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Abstract Despite the need for data in a time of general digitisation of organizations,
many challenges are still hampering its shared use. Technical, organisational, legal
and commercial issues remain to leverage data satisfactorily, specially when the data
is distributed among different locations and confidentiality must be preserved. Data
platforms can offer "ad hoc" solutions to tackle specific matters within a data space.
MUSKETEER develops an Industrial Data Platform (IDP) including algorithms
for federated and privacy-preserving machine learning techniques on a distributed
setup, detection and mitigation of adversarial attacks and a rewarding model capable
of monetizing datasets according to the real data value. The platform can offer an
adequate response for organizations in demand of high security standards such as
industrial companies with sensitive data or hospitals with personal data. From the
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architectural point of view, trust is enforced in such a way that data has never to leave
out its provider’s premises thanks to federated learning. This approach can help to
better comply with the European regulation as confirmed from a legal perspective.
Besides, MUSKETEER explores several rewarding models based on the availability
of objective and quantitative data value estimations, which further increases the trust
of the participants in the data space as a whole.
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1 Introduction

Thanks to important advances in the recent years, machine learning has led to
disruptive innovation in many sectors, for instance industry, finance, pharmaceutical,
healthcare or self-driving cars, just to name a few. Since companies are facing
increasingly complex tasks to solve, there is a huge demand for data in these areas.
However, the task can be challenging also because it does not only depend on
the companies themselves. For example, the healthcare sector has started to use
machine learning to detect illnesses and support treatments. However the necessity
to use appropriate datasets, composed of data from enough patients suffering a given
illness and related treatments, can be hindered by the limited number of patients that
can be found in the historical medical records of a single hospital. This issue could
be solved if people and companies were given an adequate way to share data tackling
the numerous concerns and fears of a large part of the population, that form barriers
preventing the development of the data economy:

• Personal information leakage: the main concern of the population is the fear about
possible information leakage. However companies, in order to run their analysis
need digital information such as images or healthcare records containing very
sensitive information.

• Confidentiality: A company can benefit from jointly created predictive models,
but the possibility of leaking some business secrets in the process could lead to
disadvantage this company vis-à-vis its competitors.

• Legal barriers: governments, in order to regulate the use of data, have defined
legal constraints that impact the location of data storage or processing.

• Ownership fear: Some data could be very valuable. Some companies and peo-
ple could benefit economically from providing access to these data. But digital
information could be easily copied and redistributed.

• Data value: data owners could provide data with low quality, or even fake data,
so that, effectively, there would only be limited value for other partners in using
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this data. Hence, a key challenge is to provide mechanisms for monetising the
real value of datasets and avoiding a situation where companies acquires a dataset
without information about its usefulness.

In order to remove these barriers, several technologies have emerged to improve
the trustworthiness of machine learning. Aligned with priorities of the Big Data
Value Association Strategic Research, Innovation and Deployment Agenda such as
identifying strong and robust privacy-preserving techniques, exploring and engage a
broad range of stakeholder’s perspectives or providing support in directing research
efforts to identify a smart mix of technical, legal, ethical and business best practices
and solutions[33], the MUSKETEER project developed an Industrial Data Plat-
form including algorithms for federated and privacy-preserving machine learning
techniques, detection and mitigation of adversarial attacks, and a rewarding model
capable of monetizing datasets according to the real data value. We will show in
this chapter how these challenges are tackled by the platform architecture but also
how these techniques improve the compliance with certain principles of the EU
regulation, and eventually the necessary data value estimation needed to balance
the contributions of the platform stakeholders creating incentive models. Ultimately,
the contributions from MUSKETEER help to increase the level of trust among
participants engaged in federated machine learning.

2 Industrial Data Platform, an architecture perspective

The MUSKETEER platform is a client-server architecture, where the client is a
software application that in general is installed on-premise and run at every end user
site. This software application is named the client connector in the MUSKETEER
taxonomy. On the server side of MUSKETEER, resides the central part of the
platform that communicates with all the client connectors and acts as a coordinator
for all operations. Users of the MUSKETEER Industrial Data Platform, interact with
the client connector installed on their side and that client will communicate with the
server to perform several actions on the platform. In Fig. 1 we show the topology of
a MUSKETEER installation.

