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Executive Summary 

This deliverable (D4.6 Machine Learning Algorithms over Semi Honest Operation Modes – 

Initial Version) comprises the Machine Learning Library needed to execute the distributed 

learning under POMs 4, 5 and 6, as well as some demonstration scripts to check the correct 

execution of the code.  The list of available algorithms is as compromised for this deliverable 

(Linear models, Kernel methods and Clustering). The full collection of training methods will 

be available in the final version of the library (D4.7, M30). The design of the new models will 

be analogous to the already available ones, so the integration and use will not be a problem. 

We also provide the software documentation and description of the software components. 

In future versions, more learning algorithms will be available and some redesign may be 

necessary to facilitate the integration with the rest of MUSKETEER components, as well as 

some code and algorithm optimization. 
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1 Introduction 

1.1 Purpose 

This deliverable comprises the first preliminary version of the Machine Learning Library to be 

integrated in the MUSKETEER platform, under POMs 4, 5 and 6. From now on we will name 

this library as “MUSKETEER Machine Learning Library” (MMLL). Some demos to illustrate the 

behaviour of the library are also provided. These demos are not intended to be a benchmark 

of the library, they are provided for illustration purposes (the complete benchmark will be 

carried out in WP6). This deliverable will help other partners in the understanding of the 

POM 4, 5 and 6 algorithms design and usage, to facilitate their integration and use in the 

MUSKETEER platform. 

1.2 Related Documents 

D4.6 is the first deliverable associated to the task T4.4 (Algorithms over semi-honest privacy 

preserving operation modes), as indicated in the PERT diagram below. It uses as input 

previous outcomes of WP4 (D4.1 and D4.2), where a preliminary version of the library design 

has been described, as well as a possible usage in the form of a MUSKETEER demonstrator. It 

also takes as inputs the requirements and specifications detailed in WP2, and, although not 

indicated in the PERT diagram, it is also respectful with the functional requirements FR017-

FR024 described in D3.1 in relationship with the communications library.  

 
Figure 1: MUSKETEER’s PERT diagram 
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1.3 Document Structure 

This document is structured as follows:  

• The current section (Introduction), presents the general aspects about this document 

and its relationship with other developments in the project. 

• The section "Context of the Machine Learning Library" briefly revisits the main 

objectives of MUSKETEER from a Machine Learning point of view. We revisit some of 

the basic concepts about the platform execution, the participant processes and the 

corresponding objects. We also summarize the behaviour of every Privacy Operation 

Mode (POM) and how it will operate once integrated in the platform.  

• The section 5: "Methodology" describes the development process of the software, its 

current state and the future goals.  

• In Section 6 “Library Usage” we briefly describe the main steps needed to use the 

MMLL outside of the demos, to ease the integration step into the MUSKETEER 

platform. By now, some aspects still need to be re-engineered, but this could serve to 

get a general understanding of the library design and behaviour.  

• In Section 7: "Results", we include some of the results of the algorithms applied on 

some selected datasets. This will serve as a first reference of the library behaviour, 

before proceeding with the execution of the demos in the following sections.  

• The Section 8: "Installation" describes on a step-by-step basis the procedure to 

correctly install and execute the library in different Operating Systems (Windows, 

Linux and Mac OS). 

• In Section 8: “Execution of the demos” we provide further detailed explanation about 

the demo execution process. 

• In Section 9: “Sample software documentation” we provide some examples of the 

produced software documentation. The full version of the documentation is provided 

along with the code, and can be read with any web browser (html format).  

• In Section 10: Conclusions, we provide a summary on the contents of the deliverable 

and the obtained results.   

• Finally, some references are included in the last section. 
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2 Context of the Machine Learning Library 

The library developed in this deliverable and described in this document is a preliminary yet 

fully operable version of the Machine Learning Library to be used in MUSKETEER under 

POMs 4, 5 and 6. Essentially, it aims at deploying a distributed ML setup (Figure 2b) such that 

a model equivalent to the one obtained in the centralized setup (Figure 2a) is obtained.  

              
 

Figure 2: Centralized (a) vs. distributed scenario (b). Every user provides a portion of the training dataset. Data 
confidentiality must be preserved. 

The centralized solution requires that the data from different users is gathered in a common 

location, something that is not always possible due to privacy/confidentiality restrictions. On 

the other hand, the distributed privacy preserving approach requires to exchange some 

information (intermediate data representation1, IDR) among the participating users such 

that a Master Node (MN) obtains the final ML model without ever receiving/seeing the raw 

data of the users.  

