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Abstract The quality of a machine learning model depends on the volume of data
used during the training process. To prevent low accuracy models, one needs to
generate more training data or add external data sources of the same kind. If the first
option is not feasible, the second one requires the adoption of a federated learning ap-
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proach, where different devices can collaboratively learn a shared prediction model.
However, access to data can be hindered by privacy restrictions. Training machine
learning algorithms using data collected from different data providers while miti-
gating privacy concerns is a challenging problem. In this chapter we first introduce
the general approach of federated machine learning and the H2020 MUSKETEER
project, which aims to create a federated, privacy-preserving machine learning In-
dustrial Data Platform. Then, we describe the Privacy Operations Modes designed in
MUSKETEER as an answer for more privacy before looking at the platform and its
operation using these different Privacy Operations Modes. We eventually present an
efficiency assessment of the federated approach using the MUSKETEER platform.
This chapter concludes with the description of a real use case of MUSKETEER in
the manufacturing domain.

1 Introduction

Inrecent years, the advancements in Big Data technologies have fostered the penetra-
tion of Al and machine learning in many application domains, producing a disruptive
change in society and in the way many systems and services are organized. Machine
learning technologies provide significant advantages to improve the efficiency, au-
tomation, functionality and usability of many services and applications. In some
cases, machine learning algorithms are even capable of outperforming humans. It
is also clear that machine learning is one of the key pillars for the fourth industrial
revolution and it will have a very significant impact in the future economy. Machine
learning algorithms learn patterns and they are capable of extracting useful infor-
mation from data [1]. But in some cases, the amount of data needed to achieve a
high level of performance is significant. A few years ago, Peter Norvig, Director
of Research at Google recognized: “we don’t have better algorithms, we just have
more data.” Thus, apart from the expertise and the computational resources needed
to develop and deploy machine learning systems, for many companies, the lack of
data can be an important obstacle to participate in this new technological revolution.
This can have a profound negative effect on SMEs, which, in many cases, will not
be able to compete with the largest companies in this sector. In recent years this
problem has been alleviated by the growth and development of data markets, which
enables companies to have access to datasets to develop Al and machine learning
models. However, in many sectors, the access to these data markets is very difficult
because of the sensitivity of the data or privacy restrictions that impede companies
to share or commercialize the data. This can be the case, for example, for healthcare
applications, where the privacy of the patients must be preserved and where often
the data cannot leave the data owner’s facilities. The chapter relates to the technical
priority “Mechanisms ensuring data protection and anonymisation, to enable the
vast amounts of data which are not open data (and never can be open data) to be
part of the Data Value Chain” of the European Big Data Value Strategic Research &
Innovation Agenda [28]. It addresses the horizontal concern “Data Protection” of the



Privacy Preserving Technologies for Trusted Data Spaces 3

BDV Technical Reference Model. It addresses the vertical concerns ‘“Data sharing
platforms, Industrial/Personal”. The chapter relates to the "Systems, Methodolo-
gies, Hardware and Tools" cross-sectorial technology enablers of the Al, Data and
Robotics Strategic Research, Innovation & Deployment Agenda [27]. In this chapter
we present a solution developed for the MUSKETEER project based on a federated
learning approach (Section 2) [15, 16, 18, 24], detailing the different Privacy Opera-
tions Modes designed to offer higher standards of privacy to the stakeholders of the
platform (Section 3). From this conceptual level, we then deep dive into the concrete
part with an architecture description of the platform (Section 4) and an efficiency
assessment of the federated approach using the MUSKETEER platform (Section 5)
before concluding with a real use case description (Section 6).

2 Tackling privacy concerns: the solution of federated learning

Federated learning is a machine learning technique that allows building collaborative
learning models at scale with many participants whilst preserving the privacy of
their datasets [15, 16, 18, 24]. Federated learning aims to train a machine learning
algorithm using multiple datasets stored locally in the facilities or devices of the
clients participating in the collaborative learning task. Thus, the data is not exchanged
between the clients and always remains in their own facilities.