Often in client-server architectures, the means of communication between remote
modules is direct, i.e. each module has a communications component that essentially
presents an outward facing interface that allows remote modules to connect. This
is usually accomplished by publishing details of an IP address and port number.
For operations beyond the local area network, this IP address must be Internet-
addressable. The actual implementation of the communications can vary: examples
are direct socket communications, REST, grpc etc.

There are a number of security and privacy challenges to these traditional ap-
proaches, that the MUSKETEER architecture addresses. Allowing direct connec-
tions from the outside world is a potential security risk, both from a malicious actor
perspective but it is also susceptible to man-in-the-middle attacks. These attacks
often target known vulnerabilities in the host operating system or software stack. It
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Fig. 1 MUSKETEER Topology.

is also possible for these attacks to operate bidirectionally, whereby a benign entity
might be attacked, and potentially sensitive data may be at risk. Furthermore, fire-
wall policies in different organisations may not permit Internet-based traffic, further
restricting platform use.

In theMUSKETEER architecture, there are no direct connections between partic-
ipants, or aggregators. All interactions occur indirectly through the MUSKETEER
central platform, as depicted byOrchestration Services in Fig. 1. The central platform
acts as a service broker, orchestrating and routing information between participants
and aggregators. In this way, only the connection details for the broker is made avail-
able, with all other entities protected from direct attack. Such an architecture slightly
differs from current reference models promoted by International Data Spaces Asso-
ciation (IDSA) and the Gaia-X initiative. Although largely aligned with most of the
concepts included in these models (containerization, secured communication, etc.),
there is an important difference with the privacy by design dimension included in
the MUSKETEER architecture. Both IDSA and Gaia-X models rely on mutual trust
between participants in the same ecosystem, while participants in MUSKETEER
never have direct interactions.
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2.1 Client connector

The Client Connector is a software component that is installed at the client site, as
depicted by Musketeer Local Packages in Fig. 1. Within the Client Connector, two
types of architectures have been designed: the first one implements a Cluster mode,
the second one implements a Desktop mode.

Fig. 2 Federated Machine Learning through the Cluster Client Connector.

The Cluster Client Connector (Fig. 2) supports the storage and the processing of
large data sets before applying the machine learning federation, through horizontal
scalability and workload distribution on multiple nodes of the cluster. Within a Clus-
ter Client Connector, distributed machine learning algorithms have the potential to
be efficient with respect to accuracy and computation: data is processed in parallel in
a cluster or cloud by adopting any off-the-shelf efficient machine learning algorithm
(e.g. Spark’s MLlib). In this way we combine the benefits of distributed machine
learning (inside theClient Connector) with the benefits of federatedmachine learning
(outside the Client Connector).



6 S. Bonura, D. Dalle Carbonare, R. Díaz, A. Navia, M. Purcell and S. Rossello

The Desktop Client Connector (Fig. 3) is used when data is collected in a non-
centralized way and there is no need to use a cluster to distribute the workload, both
in terms of computing and big data storage. Anyway, the Desktop version could also
leverage GPUs for the training process, enabling the processing of a large amount of
data in terms of volume. Finally, theDesktopClient Connector can be easily deployed
in any environment thanks to the use of Docker in order to containerize the Client
Connector application. Docker containers ensure a lightweight, standalone and exe-
cutable package of the software that includes everything needed to run the Desktop
Client Connector: operating system, code, runtime, system tools, libraries and set-
tings. The are also quite secure since it is possible to limit all capabilities except those
explicitly required for any processes. (https://docs.docker.com/engine/security/).

Moreover extra layers of security can be added by enabling appropriate protection
systems like AppArmor (https://packages.debian.org/stable/apparmor), SELinux
(https://www.redhat.com/it/topics/linux/what-is-selinux),GRSEC (https://grsecurity.net/),
so enforcing correct behavior and preventing both known and unknown application
flaws are exploited.Finally, the Docker Engine can be configured to run only images
signed using the Docker Content Trust (DCT) signature verification feature.

Fig. 3 Federated Machine Learning through the Desktop Client Connector.