In a second level of detail, we can describe the interaction among nodes as shown in the 

next Figure: 

 

1  Any intermediate data representation should carry some information about the data it is derived from (to 

allow learning), while hiding the actual raw data values to the participants in the protocol. Averaged 

gradients, auto-correlation matrices or cross-correlation vectors could be examples of IDR, each one 

revealing different partial information about the datasets. Any form of (homomorphic) encryption can also 

be considered as an IDR, since it allows to compute some operations on the data, while protecting the raw 

data. 
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Figure 3: Detailed process interactions in a MUSKETEER learning process. 

We observe the participation of several actors in a learning process, everyone marked as a 

dashed box and supposedly running on a different (remote) machine: 

- The MUSKETEER main process: it is the process that orchestrates the training 

procedure, identifies the potential contributors and obtains the final model. It runs 

the “MasterNode” object (dark orange circle) from the MMLL. It communicates by 

means of the communication object (yellow circle) with the other participants 

through the Communications Service at the Cloud. 

- The MUSKETEER client: it is the process that every participant must locally execute. It 

runs the “WorkerNode” object (light orange circle) from the MMLL. The Worker has 

access to the local data through the specific  data connector (red circle) provided by 

the end user and communicates with the MasterNode by means of the 

communication object (yellow circle) through the Communications Service at the 

Cloud. 

In the next Section we describe in a deeper detail the structure of the objects participating in 

POMs 4, 5 and 6, as well as the expected interactions among the different types of nodes. 
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3 POMs 4, 5 and 6 revisited 

General aspects:  

The following nodes (objects) are to be executed:  

Common to POMs 4, 5 and 6: 

- Master Node (MN): a central object (process) that controls the execution of the 

training procedure  

- Worker Node (WN): an object to be executed in the end user side, possibly as a part 

of the MUSKETEER client. It is the only node that has a direct access to the raw data 

provided by every user, through an ‘ad-hoc’ Data Connector (DC). 

Specific to POM 4: 

- Crypto Node (CN): an object providing some cryptographic operations. It can be run 

anywhere but it cannot collude with the Master Node. It is only needed in POM 4, 

because POM6 does not use encryption and in POM5 the Master Node plays the role 

of Crypto Node. 

In what follows we describe the normal operation of a training algorithm under every 

POM. 

3.1 POM 4 

This POM uses an additively homomorphic cryptosystem to protect the confidentiality of 

the data. The CN will help in some of the unsupported operations. The scheme is 

cryptographically secure if we guarantee that there is no collusion between the MN and 

the CN. In the next Figure we represent the interaction among the participants. 

 
Figure 4: POM 4 general setup. 
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The steps to train a given model are: 

1. The MN asks to the CN some general public parameters, and distributes them to 

the WNs. 

2. Every Node will use those parameters to generate public and private keys. The 

public keys are distributed. The CN generates a Master key, able to decrypt 

anything.  

3. Every WN encrypts the data with their secret keys and sends the encrypted data 

to the MN. 

4. The MN sends the data with blinding to the CN, to re-encrypt it to the Master 

key. The re-encrypted data is returned to the MN. 

5. The MN starts the training procedure by operating on the (encrypted) model 

parameters and (encrypted) users data. The initial model parameters are 

generated at random by the MN. 

6. The MN is able to perform some operations on the encrypted data (the 

homomorphically supported ones). 

7. For the unsupported ones, it needs to establish a secure protocol with the CN 

consisting in:  

a. The MN sends some data with blinding to the CN 

b. The CN decrypts the data and computes the unsupported operation in 

clear text. Then it encrypts the result.  

c. The MN receives the encrypted result and removes the blinding.  

As a result of this protocol, the MN never sees the data or the result in clear 

text and the CN only sees the clear text of a blinded message, different from 

the raw data.  

8. The procedure goes back to 5 until a stopping criterion is met. 

POM 4 is a cryptographically secure procedure, providing that MN and CN do not collude. 

 

3.2 POM 5 

This POM has been re-engineered to better comply with some of the platform requisites: 

improved performance and no need to run non-colluding nodes. It uses an additively 

homomorphic cryptosystem to protect the confidentiality of the data and model. The 

MN will help in some of the unsupported operations, this is, the MN will play the role of 

CN. The scheme is cryptographically secure. In the next Figure we represent the 

interaction among the participants. 
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Figure 5: POM 5 general setup. 