2.1 Building collaborative models with federated learning

In federated learning, there is a central node (or server) that orchestrates the learning
process and aggregates and distributes the information provided by all the partici-
pants (or clients). Typically, the server first collects and aggregates the information
provided by the different clients, updating the global machine learning model. Then,
the server sends the parameters of the updated global model back to the clients.
On the other side, the clients get the new parameters sent by the server and trains
the model locally using their own datasets. This communication process between
the server and the clients is repeated for a given number of iterations to produce
a high-performance collaborative model. Depending on the application, there are
different variants for learning federated machine learning models [16]. For example,
in some cases, a global collaborative model is learned from all the clients’ data.
In other scenarios, only part of the parameters of the machine learning models are
shared between participants, whereas the rest of the parameters are local (specific
for each client). This allows a level of customisation specific to the clients. This
approach is also useful in cases where the datasets from the different participants are
not completely aligned, i.e. they do not have exactly the same features.
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2.2 Where can we use federated machine learning?

To reduce the amount of data to be stored in the cloud, as the computational power of
small devices like smartphones and other IoT devices increases, federated machine
learning offers new opportunities to build more efficient machine learning models
at scale by keeping the data locally on these devices and using their computational
power to train the model. This approach was used in the one of the first successful use
cases of federated learning: “Gboard” for Android, a predictive keyboard developed
by Google which leverages the smartphones of millions of users to improve the
precision of the machine learning model that makes the predictions. In this case
Google did not require upload of the text messages from millions of users to the
cloud, which can be troublesome from a regulatory perspective, helping to protect
the privacy of the users’ data. This use case showed that federated machine learning
can be applied in settings with millions of participants that have small datasets.
Federated learning is also a suitable solution in applications where data sharing or
access to data markets is limited. In these cases, the performance of the machine
learning models achieved using smaller datasets for training can be unacceptable
for their practical application. Thus, federated machine learning boosts performance
by training a collaborative model that uses the data from all the participants in the
learning task but keeps the data private. The performance of this collaborative model
is similar to the one we would obtain by training a standard machine learning model
merging the datasets from all the participants, which would require data sharing.

2.3 MUSKETEER’s vision

Our mission in MUSKETEER is to develop an industrial data platform with scal-
able algorithms for federated and privacy-preserving machine learning techniques,
including detection and mitigation of adversarial attacks and a rewarding model
capable of fairly monetizing datasets according to the real data value. In Fig. 1 we
represent the IDP concept.

In MUSKETEER we are addressing specific fundamental problems related to the
privacy, scalability, robustness and security of federated machine learning, including
the following objectives:

* To create machine learning models over a variety of privacy-preserving scenarios:
in MUSKETEER we are defining and developing a platform for federated learning
and distributed machine learning with different privacy operation modes to pro-
vide compliance with the legal and confidentiality restrictions of most industrial
scenarios.

» To ensure security and robustness against external and internal threats: in MUS-
KETEER we are not only concerned with the security of our software but also
with the security and robustness of our algorithms to internal and external threats.
We are investigating and developing new mechanisms to make the algorithms ro-
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bust and resilient to failures, malicious users and external attackers trying to
compromise the machine learning algorithms [20].

* To provide a standardized and extendable architecture: the MUSKETEER plat-
form aims to enable interoperability with Big Data frameworks by providing
portability mechanisms to load and export the predictive models from/to other
platforms. For this, the MUSKETEER design aims to comply with the Reference
Architecture model of the International Data Spaces Association (IDSA) [13].

* To enhance the data economy by boosting cross-domain sharing: the MUSKE-
TEER platform will help to foster and develop data markets, enabling data
providers to share their datasets to create predictive models without explicitly
disclosing their datasets.

* To demonstrate and validate in two different industrial scenarios: in MUSKE-
TEER we want to show that our platform is suitable, providing effective solutions
in different industrial scenarios such as manufacturing and healthcare, where
federated learning approaches can bring important benefits in terms of cost, per-
formance and efficiency.