In thisway thewholeDesktopClient Connector application can be easily deployed
in a secure sandbox to run on the host operating system of the user.
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2.2 Micro-services

For a viable federated learning platform, trust in the platform is an important re-
quirement. This trust includes privacy protection for sensitive data, which remains
on-premise, but also for platform user identities and communications. Ideally, no
given user should be able to discover the identity or geographic location of any
other user. Additionally, threats from traditional cyber-security attacks should be
minimised.

The MUSKETEER server platform, depicted by Orchestration Services in Fig. 1,
is a collection of cloud-native micro-services. These micro-services manage the life
cycle of the federated learning process, using underlying cloud services such as a
relational database, cloud object storage and a message broker.

By employing a brokered architecture, theMUSKETEER server platform enables
outbound-only network connections from platform users. Users initiate connections
to the platform, and do not need to accept connections. This ensures that users are
not required to present Internet-facing services, having open ports readily acces-
sible by external, potentially malicious actors. Additionally, all users must register
with the platform, by creating a username/password combination account and all
communications use at least TLS 1.2, with server platform certificate validation
enabled.

Fig. 4 MUSKETEER micro-services - from [26]

Once registered with the MUSKETEER server platform, each user is assigned a
dedicated privatemessage queue, which is read-only. This ensures that only the server
platform itself can add messages to the queue but also, that only the assigned user has
the appropriate privileges to view the contents of their queue. As the server platform
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is broker based, the client connector simply invokes the appropriate procedure to
subscribe to the assigned user queue.

As shown in Fig. 4 an important function of the server platform is the routing of
messages between participants and aggregators, and how the micro-services interact
to achieve this. For example, when an aggregator starts a round of training, an initial
model may be uploaded to the platform’s object storage. During this process, the
aggregator obtains write-only privileges to a specific storage location for that model.
Upon completion of the upload the aggregator publishes amessage to initiate training,
with an included checksum for the model. The platform receives this message and
routes it to the queues of multiple users who are part of the federated learning
task. Read-only privileges to download the aggregator’s model are generated and
appended to the message. Multiple participants receive these messages in parallel.
They download the model, verify the checksum and start local training, all via the
Client Connector. Upon completion each participant performs a similar operation to
the aggregator and ultimately, all participant model updates are routed back to the
aggregator for model fusion. This routing is deployed within a Kubernetes cluster,
leveraging its high-availability features for an always-on, responsive system.

During the fusion process, the aggregator may employ a data contribution value
estimation algorithm. Such an algorithm may identify high value contributions, and
potentially assign a reward to the originating user, promoting a federated learning
data economy. The server platform supports this by providing the capability to the
aggregator to store information pertaining to the data value and potential reward.
This is discussed in more detail in section 4.

By providing this capability, the server platform is in fact recording each step
of the federated learning process. The combination of the recordings at each step,
by the end of the federated learning process, enables a view of the complete model
lineage for the final model. This lineage includes details such as updates provided
per user, when, and of what value.

This architecture is instantiated for use in the MUSKETEER project. The server
side (micro-services) is also integrated with IBM Federated Learning [22] and is
available in the community edition [14]. The community edition supports multiple
connection types, one of which is a HTTPS based connection, using REST, which
requires IP addresses to be supplied to participants and aggregators. As previously
discussed, there are a number of potential security issues with this approach, which
the inclusion of the MUSKETEER option alleviates. Other federated learning plat-
forms also exist, many of which display similar potential security issues due to the
direct communication mechanisms employed.

So far we have described the technological means used to increase the trust of the
user on the platform, basically focusing on data/communications security aspects
and data confidentiality protection provided by the federated learning approach. In
what follows we provide a legal perspective about the trust required in any data space
by further explaining the regulatory data protection (compliance with GDPR princi-
ples). Finally, we will focus on the description of several data valuation mechanisms
potentially leading to objective credit assignment and reward distribution schemes
that further increase the end user trust on the data space operation.
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3 Industrial Data Platform, a legal perspective

3.1 The broader policy context

Driven by the significant benefits that the use of Big Data analytics technologies
(including machine learning) can have for our society, the European Union (“EU”)
has in the past decade taken several steps towards creating favorable conditions
for what is calls a “thriving data-driven economy” [6] and a “common European
dataspace” [7]. Key in these steps is the objective to foster access to and availability
of large datasets for re-use for innovation purposes [9]. This is confirmed in the
most recent Communication from the European Commission a “European Strategy
for Data”, where the Commission announces its intention to establish “EU-wide
common interoperable data spaces in strategic sectors” ([10], p. 16). These spaces,
the European Commission goes on, will include “data sharing tools and platforms”
([10], p. 17).

