this Deliverable D4.6,
as long as some demos)

5. Algorithm & code optimization (mainly to be carried out during the next months)
6. Usage of the final communications service (IBM Cloud)

7. MMLL 2.0: final version of the library (to be provided in D4.7 (M30))

4.2 Current status of the library and future steps

We briefly describe here the current status of the algorithms/POMs, mainly concentrating
on some of the mentioned algorithms for the current Deliverable (D4.6): Linear models,
kernel methods and clustering (Kmeans).

Cross-correlation estimation

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKE'iE‘EER

1. Prototype without communications library Done
2. Adaptation to IBM’s local communications library Done
3. Preliminary version with common code structure Done

4, Cross-correlation DEMO v1.0.0

Released (Provided in D4.6)

5. Algorithm & code optimization

To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud)

To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library

To be released in D4.7 (M30)

Ridge Regression

1. Prototype without communications library Done
2. Adaptation to IBM’s local communications library Done
3. Preliminary version with common code structure Done

4. Ridge Regression DEMO v1.0.0

Released (Provided in D4.6)

5. Algorithm & code optimization

To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud)

To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library

To be released in D4.7 (M30)

Linear Regression

1. Prototype without communications library Done
2. Adaptation to IBM’s local communications library Done
3. Preliminary version with common code structure Done

4. Linear Regression DEMO v1.0.0

Released (Provided in D4.6)

5. Algorithm & code optimization

To be provided in D4.7 (M30)

6. Usage of the final commes. service (IBM Cloud)

To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library

To be released in D4.7 (M30)

Logistic Classifier

1. Prototype without communications library

Done

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKE'iE‘EER

2. Adaptation to IBM’s local communications library

Done

3. Preliminary version with common code structure

Done

4. Logistic Classifier DEMO v1.0.0

Released (Provided in D4.6)

5. Algorithm & code optimization

To be provided in D4.7 (M30)

6. Usage of the final commes. service (IBM Cloud)

To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library

To be released in D4.7 (M30)

Multiclass Logistic Classifier

1. Prototype without communications library Done
2. Adaptation to IBM’s local communications library Done
3. Preliminary version with common code structure Done

4. Multiclass Logistic Classifier DEMO v1.0.0

Released (Provided in D4.6)

5. Algorithm & code optimization

To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud)

To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library

To be released in D4.7 (M30)

Clustering (Kmeans)

1. Prototype without communications library Done
2. Adaptation to IBM’s local communications library Done
3. Preliminary version with common code structure Done

4. Clustering (Kmeans) DEMO v1.0.0

Released (Provided in D4.6)

5. Algorithm & code optimization

To be provided in D4.7 (M30)

6. Usage of the final comms. service (IBM Cloud)

To be provided in D4.7 (M30)

7.- MMLL 2.0: final version of the library

To be released in D4.7 (M30)

Kernel Regression

1. Prototype without communications library

Done

2. Adaptation to IBM’s local communications library

Done

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

18

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

3. Preliminary version with common code structure Done

4. Kernel Regression DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)
6. Usage of the final commes. service (IBM Cloud) To be provided in D4.7 (M30)
7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

Budget Support Vector Machine

1. Prototype without communications library Done

2. Adaptation to IBM’s local communications library Done

3. Preliminary version with common code structure Done

4. Budget Support Vector Machine DEMO v1.0.0 Released (Provided in D4.6)

5. Algorithm & code optimization To be provided in D4.7 (M30)
6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30)
7.- MMLL 2.0: final version of the library To be released in D4.7 (M30)

5 Library Demonstration preliminary assumptions

In what follows, we assume that a Machine Learning task has already been defined, and that
the MUSKETEER platform has already identified all the potential users participating in the
training process. In the complete, end-to-end version of the MUSKETEER platform, the
services which allow users to register to the platform, define tasks and join tasks will be
developed under WP3.

Therefore, for the purpose of this demonstrator, we will assume the following:

o General description of the task: All participants have access to this description and

agree to participate and contribute some data to the learning process. A preliminary
check procedure has already been executed to guarantee that the contributed data
follows the needed format (number and type of input features, number and type of
target values, etc.).

e User addresses and execution: the list of addresses of the participating nodes
(Worker Nodes (WN)) is available to the MasterNode, according to FRO17 in D3.1. In
the final version every participant (Master/Cryptonode/Workers) will be a separate

process in a potentially different machine/location. The current version of the

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 19

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKHTEEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Communications Library (CL) is primarily designed to communicate between
processes in the same machine, and we have executed these simulations using this
approach, but in the future the experiments will also cover different remote
machines communicated through the IBM Cloud.

e Data: the data for training, validating and testing will be provided to MUSKETEER by
means of a Data Connector (DC). For illustration purposes we provide here a DC to be
used in the demonstrator that simply loads data from a file. The final DC for the user
cases will have to be developed in other parts of the project, possibly at WP7. For
future uses, any other compatible data connector can be used if provided by the end
user (SQL access, for instance). For the purpose of this demonstration we provide
some public datasets along with the specific needed Data Connector. Some other
larger datasets can also be downloaded if extra experiments are to be done.