3 Privacy Operation Modes (POMs)

Training models with data from different contributors is an appealing approach,
since when more and more data is used, the performance of the resulting models
is usually better. A centralized solution requires that the data from the different
users is gathered in a common location, something that is not always possible due
to privacy/confidentiality restrictions. The MUSKETEER platform aims at solv-
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Fig. 1 Musketeer Industrial Data Platform to share data in a federated way.
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ing Machine Learning (ML) problems using data from different contributors while
preserving the privacy/confidentiality of the data and/or the resulting models. Es-
sentially, it aims at deploying a distributed ML setup (Fig. 2) such that a model
equivalent to the one obtained in the centralized setup is obtained. Nevertheless,
even under the assumption that the raw data of the users is never directly exchanged
or shared among the participants in the training process, any distributed privacy pre-
serving approach requires the exchange of some information among the participants
or at least some interaction among them, otherwise no effective learning is possible.

In the MUSKETEER Machine Learning Library (MMLL) we foresee different
possible Privacy Operation Modes (POMs) with different assumptions/characteristics.
In what follows, we briefly describe every one of the implemented POMs, each of-
fering a variety of machine learning models/algorithms, but always respecting the
privacy restrictions defined in that POM. In what follows, we will name as Master
Node (MN) or Aggregator the central object or process that controls the execution
of the training procedure and the Workers or participants will be running at the end
user side as a part of the MUSKETEER client, and they have direct access to the
raw data provided by every user.

3.1 POM1

This POM is designed for scenarios where the final trained model is not private,
since at the end of the training every worker node and also the master node have
a copy the model. This POM implements a federated-learning framework based on

(a)

Fig. 2 Centralized approach (a) vs our privacy preserving distributed scenario (b) where every user
provides a portion of the training set.
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the concept introduced by Google in 2016 [15]. Under this paradigm [25], a shared
global model is trained under the coordination of the central node, from a federation
of participating devices. It enables different devices to collaboratively learn a shared
prediction model while keeping all the training data on device, decoupling the ability
to perform machine learning from the need to store the data in the cloud. Using
this approach, data owners can offer their data to train a predictive model without
being exposed to data leakage or data attacks. In addition, since the model updates
are specific to improving the current model, there is no reason to store them on the
server once they have been applied. Any model trainable by gradient descent or model
averaging [14] can be deployed under this scheme. The model is not private, since
every worker and the central node will receive it at every iteration. The algorithms
developed under this POM conform to the following steps: The aggregator defines
the model, which is sent to every worker. Every participant computes the gradient
of the model or updates the model (for a model averaging schema) with respect to
his data and sends aggregated gradient or the model back to the aggregator, which
joins the contributions from all participants and updates the model. This process
is repeated until a stopping criterion is met. Under this POM the model is sent to
the workers unencrypted and the workers send an averaged gradient vector/updated
model to the aggregator.

3.2 POM 2

In some use cases, data owners belong to the same company (e.g. different factories
of the same company) and the server that orchestrates the training is in the cloud.
The work proposed in [22] shows that having access to the predictive model and
to the gradients it is possible to leak information. Since the orchestrator has access
to this information in POMI1, if is not completely under our control (e.g. Azure
or AWS cloud), POM2 solves the problem by protecting the gradients over the
honest-but-curious cloud server. This POM also implements the Federated Machine
Learning (FML) paradigm described in POM1, but uses additively homomorphic
encryption [26] to preserve model confidentiality from the central node. All gradients
are encrypted and stored on the cloud server and the additive property enables the
computation across the gradients. This protection of gradients against the server
comes with the cost of increased computational and communication between the
learning participants and the server. At the end of the training stage the model is
known by all the workers but not by the aggregator. In this POM all the participants
use the same pair of public/private keys for encryption/decryption. The aggregator
has access to the public key but not to the private one, meaning that it cannot have
access to the data encrypted by the workers. It comprises the following steps: every
worker has the same pair of public/private keys, the public key is shared with the
aggregator, which defines the model and encrypts it. The encrypted model is sent to
every participant, which decrypts it with the private key and computes the gradients.
Then, it sends back to the master the encrypted computed gradients. The aggregator
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finally averages the received gradients and updates the local copy of model weights
in the encrypted domain thanks to the homomorphic encryption properties. The
process is repeated until the end of the training. In this case the model is sent to the
workers encrypted, the workers send encrypted gradient vector/updated model to the
aggregator, who updates the model in the encrypted domain with no possibility of
decryption.