3.2 Data sharing platforms

Industrial data platforms were already mentioned by the Commission in its earlier
guidance on the sharing of private sector data ([8], p. 5). In the aforementioned
guidance, the Commission identifies industrial data platforms as one of the modes
through which data can be shared among businesses and it describes these as “plat-
forms dedicated to managing regular data interactions with third parties [and which]
offer functionalities when it comes to data exchange [. . . ] storage inside the plat-
form and [. . . ] additional services to be provided on top of the data (based on data
analytics).”([8], p. 5).

In academic literature, ([28] p. 10) similarly describe data sharing platforms as
entities providing “the technical infrastructure for the exchange of data between
multiple parties”. These scholars discuss several core functions of data sharing
platforms and identify the “creation and maintenance of trust [among data users and
data suppliers]” as one of their key functions ([28], p. 14). Indeed, they point out
that, in order for the platform to achieve its main goal which is to match suppliers of
data with users thereof, it is essential that suppliers trust that the data they supply will
not be used illicitly and that users trust that the data supplied is fit for use ([28], pp.
13–14). As correctly remarked by these scholars, technology can be a key enabler
for trust among users and suppliers of a data platform ([28], p. 17).

Aside from a possible lack of trust in the data, users and suppliers thereof, there
may be legal reasons inhibiting the sharing of data among businesses. Crucially,
when it comes to the sharing of personal data among businesses, the latter will often
qualify as a processing of personal data falling under the scope of application of
the General Data Protection Regulation (“GDPR”). Although the GDPR does not
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prohibit the sharing of personal data among businesses as such, it does impose a
number of conditions under which such sharing is allowed to take place.

3.3 Federated learning as a trust enabler: some data protection
considerations

Federated learning has recently been emerging as one of the technologies aimed
at overcoming some of the trust and, more specifically data protection concerns,
related to the sharing of personal data. Indeed, federated learning differs from tradi-
tional centralized machine learning paradigms, since it does not require that the raw
data used to train a machine learning model are transferred to a central server for
the training to occur. Instead, under the federated learning paradigm, the machine
learning model is trained locally, i.e. on the premises of the data suppliers, under the
coordination of a central server. Therefore, under a basic federated learning process,
only the local updates to the machine learning model leave the premises of the data
suppliers and are sent to the central server for aggregation.

As implicitly recognized by several data protection authorities [2, 4] and the
German Data Ethics Commission ([5], p. 120) federated learning can facilitate com-
pliance with some principles of the GDPR. Indeed, as pointed out by the Norwegian
Data Protection Authority, federated learning helps reducing the amounts of data
needed for training a machine learning model ([4], p. 26). Therefore, if the train-
ing data qualifies as personal data, federated learning can help complying with the
principle of data minimization set forth in article 5.1 (c) GDPR. This principle re-
quires personal data to be “adequate, relevant and limited to what is necessary in
relation to the purposes for which they are processed”. Moreover, since under the
federated learning paradigm the training data is not transferred to a central server,
the possibilities of such data being re-purposed by that server are also reduced. If
the training data qualify as personal data, this means that federated learning could
also facilitate compliance with the principle of purpose limitation set forth in article
5.1.(b) GDPR. This principle requires personal data to be “collected for specified,
explicit and legitimate purposes and not further processed in a manner that is in-
compatible with those purposes [. . . ]”. Federated learning can hence be considered
as a technique that helps implementing the principle of data protection by design,
contained in article 25.1 GDPR. This principle requires controllers of personal data
to “[. . . ] implement appropriate technical and organizational measures [. . . ] which
are designed to implement data-protection principles, such as data minimization, in
an effective manner [. . . ]”.