e Confidentiality requirements: We will assume that the raw data is never sent (in

clear text, or unencrypted) outside of the owner’s context and that the trained model
is kept secret (only known to the Master Node). We will allow to exchange among
the participants some IDR, transformations of the data (such as aggregations, cross-
correlation matrices, encrypted values, etc.), but in any case that information cannot
be used to reconstruct the raw input data or targets. The final end users will be
aware in advance of the type of information exchanged under every Privacy
Operation Mode (POM), and it is their ultimate responsibility to choose among one
POM or another.

e Communications library: The MMLL needs a Comms object to operate and it is

agnostic with the particular implementation of the communication service whenever
the Functional Requirements FRO17-FR024 in D3.1 have been respected. Namely, the
Comms object must provide basic “send/receive” functionalities, and its interface

needs to contain, as a minimum, the following methods::

0 At Master Node (MN):

Send a message

Functional description: send a message from the MN to the
worker identified with “wor ker _i d”:

Input:

nessage: the message to be sent. It can be of any type,
the Comms object must serialize/deserialize it if needed.

2 We will use the term MN (Master Node) here, but it can also be interpreted as the Aggregator

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 20

Machine Learning to Augment Shared Knowledge in
gronte & MUSKEirrEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

wor ker _i d: the recipient id, type=string
Output:

None
Example of use:

conms. send(message, wor ker _id)

Broadcast:

Functional description: send a message from the MN to all
workers:

Input:

nessage: the message to be sent. It can be of any type,
the Comms object must serialize/deserialize it if needed.

Output:
None
Example of use:

conms. br oadcast (nessage)

Send over ring:

Functional description: Send a message through all workers (the
order is irrelevant), following the ring topology, starting and
ending in the MN (MN -> workerl -> worker2 -> ... -> workerN -
> MN):
Input:

nessage: the message to be sent. It can be of any type,
the Comms object must serialize/deserialize it if needed.

Output:
None

Example of use:
conms. send_ri ng(nessage)
Receive:

Functional description: enter in a “receive” state until a
message is received or a timeout is passed):

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 21

Machine Learning to Augment Shared Knowledge in
gronte & MUSKEirrEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Input:
None

Output:

nessage: the received message, in the same format as
sent by the sender.

Example of use:

nmessage = conmms.receive()

0 Atany Worker Node (WN):

Send:
Functional description: send a message from the Worker Node
to the MIN:
Input:
nessage: the message to be sent. It can be of any type,
the Comms object must serialize/deserialize it if needed.
Output:
None
Example of use:
conms. send(nessage)
Receive:

Functional description: enter in a “receive” state until a
message is received or a timeout is passed):

Input:
None

Output:

nmessage: the received message, in the same format as
sent by the sender.

Example of use:

nessage = conms.receive()

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 22

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

6 MUSKETEER Machine Learning Library Usage

In this section we will briefly describe the potential usage of the library outside of the
demos, to ease its integration in the final prototypes.

Important note: the pseudocode shown in this section is only for illustrative purposes and
library comprehension, it is not intended to work as it is. The interested reader will need
to look into one of the demo scripts to fully understand all the needed parameters.

6.1 Communications setup

As mentioned before, we will restrict by now to using different processes in the same
machine and interconnect them with the local communications library provided by IBM
(Flask Server). Therefore, we need to start that server, by running:

pyt hon3 | ocal fl ask_server. py

The communications system is now ready to exchange messages among the participating
nodes. In the future, when the Cloud Communications service and the corresponding API will
be completed according to FR0O17-FR024 in D3.1, it will be possible to communicate

processes among different machines.

6.2 Setting up the Worker Node (end user side)
The Worker Node is the object that controls the behaviour of the MMLL on the end-user
side. First of all we need to import it from the library:

from MMLL. nodes. Wor ker Node i nport Wor ker Node

Before instantiating it, we need some extra objectss: the data connector (DC), the
Communications object (Comms) and, in some POMs, the Crypto object. We start importing
them from the library:

from MMLL. dat a_connectors. Load fromfile inport Load FromFile as DC

from MMLL. conmrs. conmrs_| ocal _Fl ask i nport Comms

3 We will restrict here to the description of the main variables, the interested reader may read the code of one
of the demos for a full understanding.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 23

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

from MMLL. crypto. Crypt oBCP_beta i nport CryptoBCP

We instantiate the DC object. In the “load from file” case, we need to provide as input
parameter the filename where the data is stored, in other cases, the DC will need
parameters to access the data. The DC must have a “get_data_Worker” that returns one 2D
array with the input features (Number of patterns x Number of features), and a 1D array
with the targets (if the task is a supervised one). This method will be used by the
WorkerNode to get the training data.

data_file = './mydata.txt’
dc = DC(data file)

We then instantiate the Comms object, which needs as input parameter the Worker ID (any

unique string will serve in this case):
worker _id = ‘worker 1’

conms = Conms(wor ker _i d)

Algorithms in POMs 4 and 5 need a Cryptographic object to operate, the key size
parameters determines the strength of the encryption:

cr = Crypt oBCP(key_si ze=512)

The next step is to create the WorkerNode itself, and we pass as parameters the selected
pom, the worker ID, the address of the Master Node, the Comms object, the DC object and
the Cryptographic object:

pom =5

wn = WorkerNode(pom worker_id, coms, dc, master address="ma’,
cr=cr)

We load the data:

wn. | oad_dat a()

We create the model of the selected type:
model type = ‘Kmeans’

wn. cr eat e_nodel _wor ker (nodel _t ype)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 24

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

And we execute the training loop at the worker:

wn. run()

The worker will enter into a listening state, waiting for instructions from the Master Node. It
will stop when the training is completed.