3.3 POM3

In POM2, every data owner trusts each other and they can share the private key of the
homomorphic encryption (e.g. different servers with data that belongs to the same
owner). Using the same key, every data owner uses the same encrypted domain. In
many situations it is not possible to transfer the private key in a safe way. POM3
is an extension of POM2 that makes use of a proxy re-encryption [7] protocol to
allow that every data owner can handle her/his own private key. This POM is an
extension of POM?2 that makes use of a proxy re-encryption protocol to allow that
every data owner can handle her/his own private key [11]. The aggregator has access
to all public keys and is able to transform data encrypted with one public key to a
different public key so that all the participants can share the final model. The learning
operation under this POM is as follows: every worker generates a different key pair
randomly and sends the public key to the aggregator, which defines the initial model,
such that it is sent unencrypted to every participant. Here the model is sent to every
worker in its own encrypted domain in a sequential communication, the workers
send encrypted gradient vector/updated model to the aggregator and the aggregator
updates the model in the encrypted domain and uses proxy re-encrypt techniques to
translate among different encrypted domains.

3.4 POM 4

This POM uses an additively homomorphic cryptosystem to protect the confidential-
ity of the data and requires the cooperation of an special node named as Crypto Node
(CN), which is an object/process providing support for some of the cryptographic
operations not supported by the homomorphism [9]. The CN is able to decrypt but
it only receives encrypted data previously masked by the aggregator. The scheme
is cryptographically secure if we guarantee that CN and Master Node (MN) do not
cooperate to carry out any operation outside of the established protocols (‘“honest
but curious” assumption). Therefore, the scheme is cryptographically secure if we
guarantee that there is no collusion between the MN and the CN. The steps to train a
given model are as follows: the MN asks the CN some general public encryption key
and distributes it to the workers, which will use it to encrypt the data and send it to
the aggregator. The MN starts the training procedure by operating on the (encrypted)
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model parameters and (encrypted) users data. The MN is able to perform some op-
erations on the encrypted data (the ones supported by the homomorphism), but for
the unsupported ones, it needs to establish a secure protocol with the CN consisting
in sending some masked data to the CN, which decrypts the data, computes the
unsupported operation in clear text, encrypts the result and sends it back to the MN,
which finally removes the masking to obtain the encrypted desired result. As a result
of repeating these operations during the training process, the MN never sees the data
or the result in clear text, and the CN only sees the clear text of blinded/masked
data. The training procedure continues until a stopping criterion is met. This POM
is especially useful when the participants cannot actively cooperate during the train-
ing process (computational outsourcing) and the crypto node and master node are
computationally powerful such that operations on the encrypted domain are highly
efficient. Under this POM the MN, CN and Worker Node (WN) are assumed not
to collude and they do not operate outside of the specified protocols (“honest but
curious” assumption).

3.5 POM 5

This POM is able to operate only with the aggregator and worker nodes. It uses an
additively homomorphic cryptosystem to protect the confidentiality of the model
[8]. The data is also protected, since it does not leave the worker facilities, and only
some operation results are sent to the aggregator. The MN will help in some of
the unsupported operations, this is, the MN will play the role of CN. The scheme
is cryptographically secure if we guarantee that the workers and aggregator do
not operate outside of the protocols. The steps to train a given model are: the
MN generates public and private keys and the public keys are distributed to all
participants. The initial model parameters are generated at random by the MN. The
MN encrypts the model parameters with the secret key and sends the encrypted model
to the WNss, which starts the training procedure by operating on the (encrypted) model
and (un-encrypted) users data. The WN is able to perform some operations on the
encrypted data (the homomorphically supported ones), and for the unsupported ones
it establishes a secure protocol with the MN such that the WN sends some encrypted
data with blinding to the MN, which decrypts it, computes the unsupported operation
in clear text, encrypts the result and sends it back to the worker, which finally removes
the blinding to obtain the result. As a result of this protocol, the MN never sees the
data or the result in clear text, and the WN only sees the encrypted model. The
procedure is repeated for every needed operation of every algorithm, until a stopping
criterion is met. The MN, CN and WN are assumed not to collude and they do not
operate outside of the specified protocols (“honest but curious” assumption).
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3.6 POM 6