 

The steps to train a given model are: 

1. The MN generates public and private keys. The public keys are distributed to all 

participants.  

2. The initial model parameters are generated at random by the MN. The MN 

encrypts the model parameters with his secret keys and sends the encrypted 

model to the WNs. 

3. The WN starts the training procedure by operating on the (encrypted) model and 

(un-encrypted) users data.  

4. The WN is able to perform some operations on the encrypted data (the 

homomorphically supported ones). 

5. For the unsupported ones, the WN needs to establish a secure protocol with the 

MN consisting in:  

a. The WN sends some encrypted data with blinding to the MN 

b. The MN decrypts the data and computes the unsupported operation in 

clear text. Then it encrypts the result.  

c. The WN receives the encrypted result and removes the blinding.  

As a result of this protocol, the MN never sees the data or the result in clear 

text, and the WN only sees the encrypted model.  

6. The procedure goes back to 5 until a stopping criterion is met. 

POM 5 is a cryptographically secure procedure. 
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3.3 POM 6 

This POM does not use encryption; it relies on Secure Multiparty Computation and possibly 

other (two-party) Secret Sharing protocols to solve some operations on distributed data. In 

the next Figure we represent the interaction among the participants. 

 

 
Figure 6: POM 6 general setup. 

 

Under this POM, raw data is not encrypted, but it is never sent outside the WN. The model 

trained in the MN can also be kept secret to the WN. Some transformations of the data can 

be exchanged with the MN, such as aggregated values, correlation matrices, etc. Every 

implemented algorithm will describe which information is revealed to the MN, for instance: 

covariance matrices, number of training patterns, average of the training patterns, etc. In 

any case, the raw data (individual training patterns) will not be revealed and cannot be 

obtained by inverse engineering on the exchanged data. 

Some of the operations can be directly implemented using SMC protocols such as secure dot 

product, secure matrix multiplication, etc. The security of these operations will be as 

described in the reference sources describing every protocol. POM6 is not a general 

procedure, it requires that every algorithm is implemented from scratch, and it is not 

guaranteed that any algorithm can be implemented under POM6. For some operations, a 
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“round robin” protocol is required; therefore direct connections among some of the WNs 

are needed (ring network).  

As an illustrative example, let’s imagine a training procedure that requires at every step to 

receive the average covariance matrix among all the WNs and to compute one dot product. 

The procedure could be as follows: 

1. The MN asks the WNs to compute their covariance matrices. 

2. The MN starts a round robin protocol with blinding to obtain the accumulated 

covariance matrix 

3. The MN starts a SMC protocol to obtain the dot product with the data from every 

WN. 

4. Using the received information the MN updates the model (the specific 

correlation matrices of every worker are not revealed). 

5. The procedure goes back to 1 until a stopping criterion is met. 

4 Methodology  

4.1 General development process 

The library development follows these steps: 

1. Develop an algorithm prototype without communications library 

2. Adaptation to the provisional local communications library provided by IBM 

3. Preliminary version with the code structure agreed between UC3M and TREE 

4. MMLL 1.0: preliminary version of the library (provided with this Deliverable D4.6, 

as long as some demos) 

5. Algorithm & code optimization (mainly to be carried out during the next months) 

6. Usage of the final communications service (IBM Cloud) 

7. MMLL 2.0: final version of the library (to be provided in D4.7 (M30)) 

4.2 Current status of the library and future steps 

We briefly describe here the current status of the algorithms/POMs, mainly concentrating 

on some of the mentioned algorithms for the current Deliverable (D4.6): Linear models, 

kernel methods and clustering (Kmeans). 