6.3 Setting up the Master Node

The Master Node is the object that orchestrates the training procedure among all other
participating nodes. First of all we need to import it from the library:

from MMLL. nodes. Mast er Node i nmport Mast er Node

Before instantiating it, we need some extra objectsa: the data connector (DC) is only needed
if some validation or test data is to be used by the MasterNode, the Communications object
(Comms) and, in some POMs, the Crypto object. We start importing them from the library:

from MMLL. dat a_connectors. Load fromfile inport Load FromFile as DC
from MMLL. conmrs. conmrs_| ocal _Fl ask i nport Comms

from MMLL. crypto. Crypt oBCP_beta i nport CryptoBCP

We instantiate the DC object. In the “load from file” case, we need to provide as input
parameter the filename where the data is stored, in other cases, the DC will need
parameters to access the data. The DC must have a “get_data_Master” that returns one 2D
array with the input features (Number of patterns x Number of features), and a 1D array
with the targets (if the task is a supervised one), for both validation and test cases. This
method will be used by the MasterNode to get the training data.

data_file = './mydata.txt’
dc = DC(data file)

We then instantiate the Comms object, which needs as input parameter the MasterNode ID

(any unique string will serve in this case):

4 We will restrict here to the description of the main variables, the interested reader may read the code of one
of the demos for a full understanding.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 25

Machine Learning to Augment Shared Knowledge in
gronte & MUSKEirrEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

mast er _address = '‘ma’

conms = Conms(nast er _addr ess)

Algorithms in POMs 4 and 5 need a Cryptographic object to operate, the key size
parameters determines the strength of the encryption:

cr = Crypt oBCP(key_si ze=512)

The next step is to create the MasterNode itself, and we pass as parameters the selected
POM, the worker ID, the address of the Master Node, the Comms object, the DC object and
the Cryptographic object:

pom =5

nmast er _address = ‘'ma’

m = Mast er Node(pom nuaster_address, comms, dc, cr=cr)

(Note: some extra parameters may be needed, depending on the model to be trained...)

We load the data:

m. | oad_dat a()

We create the model of the selected type:
model type = 'Kmeans’

m. cr eat e_nodel _wor ker (nodel _type)

And we start the training procedure:

m. fit()

7 MUSKETEER Machine Learning Library results

In the upcoming sections we will describe the steps to install the library and run the
experiments on a variety of simulations to evaluate the correct operation of the library. In
this section we anticipate some of the results of Machine Learning experiments using the

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 26

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

developed Machine Learning Library, so the reader can see some results before running
some experiments by him/herself.

The results shown here are for illustration purpose, they do not represent any kind of
benchmark of the library, such a task will be completed during WP 6. All the datasets used
here have already been described in D6.1. Anyhow, the observed results are as expected and
they represent solutions comparable to those obtainable in the centralized case.

All the results shown here have been obtained using the MUSKETEER Machine Learning
Library under privacy constraints, this is, the data provided by the users is always protected
and kept as confidential, not revealed to the training algorithm (at least in clear text form).
The experiments have been run using 5 data providers (5 worker nodes, hence every training
dataset has been split into 5 separate participants).

7.1 Cross-Correlation (XC) estimation

We provide means to securely estimate the normalized cross-correlation (XC in short)
among inputs and between input and output following the Pearson correlation definition
[Pearson_Corr]. As an example, we show here the results obtained for the first 10 highest (in
absolute value) correlation values among variables in the redwine dataset:

Lecpast ranmabosd cormeiat on wabaes amoog inpuis

I

o

[
.
& [OF
=

11

—id

s ok L Bedl 55 Bik e

)

=

Figure 7: Normalized cross-correlation values among inputs for the redwine dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 27

Machine Learning to Augment Shared Knowledge in

MUSKE']F‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Ll T M T LT OO A T 6 s DR TR

T
H
3
B
E
. _
SRR l- - |
= I
iy By ra e = it r st o

B
Figure 8: Normalized cross-correlation values between inputs and outputs for the redwine dataset.

7.2 Ridge Regression (RR) estimation

We have implemented a Ridge Regression model (RR in short, also known as Tikhonov
regularization) operating under privacy constraints, which is essentially a linear model that
includes a regularization term, providing robustness against overfitting [Ridge_Regression].
We have applied that model to the redwine dataset to estimate the quality of the wine,
obtaining the following performance results:

NMSE on validation set = 0.0167

NMSE on test set = 0.0144

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 28

Machine Learning to Augment Shared Knowledge in

MUSKE']E‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

SO Prédigliees dmd [abgens [Eest sel]

Figure 9: lllustration of the target and predicted values using the Ridge Regression estimation for the redwine dataset.

7.3 Kernel Regression (KR) estimation

This is the result of a Kernel Regression model (KR in short) on a synthetic 1-D signal. Kernel
regression uses a nonlinear transformation of the data (here using a Gaussian Kernel), to
improve the prediction capabilities of the model. The cost function used in the output layer
is the quadratic loss.