This POM does not use encryption; it relies on Secure Two-Party Computation [4]
protocols to solve some operations on distributed data such that both model and
data privacy is preserved [2]. Under this POM, raw data is not encrypted, but it is
never sent outside the WN. The model trained in the MN can also be kept secret to
the WN. Some transformations of the data can be exchanged with the MN, such as
aggregated or correlation values, but always guaranteeing that the raw data cannot
be derived from them by reverse engineering. Every implemented algorithm will
explicitly describe which information in particular is revealed to the MN, such that
the participants are aware of this potential partial disclosure before participating in
the training process. Some important operations can be directly implemented using
protocols for secure dot product or secure matrix multiplication. The security of
these operations will be as described in the reference sources of protocol and in
general terms they prove that the raw data is not exposed. An improved security is
achieved during some aggregation operations if a “round robin” or “ring” protocol
is used such that global aggregations can be computed without revealing the specific
contributions from every participant. POM6 is not a generally applicable procedure,
it requires that every algorithm is implemented from scratch, and also it is not
guaranteed that any algorithm can be implemented under this POM. The MN, CN
and WN are assumed not to collude and they do not operate outside of the specified
protocols (“honest but curious” assumption).

3.7 Algorithms

Over the different POMs, in the MMLL library, there are implementations of several
algorithms. The library will contain algorithms capable to infer functions of different
nature: Linear models: A simple but widely used class of Machine Learning models,
able to make a prediction by using a linear combination of the input features [8].
MMLL includes alternatives for classification (logistic regression) and regression
(linear regression) with different regularization alternatives and cost functions. Ker-
nel Methods: They comprise a very popular family of Machine Learning models.
The main reason of their success is their ability to easily adapt linear models to create
non-linear solutions by trans-forming the input data space onto a high dimensional
one where the inner product between projected vectors can be computed using a
kernel function [12]. MMLL provides solutions for classification (SVMs) and re-
gression (SVRs), possibly under model complexity restrictions (budgeted models).
[19, 5, 6]. Deep Neural Networks: Deep learning architectures [17] such as multi-
layer perceptrons or convolutional neural networks are currently the state of art over
a wide variety of fields including computer vision, speech recognition, natural lan-
guage processing, audio recognition, machine translation, bioinformatics and drug
design, where they have produced results comparable to and in some cases superior
to human experts [10]. Clustering: Unsupervised learning is the machine learning
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task of inferring a function to describe hidden structure from "unlabelled" data.
The library will include algorithms for clustering, that is the task of dividing the
population or data into a number of groups such that data points in the same groups
are more similar to other data points in the same group than those in other groups
[21]. In simple words, the aim is to segregate groups with similar characteristics
and assign them into clusters. The library will include general purpose clustering
algorithms such as k-means [23].

4 Setting your own federated learning test case: technical
perspective

How to train machine learning algorithms using data collected from different data
providers while mitigating privacy concerns is a challenging problem. The concept
of a trusted data space serves the need of establishing trusted networks where data
can be transferred, accessed, and used in a secure mode, so to offer secure data access
and transfer. This section presents the MUSKETEER platform in relation to how it
leverages new paradigms and advancements in machine learning research, such as
Federated Machine Learning, Privacy Preserving Machine Learning and protection
against Adversarial Attacks. Moreover, the MUSKETEER platform, following actual
industrial standards, it implements a trusted and secure data space, to enable scalable
privacy-preserving machine learning in a decentralized dataset ownership scenario.