 

Cross-correlation estimation 
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1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Cross-correlation DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Ridge Regression 

1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Ridge Regression DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Linear Regression 

1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Linear Regression DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Logistic Classifier 

1. Prototype without communications library Done 
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2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Logistic Classifier DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Multiclass Logistic Classifier 

1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Multiclass Logistic Classifier DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Clustering (Kmeans) 

1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Clustering (Kmeans) DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Kernel Regression 

1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 
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3. Preliminary version with common code structure Done 

4. Kernel Regression DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

 

Budget Support Vector Machine 

1. Prototype without communications library Done 

2. Adaptation to IBM’s local communications library  Done 

3. Preliminary version with common code structure Done 

4. Budget Support Vector Machine DEMO v1.0.0 Released (Provided in D4.6) 

5. Algorithm & code optimization To be provided in D4.7 (M30) 

6. Usage of the final comms. service (IBM Cloud) To be provided in D4.7 (M30) 

7.- MMLL 2.0: final version of the library To be released in D4.7 (M30) 

5 Library Demonstration preliminary assumptions 

In what follows, we assume that a Machine Learning task has already been defined, and that 

the MUSKETEER platform has already identified all the potential users participating in the 

training process.  In the complete, end-to-end version of the MUSKETEER platform, the 

services which allow users to register to the platform, define tasks and join tasks will be 

developed under WP3. 

Therefore, for the purpose of this demonstrator, we will assume the following: 

• General description of the task: All participants have access to this description and 

agree to participate and contribute some data to the learning process. A preliminary 

check procedure has already been executed to guarantee that the contributed data 

follows the needed format (number and type of input features, number and type of 

target values, etc.).  

• User addresses and execution: the list of addresses of the participating nodes 

(Worker Nodes (WN)) is available to the MasterNode, according to FR017 in D3.1. In 

the final version every participant (Master/Cryptonode/Workers) will be a separate 

process in a potentially different machine/location. The current version of the 
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Communications Library (CL) is primarily designed to communicate between 

processes in the same machine, and we have executed these simulations using this 

approach, but in the future the experiments will also cover different remote 

machines communicated through the IBM Cloud.  

• Data: the data for training, validating and testing will be provided to MUSKETEER by 

means of a Data Connector (DC). For illustration purposes we provide here a DC to be 

used in the demonstrator that simply loads data from a file. The final DC for the user 

cases will have to be developed in other parts of the project, possibly at WP7. For 

future uses, any other compatible data connector can be used if provided by the end 

user (SQL access, for instance). For the purpose of this demonstration we provide 

some public datasets along with the specific needed Data Connector. Some other 

larger datasets can also be downloaded if extra experiments are to be done. 

• Confidentiality requirements: We will assume that the raw data is never sent (in 

clear text, or unencrypted) outside of the owner’s context and that the trained model 

is kept secret (only known to the Master Node). We will allow to exchange among 

the participants some IDR, transformations of the data (such as aggregations, cross-

correlation matrices, encrypted values, etc.), but in any case that information cannot 

be used to reconstruct the raw input data or targets. The final end users will be 

aware in advance of the type of information exchanged under every Privacy 

Operation Mode (POM), and it is their ultimate responsibility to choose among one 

POM or another.  

• Communications library: The MMLL needs a Comms object to operate and it is 

agnostic with the particular implementation of the communication service whenever 

the Functional Requirements FR017-FR024 in D3.1 have been respected. Namely, the 

Comms object must provide basic “send/receive” functionalities, and its interface 

needs to contain, as a minimum, the following methods2: 

o At Master Node (MN): 

Send a message  

Functional description: send a message from the MN to the 

worker identified with “worker_id”: 

Input:  

message:  the message to be sent. It can be of any type, 

the Comms object must serialize/deserialize it if needed. 

 

2 We will use the term MN (Master Node) here, but it can also be interpreted as the Aggregator 
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worker_id: the recipient id, type=string 

Output: 

 None 

Example of use: 

comms.send(message, worker_id) 

   

Broadcast: 

Functional description: send a message from the MN to all 

workers: 

  Input:  

message:  the message to be sent. It can be of any type, 

the Comms object must serialize/deserialize it if needed. 

Output: 

 None 

Example of use: 

comms.broadcast(message) 

 

Send over ring: 

Functional description: Send a message through all workers (the 

order is irrelevant), following the ring topology, starting and 

ending in the MN (MN -> worker1 -> worker2 -> … -> workerN -

> MN): 

  Input:  

message: the message to be sent. It can be of any type, 

the Comms object must serialize/deserialize it if needed. 

Output: 

 None 

Example of use: 

comms.send_ring(message) 

Receive: 

Functional description: enter in a “receive” state until a 

message is received or a timeout is passed): 
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Input: 

 None 

Output:  

message: the received message, in the same format as 

sent by the sender. 

Example of use: 

message  = comms.receive() 

 

o At any Worker Node (WN): 

Send:  

Functional description: send a message from the Worker Node 

to the MN: 

    Input:  

message:  the message to be sent. It can be of any type, 

the Comms object must serialize/deserialize it if needed. 