NMSE on validation set = 0.0053

NMSE on test set = 0.0055

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 2

Machine Learning to Augment Shared Knowledge in

MUSKE']F'EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

K i asnirna Do [0es Sl

Figure 10: Results of the Kernel Regression model on the 1D synthetic dataset.

7.4 Logistic Classifier (LC)

A Logistic Regression model can easily be converted into a Logistic Classifier (LC in short) by
simple adding a threshold on the outputs after training [Logistic Classifier]. It is a very
popular model in the Machine Learning Community because of its simplicity and good

performance in many tasks. We show in the next Figure the results for the pima dataset,
where the ROC curves (on validation and test sets) are shown:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 30

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

MO curaes Tor piims

L o —
ekl et AUC = 3.747 -

— Tek e AT = DR

Figure 11: ROC curves for the Logistic Classifier model on the pima dataset.

We also show results for the LC model on the MNIST handwritten digits dataset (binary
transformation of the dataset, such that the new task is to separate between even and odd
numbers):

ROC e o rrenied

ey el A4 = el
— T BT = DT

11}

Figure 12: ROC curves for the Logistic Classifier model on the binarized MNIST handwritten digits dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 31

Machine Learning to Augment Shared Knowledge in

MUSKE']F‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.5 Multiclass Logistic Classifier (MLC)

We have implemented the multiclass extension of the Logistic Classifier (MLC in short), to

deal with datasets with multiple classification targets. We show here the results for the
MNIST dataset:

WL Creik Tor Monrasl, el sa

(42

Figure 13: ROC curves for the Multiclass Logistic Classifier model on the MNIST handwritten digits dataset. One ROC
curve is shown here for every class value, under a one-vs-all approach.

We have also computed the confusion matrix for this task and we show the results on the
test set in the next Figure. That matrix indicates the number of confusions among target and

predicted classes. The larger the diagonal values, the better, the error are always shown off
the diagonal.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 32

Machine Learning to Augment Shared Knowledge in -
gronte & MUSKE'Jﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

=

*racdictad valkaa

True saues

Figure 14: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST handwritten digits dataset.

We also provide results for the MNIST-fashion dataset:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 33

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'Jﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

AT pusrep for b-fnabenn, bari eat

Ll A & RN
Lhaii 4 ALK = Nhk "
i ™

il &

E
—
— L del i]]
=

=& Liwmr

B o
r

TFE

Figure 15: ROC curves for the Multiclass Logistic Classifier model on the MNIST fashion dataset. One ROC curve is shown
here for every class value, under a one-vs-all approach.

Lo fuss on risalnoe For M-Sacshicn, Bl il

Figure 16: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST fashion dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 34

Machine Learning to Augment Shared Knowledge in

MUSKE']E‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

7.6 Budget Support Vector Machine (BSVM)

Support Vector Machines [Support Vector Machine] are a very popular ML method, known
by their robustness in real world problems. They are one subtype of the ML approaches
broadly known as Kernel Methods. In this library we provide an implementation of the
Budget SVM version (BSVM in short), which relies on a previous transformation of the input
data (in our case, by using a clustering approach to define Gaussian Kernels). The main
advantage of this approach is that the complexity of the resulting model is bounded, since
the size of the machine is defined a priori. Furthermore, it represents a much secure
approach, since in the original formulation of the SVM, the model is constructed using
Support Vectors, which are representatives of the input training data, and hence it does not
preserve data confidentiality.

In the next Figures we show the results for a synthetic 2-D dataset: ROC curves and contour
plots.

Figure 17: ROC curves for the Budget Support Vector Machine model on the 2D synthetic dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 35

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘E ER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Chsasi firnbon of bert dela

Figure 18: Contour plots (decision boundary) for the Support Vector Machine model on the 2D synthetic dataset.

We also show the results of BSVM on the pima dataset.

a M dyéves P’ s
T | ettt 5 = 0TS
T A = R

Figure 19: ROC curves for the Support Vector Machine model on the 2D synthetic dataset.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 36

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKE']F'EER

7.7 Clustering (K-means)

Results for MNIST (handwritten digits 0-9), showing 42 centroids obtained with a variety of

digit writing.

HNNESN

NESQOOE
Slefefulalo

oNfslslwlo
NOEGNE

EEREAN

DNOEES

Figure 20: Obtained centroids for the MNIST handwritten digit dataset using K-means.

NNNNLE
DL [={8 |8 |-
pj=sin |So|EDjm=
NECSS=E
ENCCAS
Suf—={EB{m| | | |
NEECONE

Figure 21: Obtained centroids for the MNIST fashion dataset using K-means.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

37

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

8 Installing the library

Before executing the Demos, it is necessary to correctly configurate a Python 3 environment
with all the required libraries. In the final version of the platform, such configuration will be
simplified, since the code will be embedded in a “docker” container.

Fully detailed installation instructions are included in the library, so please refer to the files:
Install_linux.txt

Install_Windows.txt

Install_macOS.txt

We also explain the process here (for the linux case):

It is advisable to install a python distribution like Anaconda (Python 3.7). Please proceed to
the Anaconda download page (https://www.anaconda.com/distribution/) and follow the
instructions according to your Operative System.