Despite the advantages that federated learning presents from a data protection per-
spective, it is not, as such, a silver bullet. We name some of the reasons for this. First,
as also remarked by [2], the updates that data suppliers share with the central server
could, in certain cases, leak information about the underlying (personal) training data
to the central server or a third party ([23], para. 1.2). It is hence important to combine
federated learning with other privacy preserving technologies, such as Multi-Party



Increasing Trust for Data Spaces with Federated Learning 11

Computation, differential privacy ([21], p. 11) and homomorphic encryption ([32],
pp. 3–4). Second, “federated learning has by design no visibility into the participants
local data and training” ([1], para. 1). This may render federated learning vulnerable
to (data and model) poisoning attacks by training participants [17], which could, in
turn, in some instances, impair the performance of the final machine learning model.
Therefore, the use of federated learning may require an increased attention to not
only technical but also organizational accountability measures. The latter may in-
clude a careful due diligence investigation into the training participants’ compliance
with the GDPR (and other relevant legislation) and envisioning contractually binding
protocols specifying (among others requirements mentioned in the aforementioned
EC Guidance on sharing of private sector data [9]).

Another key point to consider is about the quality requirements the training data
should meet in light of the purpose of the final machine learning model and the
population to which it will be applied. To this purpose, we will describe in the next
section several data value estimation approaches that can be used to assess the quality
of the data provided by each participant, so that the platform is ultimately able to
reward every participant proportionally to the contribution to the final model. The
availability of such data value estimations is key to the deployment of a true data
economy.

4 Industrial Data Platform, objective Data Value Estimation for
increased trust in Data Spaces

As already mentioned, another key requirement for a secure industrial data platform
is to measure the impact of every data owner on the accuracy of the predictive
models, thus allowing to monetize their contributions as a function of their real data
value.

Today data has become the new gold, as it serves to power up advanced artifi-
cial intelligence (AI) models that form the core of an unlimited number of highly
profitable processes, ultimately generating a potentially enormous business value.
The importance of collecting large amounts of data as a way to obtain increasingly
complex (and therefore accurate) AI models without the problem of overfitting (that
is, complex models that perform well in the presence of input patterns never seen
before) is out of the question.

For example, everywhere we are witnessing a struggle to capture as much infor-
mation as possible from users in the context of mobile applications, to be used or
resold for different purposes without any reward for data producers. In this well-
known example the users give their consent (very often inadvertently) for their data
to be used by third parties when they install and accept the terms and conditions
of a certain application. A fairer scenario would be the one where users1 are aware

1 In what follow we will refer as “user" to any entity, either person or organization, that has some
data of potential interest to a given process.
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of their potential valuable data and agree to share it hoping to receive some com-
pensation in return. It is currently debated that users should be paid for their data
in a fairly direct way to foster the data exchange and ultimately improve many AI
models. Many economists and politicians believe that data should be treated as an
asset, with the possibility of protecting its specific use by third parties and the right
of the data owner to sell it for different purposes, like any other “physical" good
[31]. In economic terms, data is "non-rival" in the sense that it can be unlimitedly
used multiple times for different purposes, unlike other physical goods, which can
only be used once [16]. The current situation tends to be the opposite of the desired
one, since in most cases large companies accumulate and have the rights over an
increasing amount of data, to the detriment of the users who generated them.

The concept of an ideal data market has been studied in [16] where different
alternatives (companies own data, people own data, data sharing is not allowed) have
been compared against an optimal economic model administered by a benevolent
ruler. As a conclusion of this research, it appears that the situation closest to the ideal
reference model is the one in which users handle their own data. On the other hand,
the case (more common today) in which companies own the data, the privacy of the
users is not respected and the data is not shared efficiently with other companies.
Finally, when data is not shared at all, economic growth tends to come to an end.
Therefore a reasonable approach would be to allow users to retain the ownership and
control over their data, and get a revenue whenever they contribute to any machine
learning or AI model. The question still to be answered is how to adequately estimate
that reward.

As discussed in [15] there are several families of pricing (rewarding) strategies,
such as "query-based pricing", which sets the price according to the number of data
views [19], ‘data attribute-based pricing‘" which fixes prices according to data age or
credibility [13], and “auction-based pricing" which set prices based on bids among
sellers and buyers [20]. The aforementioned methods, although potentially useful
in certain contexts, have a significant drawback, in the sense that prices (rewards)
are set independently of the task to be solved or of the actual utility of the data
for the model to be trained. In what follows we will restrict ourselves to the data
value concept that is linked to a real value for a given task, usually the training of a
Machine Learning or AI model.