Output: 

 None 

Example of use: 

   comms.send(message) 

 

Receive: 

Functional description: enter in a “receive” state until a 

message is received or a timeout is passed): 

Input:  

  None 

  Output:  

message: the received message, in the same format as 

sent by the sender. 

Example of use: 

message  = comms.receive() 
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6 MUSKETEER Machine Learning Library Usage 

 

In this section we will briefly describe the potential usage of the library outside of the 

demos, to ease its integration in the final prototypes.  

Important note: the pseudocode shown in this section is only for illustrative purposes and 

library comprehension, it is not intended to work as it is. The interested reader will need 

to look into one of the demo scripts to fully understand all the needed parameters.  

6.1 Communications setup 

As mentioned before, we will restrict by now to using different processes in the same 

machine and interconnect them with the local communications library provided by IBM 

(Flask Server). Therefore, we need to start that server, by running: 

 

python3 local_flask_server.py 

 

The communications system is now ready to exchange messages among the participating 

nodes. In the future, when the Cloud Communications service and the corresponding API will 

be completed according to FR017-FR024 in D3.1, it will be possible to communicate 

processes among different machines. 

6.2 Setting up the Worker Node (end user side) 

The Worker Node is the object that controls the behaviour of the MMLL on the end-user 

side. First of all we need to import it from the library: 

from MMLL.nodes.WorkerNode import WorkerNode 

 

Before instantiating it, we need some extra objects3: the data connector (DC), the 

Communications object (Comms) and, in some POMs, the Crypto object. We start importing 

them from the library: 

from MMLL.data_connectors.Load_from_file import Load_From_File as DC  

from MMLL.comms.comms_local_Flask import Comms 

 

3 We will restrict here to the description of the main variables, the interested reader may read the code of one 

of the demos for a full understanding. 
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from MMLL.crypto.CryptoBCP_beta import CryptoBCP 

 

We instantiate the DC object. In the “load from file” case, we need to provide as input 

parameter the filename where the data is stored, in other cases, the DC will need 

parameters to access the data. The DC must have a “get_data_Worker” that returns one 2D 

array with the input features (Number of patterns x Number of features), and a 1D array 

with the targets (if the task is a supervised one). This method will be used by the 

WorkerNode to get the training data. 

data_file = ‘./mydata.txt’ 

dc = DC(data_file) 

 

We then instantiate the Comms object, which needs as input parameter the Worker ID (any 

unique string will serve in this case): 

worker_id = ‘worker_1’ 

comms = Comms(worker_id) 

 

Algorithms in POMs 4 and 5 need a Cryptographic object to operate, the key_size 

parameters determines the strength of the encryption: 

cr = CryptoBCP(key_size=512) 

 

The next step is to create the WorkerNode itself, and we pass as parameters the selected 

pom, the worker ID, the address of the Master Node, the Comms object, the DC object and 

the Cryptographic object: 

pom = 5 

wn = WorkerNode(pom, worker_id, comms, dc, master_address=’ma’, 

cr=cr) 

 

We load the data: 

wn. load_data() 

 

We create the model of the selected type: 

model_type = ‘Kmeans’ 

wn.create_model_worker(model_type) 
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And we execute the training loop at the worker: 

wn. run() 

 

The worker will enter into a listening state, waiting for instructions from the Master Node. It 

will stop when the training is completed. 

6.3 Setting up the Master Node 

The Master Node is the object that orchestrates the training procedure among all other 

participating nodes. First of all we need to import it from the library: 

from MMLL.nodes. MasterNode import MasterNode 

 

Before instantiating it, we need some extra objects4: the data connector (DC) is only needed 

if some validation or test data is to be used by the MasterNode, the Communications object 

(Comms) and, in some POMs, the Crypto object. We start importing them from the library: 

from MMLL.data_connectors.Load_from_file import Load_From_File as DC  

from MMLL.comms.comms_local_Flask import Comms 

from MMLL.crypto.CryptoBCP_beta import CryptoBCP 

 

We instantiate the DC object. In the “load from file” case, we need to provide as input 

parameter the filename where the data is stored, in other cases, the DC will need 

parameters to access the data. The DC must have a “get_data_Master” that returns one 2D 

array with the input features (Number of patterns x Number of features), and a 1D array 

with the targets (if the task is a supervised one), for both validation and test cases. This 

method will be used by the MasterNode to get the training data. 