- Once Anaconda is correctly installed, open a bash/dash terminal and execute the following
commands:

conda update conda

conda updat e anaconda

- Next, we create a conda environment with all the required libraries (Note that the next
command is a single line)

conda create -n deno python=3.7.4 flask requests nunpy ipython
scikit-learn matplotlib tgdm pytorch-cpu torchvision seaborn
transitions==0.6.9 pygraphviz==1.5 -c pytorch -c defaults -c
conda-forge --yes

You may need some assistance from a System Manager if you fail to install the Python
required libraries.

Uncompress the file D4_6.zip. In the D4_6 folder, you should find the following subfolder
structure:

deno/
docunent ati on_htm/
i nput _dat a/

MMLL/

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 38

Machine Learning to Augment Shared Knowledge in .
gronte & MUSKE'JTE‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

results/
* demo: the folder where the execution scripts are.

* documentation_html: the folder where the software documentation is. To browse it, just
open the index file in it by double-clicking on it. The documentation will be shown in a web

browser.

* input_data: some small datasets are provided for running the demos. If you want to
execute any demo with a larger dataset, you must download them from this link
(https://drive.google.com/open?id=1NOMvmppt5qfGmGjA14hsdsTgB9KD7_0z), but the
provided datasets are enough to explore the Machine Learning Library usage.

* MMLL: The MUSKETEER Machine Learning Library (POMs 4, 5 and 6).

* results: some output figures are saved here. Also a subfolder with execution logs is

available.

The installation process is complete, you may proceed with the demos execution, as

described in the next Section.

9 Execution of the demos

In this section we describe the steps needed to test the developed library in some selected
Machine Learning Tasks. All the tests and demos described here will use a local
communication mechanism among processes in the same machine, to ease the executions.
The communications library using the IBM cloud has already been partially tested and the
library is ready to easily replace the local communications by the IBM cloud based
communication.

To facilitate those tests, we provide two execution alternativess:

e Simple execution: single terminal: all needed processes to complete the machine
learning tasks are executed from a single terminal. In this case, the detailed messages
are hidden, to produce a clearer result in the terminal.

¢ Full detail execution: different terminals. In this case, every participating process will
be run on a different terminal, such that a detailed list of messages are shown in
every screen. This option is useful for easy monitoring of the operations and
protocols behaviour.

5 In both cases, the communications server process must be run in a separate terminal, as it will be described
later.

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 39

Machine Learning to Augment Shared Knowledge in
gronue & MUSKEirrEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Both execution options rely on the execution of the same processes and libraries, so their
result is completely equivalent. The unique difference between them is the ease of
execution and the amount of messages shown on the screen.

The scripts needed to execute the demos are included in the library, named as (choose
accordingly your Operative System):

deno_I i nux. txt
deno_W ndows. t xt

deno_nmacOCS. t xt

You can easily copy-paste the scripts from those files, to ease the launch of experiments.
There are some extra advices in those files, worth reading before launching the demos.

9.1 Simple execution

For illustration purposes, we use here the Windows OS. We open two terminals, activate the
conda environment and move to the demo folder.

We execute in the first terminal:
pyt hon | ocal fl ask_server. py

and in the second:

deno_POM6_KR si nclD. bat

We observe the results in the terminals:

127.8,0.1 - - [82/2an/2020 12:06:28] "02Y /receive/7senderzlireceiver=d HWTTR/1.1
1127.9.0.1 -~ - [02/2en/2009 18:06:23] "POSY /send/?sender=nasireceiver=2fnessapes®t

176%2250r3 811 zecN2 2E3A+ Fal 3eX2C+ X2 2ar gh2 2N SA+ XTBK Zact i o2 2R A+ K2 DS TOPRIINIC4%22
o2 2R354+ %22 CommonMLE22XTORTD HTTR/1,17 209 -

.‘2?.9.0-] - = [B2/20n/2029 10:06:28] "OEY [receive/7sender=28receiveral WTTP/1,1
}27.0.6.1 « = [O2/ 200/ 2020 10:06:29] "OEY /receive/?sender=28receiver=3 HTTP/1.1
lggj‘;cl = = [O2/20n/2000 10:06:29] "OET /receive/7sencdermaSreceiver=d HTTP/1,
;27".?0-1 - = [B2/20n/ 2022 10:06:29] "GET /receive/7sender=I8receliver=2 WTTP/1.1
3230:; 1 = = [92/2en/2020 10:20:28] "0&Y /receive/Tsender=ifreceiver=d HTTP/1,1
125‘;.;.1 s o [@2720n/2009 18:06: 58] "POST Jsend/ Fsendersnslreceiverz18messages’

THRZ 2secinlisedNl 2NS0sTal seh2Ce NI 2argh 2N AL+ NTBNI Jac s ion N2 2RS4+ K2 IS TOPR2INICHN22
LoR2 2NN R22CommonNL R22NTONTD HTTR/1 .1 Joe -

.127.0.0.1 o o (0272002000 10:06: 58] “0£Y freceive/TsendersShreceiver=l HTTP/1.1
1”"; 1+ « [B2/200/2000 18:06:58) "GET Sreceive/7sender=Shreceiverss HTTP/1.1 3
.12?:.;.1 o o [B2/3an/ 2020 10:06:51] "OET freceive/7sendersilreceiver=) HTTR/L 1
12;‘\?:.;.1 « o [@2/3an/2004 18:06-51] "GET /rnni‘-v(?urd'w-v}lrncolwr-d HTTP/ 1.1 *