This data value estimation process is of great interest in a wide range of scenarios
with different data granularity. On the one hand we may have situations where every
user provides a unique training pattern (for example, a person offers data from the
clinical record) and a potentially very large number of participants is needed to train
a model (millions of people?). On the other side, we have scenarios where a reduced
number of entities (organizations, companies, groups) offer a relatively large amount
of data (e.g., several companies try to combine their efforts to improve a given process
by joining their respective accumulated experience). The first type of scenarios can
be associated with the concept of a Personal Data Platform (PDP), where users are
individuals who offer their own data for commerce. This is the kind of scenario
illustrated in the pioneering work by Google [25] and other in the context of mobile
phones [18][27]. The latter example is associated with the concept of Industrial Data
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Platform (IDP), where the number of participants is not that high (context also known
as enterprise Federated Learning [32]), but each provides a good amount of training
samples. The MUSKETEER platform is oriented towards the latter, and it aims at
becoming an IDP offering a variety of possible confidentiality/privacy scenarios,
named as Privacy Operation Modes (POMs).

If we assume an scenario where a total amount of reward is to be distributed
among the participants (data providers), according to the actual contribution of
their respective data to the final model quality/performance, then it is possible to
formulate the task as a “profit allocation problem". This type of situation has been
studied extensively in the context of cooperative game theory, and the most popular
solution is provided by the Shapley value estimation scheme [29][11]. This approach
offers some attractive features: it is task-dependant, the data is valued only if it allows
to improve the performance of the model, the reward is fully distributed among the
participants, equal data contribution means equal reward, and the addition of several
contributions gets a reward equal to the sumof the individual rewards. The calculation
of Shapley values is quite simple. If we consider # participants and ( is a subset of
players and* (() is the utility function that measures the performance of the model
produced with the data from users in the set (. Then, the Shapley value B8 for user 8
is defined as:

B8 =
∑

(⊆� \{8 }

1
#

(#−1
|( |

) [* (( ∪ {8}) −* (()] (1)

According to the expression in 1, the Shapley value is computed as the average
utility gain obtained when player 8 is added to any other2 group of participants.
Despite the relatively simple definition of the Shapley’s values, their computation
requires an exponential number of different utility computations (each one of them
usually requiring to train a brand new model). Therefore, Shapley’s approach poses
some computational challenges if we opt to use a brute force approach. Some works
indicate that it is possible to reduce the exponential computational cost to a linear or
logarithmic scale by benefiting from a knowledge transfer between trained models,
exploiting some peculiarities of a given machine learning model [15] or usingMonte
Carlo estimations of the utility values [24].

All the above mentioned optimized methods assume we have an unlimited access
to the training data and that we can run the training procedures an unlimited number
of times, a situation which is rarely found in real world situations. Even so, gathering
large amounts of data in the same place faces many barriers, such as the growing
number of regulations that limit the access/sharing of the information, with the
ultimate intention of protecting the privacy and property rights of users (e.g. GDPR
[3] or HIPAA [12]).

As already presented in the previous sections, various architectures have emerged
in an attempt to circumvent these data exchange restrictions and ultimately facilitate
the training of models with increasing amounts of data while preserving the data
privacy/confidentiality. For many years the field of Privacy Preserving Machine

2 All possible combinations must be considered.
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Learning (a.k.a. Privacy Preserving Data Mining) has produced solutions relying
on different security mechanisms (Secure Multiparty Computation or Cryptography,
among others). It is obvious that the data value estimation in these scenarios has
an additional degree of complexity, sometimes unaffordable. Lately, the Federated
Learning paradigmhas emerged as a less complex approach to the problemof training
models while preserving data confidentiality. In a Federated Learning context we
face many restrictions on accessing training data, and the training process is typically
only run once. Therefore, the traditional data value estimation methods cannot be
used directly in this context.