data_file = ‘./mydata.txt’ 

dc = DC(data_file) 

 

We then instantiate the Comms object, which needs as input parameter the MasterNode ID 

(any unique string will serve in this case): 

 

4 We will restrict here to the description of the main variables, the interested reader may read the code of one 

of the demos for a full understanding. 
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master_address = ‘ma’ 

comms = Comms(master_address) 

 

Algorithms in POMs 4 and 5 need a Cryptographic object to operate, the key_size 

parameters determines the strength of the encryption: 

cr = CryptoBCP(key_size=512) 

 

The next step is to create the MasterNode itself, and we pass as parameters the selected 

POM, the worker ID, the address of the Master Node, the Comms object, the DC object and 

the Cryptographic object: 

pom = 5 

master_address = ‘ma’ 

 

mn = MasterNode(pom, master_address, comms, dc, cr=cr) 

(Note: some extra parameters may be needed, depending on the model to be trained…) 

 

We load the data: 

mn. load_data() 

 

We create the model of the selected type: 

model_type = ‘Kmeans’ 

mn.create_model_worker(model_type) 

 

And we start the training procedure: 

mn.fit() 

7 MUSKETEER Machine Learning Library results 

 

In the upcoming sections we will describe the steps to install the library and run the 

experiments on a variety of simulations to evaluate the correct operation of the library. In 

this section we anticipate some of the results of Machine Learning experiments using the 
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developed Machine Learning Library, so the reader can see some results before running 

some experiments by him/herself.  

The results shown here are for illustration purpose, they do not represent any kind of 

benchmark of the library, such a task will be completed during WP 6. All the datasets used 

here have already been described in D6.1. Anyhow, the observed results are as expected and 

they represent solutions comparable to those obtainable in the centralized case. 

All the results shown here have been obtained using the MUSKETEER Machine Learning 

Library under privacy constraints, this is, the data provided by the users is always protected 

and kept as confidential, not revealed to the training algorithm (at least in clear text form). 

The experiments have been run using 5 data providers (5 worker nodes, hence every training 

dataset has been split into 5 separate participants). 

7.1 Cross-Correlation (XC) estimation 

We provide means to securely estimate the normalized cross-correlation (XC in short) 

among inputs and between input and output following the Pearson correlation definition 

[Pearson_Corr]. As an example, we show here the results obtained for the first 10 highest (in 

absolute value) correlation values among variables in the redwine dataset: 

 
Figure 7: Normalized cross-correlation values among inputs for the redwine dataset.  
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Figure 8: Normalized cross-correlation values between inputs and outputs for the redwine dataset. 

7.2 Ridge Regression (RR) estimation 

We have implemented a Ridge Regression model (RR in short, also known as Tikhonov 

regularization) operating under privacy constraints, which is essentially a linear model that 

includes a regularization term, providing robustness against overfitting [Ridge_Regression]. 

We have applied that model to the redwine dataset to estimate the quality of the wine, 

obtaining the following performance results: 

 

NMSE on validation set = 0.0167 

NMSE on test set = 0.0144 
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Figure 9: Illustration of the target and predicted values using the Ridge Regression estimation for the redwine dataset. 

7.3 Kernel Regression (KR) estimation 

This is the result of a Kernel Regression model (KR in short) on a synthetic 1-D signal. Kernel 

regression uses a nonlinear transformation of the data (here using a Gaussian Kernel), to 

improve the prediction capabilities of the model. The cost function used in the output layer 

is the quadratic loss. 

 

NMSE on validation set = 0.0053 

NMSE on test set = 0.0055 
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Figure 10: Results of the Kernel Regression model on the 1D synthetic dataset.  

 

7.4 Logistic Classifier (LC) 

A Logistic Regression model can easily be converted into a Logistic Classifier (LC in short) by 

simple adding a threshold on the outputs after training [Logistic Classifier]. It is a very 

popular model in the Machine Learning Community because of its simplicity and good 

performance in many tasks. We show in the next Figure the results for the pima dataset, 

where the ROC curves (on validation and test sets) are shown: 
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Figure 11: ROC curves for the Logistic Classifier model on the pima dataset.  