Figure 22: The local communications terminal (Flask Server)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 40

Machine Learning to Augment Shared Knowledge in
gronue & MUSKETTEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

Model = KR_pe; Dataset nama = sinciD

~ i Trainirg the nodel
paster ki _pm: Training complete.
Master W2 _pe; Training time = 31,008 seccndx

e e e LA
ster_K2_pe: NMSE on velidsticn set = 2.0088
RSTOr KR _pm: NMNSE on tast et = 2.8957

on validotion set » 9.005%
on teat et - 9.8057

- /rasults /POME R pe sincil val.png
pster_KR_pm:ssved figure in . ./results/POMG_ER_pn_sinclD_tst,.png

astar KR _ps: Temdinating all worker nodes.

B(dero) Z°\zsynciMusketeer \Nld\cerc>
‘B

Figure 23: The demo execution of a Kernel Regression under POM6 in a single terminal

9.2 Full detail execution

For illustration purposes, we use here the Linux OS. We open seven terminals, activate the
conda environment and move to the demo folder.

We execute in the first terminal:
Pyt hon3 | ocal flask_server. py

And observe:

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —
Initial Version 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKE']E‘EER

Figure 24: The local communications terminal (Flask Server)

And in the rest of terminals:

Terminal 2: pyt hon3
Terminal 3: pyt hon3
Terminal 4: pyt hon3
Terminal 5: pyt hon3
Terminal 6: pyt hon3

Terminal 7: pyt hon3

pont_KR wor ker .
pont_KR wor ker .
pont_KR wor ker .
pont_KR wor ker .
pont_KR wor ker .

pon6_KR master.

Every worker produces:

py

py

py

py

py

py

--id 0 --dataset

--id 1 --dataset

--id 2 --dataset

--id 3 --dataset

--id 4 --dataset

sinclD --verbose

sinclD --verbose

sinclD --verbose

sinclD --verbose

sinclD --verbose

--dataset sinclD --verbose True

True

True

True

True

True

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

42

Machine Learning to Augment Shared Knowledge in MUSKETEER
Federated Privacy-Preserving Scenarios (MUSKETEER)

0: compunicsting throogh localfiank
pMorkey ¥R _pm Ot Craating worker object
ockezfiods 0: Loadiog cooms
orkerfiods D: Leoading Dita Jonnactor
MorkerNods 01 Innitiated
orkextiode FR_pw 0: loading data from ., /inpat_data/sincld deponstrator_data.pkl

orkerNods 0: Data lcaded, 100 patterns with 1 features
orkay KR _pm 0: Creating ML modal of typa KR pa
FOMG_CommonML Worker (3 creeting FIM

orkextiods C0: Created CommonNl modal
EF_pn Worker O: creating F=M

orkeifiode KR pm 0: Created ¥B_pn model

Worker KR pm = uoning. ..

orkerlflods HR pm 0: running ¥8 pm ..

FOME_CommorML _Worker U raceived sanding C©

KR pn_Worker 0; sent ACK . storing ©

BR_pe Worker O: MAITING Ter instrustlonms...
IPOME_CommorML _Worker received compute ¥XTK fron ma
R_pn Workey 0: sent ACK 8f-n~1‘|‘-3 RTH

'F_pm_Worker Oi MAITING for instruction=...

P0G ComomML_Worker 0 received STOP Ircm ma
FOME_ComnorML_Worker 0: terminated by Maater

Workexr KE pm Or EXIT

Figure 25: The demo execution of a Kernel Regression under POM6 in full detail (WorkerNode)

And the master produces:

: Tenining the model
P Maatmr; Starting training
_p®_Masterr broadcasted © to all Workerzs
FR_pw Mas=tor na received ACX s=toring C from &
i_po Mastert recelved ACK froo 41 MY storing ©
’im_;a. Haator na rocelved ACK storing < feeca 3
_per Master: rocaived ACK fxom Ot ACT_a_or ng €

IR_pr Master: tesemived ACK from J: ACK astoring O
R_po Nestar na recelved ACY storing © froe 3

PR _pm Master: teceived ACK from 5: ACK storing ©
o Master na cecelived 20X storing © from 2

PR _pa Masterr regeived ACX froa 21 ACK storing ©
:_pa_Naster: WAITING for instructions...

R_pa. Master: broadrasted ccapate XTR to all Workers
R_pe Naster na recalved ACK sending XIX from 4

POL_per Master: recelved ACK froe 4! ACK semding XTK
e Master na recelued A0X ssndisg XT¥ from 1
IR_pom _Nazter: recmived ACH from 1: ACK _sending NTH

MR _pe Naster ns recelved ACK ssnding ¥KT¥ frem 3
% _per Master: received ACX froo 3@ ACE _sending KTE
FR_pa _NMaster na -»-mvej ACX .s:ndiw m froﬂ [}

m"niuod W !xm 3 M?_nni.nq_m
NAITING for imatruotl P
Tralning ia done
i Tralnlag cooplets,
Training time = 2,1299 seconds

ater KE pmi EMSE om validationm set =~ 9,00E%
astar FR pmi NEMSE on tast st = 0.0057

Figure 26: The demo execution of a Kernel Regression under POM6 in full detail (MasterNode)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 43

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

10 Software documentation (sample)

The documentation of the software is provided in html format along with the code. The
documentation has been generated with Sphinxs, and it will be maintained and expanded as
the software project grows. We include in what follows some sample pages from that
documentation, but the interested reader should load into any web browser the index.html
file provided in the documentation_html/ folder.