An interesting approach is the one presented in [30],where the interchanged values
(models, gradients) during the federated learning process are used to reconstruct
the variety of models needed to estimate Shapley values using 1. In this way we
can calculate estimates of the different models that would be obtained if different
combinations of data sets were used, without the need to train them from scratch.
Obviously, an exact reconstruction of all models is not possible and we only get
estimates, but it is shown in [30] that good approximations are possible.

The procedure is as follows. It is assumed that there is a validation set available in
the aggregator, so that for each possible model trained with a subset ( of the training
data it is possible to calculate the corresponding utility * (() needed to estimate
the Shapley values. We also assume that the aggregator has access to the following
information:

• The initial global (epoch 0) model weights " (0)

• The global model weights at epoch =, " (=)
0;;

• The model increments3 contribution from participant < at epoch =, Δ(=)<

Taking into account all this information, in [30] two approaches are proposed for
Data Shapley value estimation. The first one estimates at epoch = the model trained
with the datasets from the set of users in set '4, "=

'
, as the cumulative update from

the initial model, i.e.:

"
(=)
'

=

=∑
8=0

"
(0)
6 +

∑
<∈'

Δ
(=)
< (2)

and using these model estimates, the corresponding utilities and Data Shapley values
in 1 can be calculated, averaging the estimates across all epochs. This approach is
prone to divergences from the real model, since the accumulation takes place with
respect to the initial (random) model.

The second approach is based on updating the global model " (=−1)
0;;

obtained
at every step = − 1 with the contributions from all participants, so the different
submodels are estimated using updates with partial data. For example, the model
trained with the datasets from the set of users ' at epoch =, "=

'
, is estimated as:

3 If model weights are exchanged instead of gradient updates, the increments can be obtained as a
difference between models.
4 ' can be set to ( or ( ⊆ � \ {8 }, as needed.
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"
(=)
'

= "
(=−1)
'

+
∑
<∈'

Δ
(=)
< (3)

such that more accurate submodel estimates are obtained, but they are influenced by
the contributions from other participants, since " (=)

'
is calculated using information

from all contributors.
Notwithstanding the restrictionsmentioned above, bothmethods appear to provide

reasonable Data Value estimates in a Federated Learning environment, as evaluated
in [30]. Note that under the approaches described above, the Shapley values are
calculated exactly but are based on model estimates. Therefore, the quality of those
estimates will determine the precision of data value estimates according to Shapley
principles.

Various MUSKETEER privacy modes of operation (POM) do not exactly follow
Federated Learning principles and use other security/privacy mechanisms (Secure
Multi-Party Computing, Homomorphic Encryption), and it remains to be analyzed
how to extend the procedures described above to adapt them to the new scenarios.

The above described approach is perfectly valid under "honest but curious" secu-
rity assumptions, where the participants are assumed not to act outside of the defined
protocols (which is the case of the MUSKETEER platform), and therefore they can
fully trust the aggregator in the sense that they are confident in that it will always
declare the correct (estimated) credit allocation values.

However, in some other situations, the aggregator could act maliciously and, after
using participant data for a given task, could declare a lower value than actually
estimated. In this different security scenario, a different approach would be needed.
Also, it would be of great interest to be able to estimate theData Shapley values before
actually training any model, so that preliminary data negotiation can be established
before actually participating in the training process.

We are exploring the extent to which the Data Value can be estimated using
a collection of statistics calculated on each participant, but which do not contain
enough information to train the global model. In the MUSKETEER context we are
interested in answering the following questions (and hence we are investigating in
that direction):

• To what extent is it possible to estimate the Data Values before actually training
the model, based on locally pre-calculated statistical values.

• To what extent can the incremental approach proposed in [30] be extended to
scenarios other than Federated Learning, where other privacy mechanisms are
used (Two-party computation, Homomorphic encryption, etc.)

5 Conclusion

In this chapter we described an Industrial Data Platform (IDP) for federated learning
offering high standards of security and other privacy preserving techniques (MUS-
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KETEER). Our approach shows how trust respectful of privacy can be enforced
from an architecture point of view but also how the techniques used can support
the compliance with certain GDPR principles from a legal perspective. Besides,
leveraging more data on such data platforms requires incentives that fairly reward
shared data, thereby we also discuss different strategies of data value estimation and
reward allocation in a Federated Learning scenario.
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