We also show results for the LC model on the MNIST handwritten digits dataset (binary 

transformation of the dataset, such that the new task is to separate between even and odd 

numbers): 

 
Figure 12: ROC curves for the Logistic Classifier model on the binarized MNIST handwritten digits dataset.  
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7.5 Multiclass Logistic Classifier (MLC) 

We have implemented the multiclass extension of the Logistic Classifier (MLC in short), to 

deal with datasets with multiple classification targets. We show here the results for the 

MNIST dataset: 

 
Figure 13: ROC curves for the Multiclass Logistic Classifier model on the MNIST handwritten digits dataset. One ROC 

curve is shown here for every class value, under a one-vs-all approach. 

 

 

We have also computed the confusion matrix for this task and we show the results on the 

test set in the next Figure. That matrix indicates the number of confusions among target and 

predicted classes. The larger the diagonal values, the better, the error are always shown off 

the diagonal.   
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Figure 14: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST handwritten digits dataset.  

 

We also provide results for the MNIST-fashion dataset: 
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Figure 15: ROC curves for the Multiclass Logistic Classifier model on the MNIST fashion dataset. One ROC curve is shown 

here for every class value, under a one-vs-all approach. 

 

 

 
Figure 16: Confusion matrix for the Multiclass Logistic Classifier model on the MNIST fashion dataset.  
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7.6 Budget Support Vector Machine (BSVM) 

Support Vector Machines [Support Vector Machine] are a very popular ML method, known 

by their robustness in real world problems. They are one subtype of the ML approaches 

broadly known as Kernel Methods. In this library we provide an implementation of the 

Budget SVM version (BSVM in short), which relies on a previous transformation of the input 

data (in our case, by using a clustering approach to define Gaussian Kernels). The main 

advantage of this approach is that the complexity of the resulting model is bounded, since 

the size of the machine is defined a priori. Furthermore, it represents a much secure 

approach, since in the original formulation of the SVM, the model is constructed using 

Support Vectors, which are representatives of the input training data, and hence it does not 

preserve data confidentiality. 

In the next Figures we show the results for a synthetic 2-D dataset: ROC curves and contour 

plots. 

 
Figure 17: ROC curves for the Budget Support Vector Machine model on the 2D synthetic dataset. 
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Figure 18: Contour plots (decision boundary) for the Support Vector Machine model on the 2D synthetic dataset. 

 

We also show the results of BSVM on the pima dataset. 

 
Figure 19: ROC curves for the Support Vector Machine model on the 2D synthetic dataset. 
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7.7 Clustering (K-means) 

Results for MNIST (handwritten digits 0-9), showing 42 centroids obtained with a variety of 

digit writing. 

 
Figure 20: Obtained centroids for the MNIST handwritten digit dataset using K-means. 

 

 
Figure 21: Obtained centroids for the MNIST fashion dataset using K-means. 
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8 Installing the library 

Before executing the Demos, it is necessary to correctly configurate a Python 3 environment 

with all the required libraries. In the final version of the platform, such configuration will be 

simplified, since the code will be embedded in a “docker” container. 

Fully detailed installation instructions are included in the library, so please refer to the files: 

Install_linux.txt 

Install_Windows.txt 

Install_macOS.txt 

We also explain the process here (for the linux case): 

It is advisable to install a python distribution like Anaconda (Python 3.7). Please proceed to 

the Anaconda download page (https://www.anaconda.com/distribution/) and follow the 

instructions according to your Operative System. 

- Once Anaconda is correctly installed, open a bash/dash terminal and execute the following 

commands: 

conda update conda 

conda update anaconda 

- Next, we create a conda environment with all the required libraries (Note that the next 

command is a single line) 

conda create -n demo python=3.7.4 flask requests numpy ipython 

scikit-learn matplotlib tqdm pytorch-cpu torchvision seaborn 

transitions==0.6.9 pygraphviz==1.5 -c pytorch -c defaults -c 

conda-forge --yes 

You may need some assistance from a System Manager if you fail to install the Python 

required libraries. 

Uncompress the file D4_6.zip. In the D4_6 folder, you should find the following subfolder 

structure: 

demo/ 

documentation_html/ 

input_data/ 

MMLL/ 
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results/ 

* demo: the folder where the execution scripts are. 

* documentation_html: the folder where the software documentation is. To browse it, just 

open the index file in it by double-clicking on it. The documentation will be shown in a web 

browser. 