Musketeer Musketeer ML lelﬂ['}
Machine Cantents:

Learning + Nodes

Library Kher N

Navigation HosheTac

Crygtn Mode
|' miienia:
= Maclie Learoing Models

Bindes)
- Canrimssm
Mlacldne Learning hoedels
Comnumications Frivacy Operation §ode 4§
. iR, RS I - Y
Cryplograplye bhraries » COmai
Datn Connectars » Croes-Correlation

. m Linear Begression
Cuick search e atrorre
'.'] il !‘ Car 1' - |_.¢.'!:;| stie Classifier

Clisstering (Kmeans)
Eernel Begresssan

3o

rivney Operation bode 5

= {onunon

= Linenr Kegression

w Logietic Classfier

s Clstering [Kmeans)
» Eernel Regresshon

6 sphinx-doc.org

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version “

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER

o Privicy Dpseralion Maode 6

= Camninian

& {"ressCprrelntion

» Hidge Regressiot

Lagiatie Classafir
Multiclsss Logistic Clnssfier
st ing {Eniwans)

8 herned Regression
® Bwdges Supipors Vector Mochise

& Comymicaties
Losea] Crmummnications
¢ Copiogmphy Gibrares
Crypta BCP
¢ Datn Cannectars

1 Lol dntn froen kocal file

Indices and tables

» Indes
& Aaduke Index
» Simieh |""|?'l'

Musketeer Master Node

Machine Mister node pifect
l.l.‘.ﬂ_l'l'lil':lg iIss nodes . Mastertiode . MasterMods | pom, moster ocdilress, aockers_ ordnesses,
§ soramis, el Joeer, e Fals, ® ‘F.'u'l.r.r!'.ls'.l
]_.lhl'ﬂf}r Einsesd: objert
Nﬂ‘n"i]?.ﬂﬂl'l-ﬂ This class repuresents the mnin process sssecinted o the Master Mode, and serves ta
e odinnke the training peocsdur under POM: 4, 5 and o
Mixles Creales o Madkterfode mslanoe.
o Masper Made
» Worker Node Parniiers: = po (aideger] — the seleetad POM
w rypho Mods = inmesber_achillress (st — slilvess of the master nxle
Mackine Learning Modela = workers arddresses (6stof stmgs) — list ol the sdedresses of

Commnmicstions the wirkers
Croyplography libraries

Dinta Conneclors COmMbntlins

® ORI ouniaies agee (e = olject (B ieling.

s il [DaraCommetlor aljest fstame] — dala conpecior ised Ly

Dlﬂl.'k PIraTs ,_-:_.h maester il warkers W read Lhe daia

= logger (dass:ngping.Logger = logging algect mslance

SUME T

ekt = vierbose | boobeeid - indzates i messages ae print or nod on

s “lawargs [Arhitrany begeord erguomenis) -

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version

45

Machine Learning to Augment Shared Knowledge in MUSKETEER
Federated Privacy-Preserving Scenarios (MUSKETEER)

Optional or POM dependant arguments

Parameters: « or (enoryption object insfanee) = the enceyption library to be

used in POMs g and 5

« ervptonode address (string) — address of the ervpto node

o Nmaxiter Unteger) = Maximum number of itesitions during
learning

o NC (integer) = Number of centroids

« regularization (ffoat) - Regularization parameter

o classes (list of strings) = Possible class values in a multiclass
problem

« balance_classes { Boolean) — 1 'True, the algorithm takes into
account unbalinced datasets

o C(array of floats) — Centroids matrix

o uf (integer) — Number of bits for the floating part

o N (infeger) — Nummnbey of

o fsigma (floar) = factor to multiply standard sigma value =
sqritNumber of inputs)

« normalize _data (Boolean) — I Tme, data normalization is
applied, wrespectively if it has heen previonsy normalized

create_nodel_Master(niodel fiype, CeNone, fsigrnasNone)
Create the model object to be used for tratning at the Master side.

Parameters: « model _type (srr) = Type of model to be nsed
o C (munpyy arnay) = centroids matrix (Optional)
o fsigma (float) = Sigma multiplying factor {Optional)

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 46

Machine Learning to Augment Shared Knowledge in
gronte & MUSKETITEER

Federated Privacy-Preserving Scenarios (MUSKETEER)

display [imessmge)
Eave message o log fle and display on sereen if verbose=True
Parmmeters: message (sfr) = string message o be shown/logged

fiel)
Trin the Machine Learning Model

gen_crypta_keys()
Create Cryplographic kevs, under POM 5

get_erypto_keys(]
Cletain Crvplographie kevs, under POM 4

get_encrypted _datal)
Oftain Encryvpted dats from workers, onder POM 4

load_datalmdd lios=Troe)
Load dhata o be uzed for validation /testing, The secess to the data is provided
by the Data Connector.