* input_data: some small datasets are provided for running the demos. If you want to 

execute any demo with a larger dataset, you must download them from this link 

(https://drive.google.com/open?id=1NOMvmppt5qfGmGjA14hsdsTgB9KD7_Oz), but the 

provided datasets are enough to explore the Machine Learning Library usage. 

* MMLL: The MUSKETEER Machine Learning Library (POMs 4, 5 and 6). 

* results: some output figures are saved here. Also a subfolder with execution logs is 

available. 

The installation process is complete, you may proceed with the demos execution, as 

described in the next Section. 

9 Execution of the demos 

In this section we describe the steps needed to test the developed library in some selected 

Machine Learning Tasks. All the tests and demos described here will use a local 

communication mechanism among processes in the same machine, to ease the executions. 

The communications library using the IBM cloud has already been partially tested and the 

library is ready to easily replace the local communications by the IBM cloud based 

communication. 

To facilitate those tests, we provide two execution alternatives5: 

• Simple execution: single terminal: all needed processes to complete the machine 

learning tasks are executed from a single terminal. In this case, the detailed messages 

are hidden, to produce a clearer result in the terminal. 

• Full detail execution: different terminals. In this case, every participating process will 

be run on a different terminal, such that a detailed list of messages are shown in 

every screen. This option is useful for easy monitoring of the operations and 

protocols behaviour. 

 

5 In both cases, the communications server process must be run in a separate terminal, as it will be described 

later. 
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Both execution options rely on the execution of the same processes and libraries, so their 

result is completely equivalent. The unique difference between them is the ease of 

execution and the amount of messages shown on the screen. 

The scripts needed to execute the demos are included in the library, named as (choose 

accordingly your Operative System): 

demo_linux.txt 

demo_Windows.txt 

demo_macOS.txt 

You can easily copy-paste the scripts from those files, to ease the launch of experiments. 

There are some extra advices in those files, worth reading before launching the demos. 

9.1 Simple execution  

For illustration purposes, we use here the Windows OS. We open two terminals, activate the 

conda environment and move to the demo folder. 

We execute in the first terminal: 

python local_flask_server.py 

and in the second: 

demo_POM6_KR_sinc1D.bat 

We observe the results in the terminals: 

 
Figure 22: The local communications terminal (Flask Server) 
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Figure 23: The demo execution of a Kernel Regression under POM6 in a single terminal 

9.2 Full detail execution  

For illustration purposes, we use here the Linux OS. We open seven terminals, activate the 

conda environment and move to the demo folder. 

We execute in the first terminal: 

Python3 local_flask_server.py 

And observe: 
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Figure 24: The local communications terminal (Flask Server) 

 

And in the rest of terminals: 

Terminal 2: python3 pom6_KR_worker.py --id 0 --dataset sinc1D --verbose True 

Terminal 3: python3 pom6_KR_worker.py --id 1 --dataset sinc1D --verbose True 

Terminal 4: python3 pom6_KR_worker.py --id 2 --dataset sinc1D --verbose True 

Terminal 5: python3 pom6_KR_worker.py --id 3 --dataset sinc1D --verbose True 

Terminal 6: python3 pom6_KR_worker.py --id 4 --dataset sinc1D --verbose True 

Terminal 7: python3 pom6_KR_master.py --dataset sinc1D --verbose True 

Every worker produces: 
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Figure 25: The demo execution of a Kernel Regression under POM6 in full detail (WorkerNode) 

And the master produces: 

 
Figure 26: The demo execution of a Kernel Regression under POM6 in full detail (MasterNode) 
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10 Software documentation (sample) 

The documentation of the software is provided in html format along with the code. The 

documentation has been generated with Sphinx6, and it will be maintained and expanded as 

the software project grows. We include in what follows some sample pages from that 

documentation, but the interested reader should load into any web browser the index.html 

file provided in the documentation_html/ folder. 

   

 

6 sphinx-doc.org 
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11 Conclusions 

In this deliverable (D4.6) we have presented a preliminary version of the MUSKETEER 

Machine Learning Library under POMs 4, 5 and 6 (MMLL V1.0).  We have implemented 

Linear models, Clustering (Kmeans) and Kernel methods. This version 1.0 of the library uses 

the local communications library and has been implemented using the final code structure. 

The algorithms and code still need to be optimized, and some extra algorithms need to be 

developed; these tasks will be carried out during the next months and delivered in M30 

(D4.7) in the form of version 2.0 of the library (MMLL V2.0).  
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