Paracters: add_biss (hoolean) = I troe, it adds & eobomn of ones to the
imprut data matrix

predict[X)
Uz the trained Machine Learning Model to predict new oputpns

Parameters: X mempey arroy] = Inpot dafa matric

Musketeer Budget Support Vector Machine

Machine Budget Support Veetor Machine {pablic model) under POM6
Iﬁaming clizs nodals . BOME BSUN_pee, BSUN_per. BSVM_pn_Master moster addrvss,
3 workers_adilresses, covmis, loggor, verbose=False, NC=Nane, N ter=None,
lerary vegiiarization=o, C=Nane, fsigma=None, Soal_=Nonw, imai=Nam)
. X Hases: ML rodels . Common_to_all_POMs . Comson_to_all_PaMs
Navigation

This class implements the Budget Suppart Vector Machine (paldic model), run at

Contouts A
rem. Master node. 1t inherts from Common_to_all POMs,
Noxles
Mackine Learning Models Crvate o BSW_pn_Master instanoe.

o Qs

Parameters: « master address (sring) = address of the master node

P - Opermtwm Mot
BB it AP OSIA « workers _addresses (Jiar of strdigs) — list of the addiesses of

® Privacy Dpesation Mode 5

o Privicy Opesatsn Mode 6 the workers . oy
Wiimiing o conuns (conuns edyecd instance) = obpect provicing
» CrumeLCrreelstion commumications
» Ridye Rugressnn » Jogger (assibogqing Logger) = legging obiject Instance
o Ligistic Classilier o verbose (boalonan) = ixdicates if messages are print or not oo
® Multicless Logutse sereen
Clasatfier o *““kwargs Lirhatrary kegnoond angranents.) -
o Clustering (Fimaus)
o Karss) Ragrecsion Optianal or POM dependant atgutnents

s Budget Suppoet Vector

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 47

Machine Learning to Augment Shared Knowledge in MUSKE'ﬁ‘EER

Federated Privacy-Preserving Scenarios (MUSKETEER)

train_Master)
Fhas s the main tradning loop, it s the follewing actions untl the stop
coma ik s met
e Update the execution state
o [roeiss the received packets
Pertorm ackions accorcing bto the stale
Favmmelers: Mo —
rlias models . POME . BEVM_pr. B85y _pn, BSVA_pm_Warker{ poastereddress
weerker acddeess, werkers oddremsses, maedal | fgoe, covines, logger, verloses=Fafse,
Xir_b=None, wr=None)
Boses? WALL .models ., Comnon_to_all_ POMs .Common_to_all POMs

o imiplemenling Thsdgel Suppuord Viclor Machine {pulilie madel), run ol Worker
Create o BSVA_pa_Worker inclanes

Parnmeters: = master addeess (sivieg) — address of the nsaster noge
« worker adivess (siriag) — id of this worker
o workers middresses (Jist o steings) = 121 of the addpegses of
the workers
» nnaasdbel _bvpee (siring) — tyvpse of ML naodel
o eoiinns [ontis objeed pisfoiee) - object prioviding
commcations

e lopper (class:logging, Lomger) — logging object nstanes

o verhose {bosloon) — indkeates B messages ame prast or noet on

11 Conclusions

In this deliverable (D4.6) we have presented a preliminary version of the MUSKETEER
Machine Learning Library under POMs 4, 5 and 6 (MMLL V1.0). We have implemented
Linear models, Clustering (Kmeans) and Kernel methods. This version 1.0 of the library uses
the local communications library and has been implemented using the final code structure.
The algorithms and code still need to be optimized, and some extra algorithms need to be
developed; these tasks will be carried out during the next months and delivered in M30
(D4.7) in the form of version 2.0 of the library (MMLL V2.0).

12 References

[Kernel Regression] https://en.wikipedia.org/wiki/Kernel_regression

[Logistic Classifier] https://en.wikipedia.org/wiki/Logistic_regression#Logistic_model
[Pearson_Corr] https://en.wikipedia.org/wiki/Correlation_coefficient
[Ridge_Regression] https://en.wikipedia.org/wiki/Tikhonov_regularization

[Sphinx] https://sphinx-doc.org

[Support Vector Machine] https://en.wikipedia.org/wiki/Support-vector_machine

D4.6 Machine Learning Algorithms over Semi Honest Operation Modes algorithms —

Initial Version 48

https://sphinx-doc.org/

	List of Figures
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Document Structure

	2 Context of the Machine Learning Library
	3 POMs 4, 5 and 6 revisited
	3.1 POM 4
	3.2 POM 5
	3.3 POM 6

	4 Methodology
	4.1 General development process
	4.2 Current status of the library and future steps

	5 Library Demonstration preliminary assumptions
	6 MUSKETEER Machine Learning Library Usage
	6.1 Communications setup
	6.2 Setting up the Worker Node (end user side)
	6.3 Setting up the Master Node

	7 MUSKETEER Machine Learning Library results
	7.1 Cross-Correlation (XC) estimation
	7.2 Ridge Regression (RR) estimation
	7.3 Kernel Regression (KR) estimation
	7.4 Logistic Classifier (LC)
	7.5 Multiclass Logistic Classifier (MLC)
	7.6 Budget Support Vector Machine (BSVM)
	7.7 Clustering (K-means)

	8 Installing the library
	9 Execution of the demos
	9.1 Simple execution
	9.2 Full detail execution

	10 Software documentation (sample)
	11 Conclusions
	12 References