4.1 How to properly train your Machine Learning model?

That is definitely not an easy question and it depends on many different aspects.
As it will take too much time to make a complete analysis of all of them, we will
concentrate only on one of them: the amount of training data. The quality of a
Machine Learning model depends on the volume of training data used during the
training process. Small amount of data can produce low accuracy models that cannot
be really usable. In this case, we can consider two options to solve the problem: (i)
produce more training data by yourself or (ii) increase the training data volume by
adding more data sources of the same kind. If the first option is not feasible (e.g.
for technical or economic reasons), you can explore the second one by looking for
other subjects with the same need. Here is where the concept of federation comes
into play. In short, the model that can be produced thanks to the collaboration of
the federation participants is better than the one produced by each participant on
their own. This paradigm was initially introduced by Google and refers to different
devices which collaboratively learn a shared prediction model while keeping all
the training data on each device, decoupling the ability to do machine learning
from the need to transfer data as well. The collaboration among the federation
participants can be implemented with different levels of complexity and has to take
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into consideration other non-technical aspects. The simplest case is the one that
concentrates all data in a single place and the training operation of the model is done
using that single data repository. In this case, confidentiality and privacy should not
be strong requirements. When the training data cannot be disclosed (e.g. business
and/or legal reasons), a more sophisticated configuration has to be adopted. Every
single federated participant will train an ML model locally (at their premises and
not sending data outside) and will share only the model parameters. All the models
produced by the participants are collected by a single subject that aggregates all of
them and produces a new one that incorporates all contributions.

4.2 The MUSKETEER Platform

The main result of the MUSKETEER project is the implementation of an industrial
data platform with scalable algorithms for federated and privacy-preserving machine
learning techniques. The solution is based on the federation of a number of stake-
holders contributing together, to build a Machine Learning model, in a collaborative
(or co-operative) way. Different roles are to be assigned: (i) the aggregator, starting
the process and taking charge of the computation of the final ML model; (ii) the
participants, taking part in a single Machine Learning model process, built using
their own (local) training datasets. From the architectural point of view, the MUS-
KETEER platform enables the interoperability between a number of distributed big
data systems (federation participants) by providing a mechanism to send and re-
trieve Machine Learning models. That interoperability mechanism is based on the
principles defined in the Reference Architecture Model of the International Data
Space Association (IDSA) [13]. The MUSKETEER platform architecture consists
of a server side and a client side. The server part is hosted in the cloud (as a number
of micro-services) and it makes use of message queues for asynchronous exchange
of information among the federation participants, that are often widely distributed
geographically. One of the main activities of the server component is to coordinate
the exchange of machine learning models between participants and aggregators. Be-
sides the exchange of information for the execution of the actual federated learning
tasks, the server side also provides services to manage tasks throughout their lifecy-
cle, such as: creating new tasks, browsing created tasks, aggregating tasks, joining
tasks as a participant or deleting tasks. The meta-information that is required for task
management is stored in a cloud-hosted database.

4.3 MUSKETEER Client Connector components

The client side is represented by the MUSKETEER Client Connector that is a self-
contained component that each user has to deploy on-premise in order to work with
the MUSKETEER platform. We consider now the case where the training data is
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stored locally (e.g. in hard drives, Network Attached Storage (NAS) or removable
devices that are attached to a single computer) and we want to make use of them
to create predictive models without explicitly transferring datasets outside of our
system. In this case, the MUSKETEER Client Connector can be deployed in any
environment using Docker in order to containerize the Client Connector application
itself. Docker containers ensure a lightweight, standalone and executable package
of the software that includes everything needed to run the MUSKETEER Client
Connector: operating system, code, runtime, system tools, libraries and settings. In
this way the whole application can be easily made available in a sandbox that runs on
the host operating system of the user. The MUSKETEER Client Connector consists
of five core components and two additional ones that are loaded (as external plug-
ins) after the application is up and running: the communication messenger and the
federated machine learning library.

1. User Interface is a local web application that performs a set of functionalities
where the main ones are: (i) to access to the target server platform; (ii) to connect
the local data for executing the federated ML model training; (iii) to manage the
different tasks for taking part in the federation.

2. Client Back-End acts as a RESTful Web Service that handle all user requests,
ranging from local operations (e.g. to connect user data to the Client Connector)
to server operations (e.g. tasks and user management); these operations need to
use a Communication Messenger library to communicate with a target external
server.

3. Data Connector connects user data, which may come from different sources or
storage layers, to the Client Connector. In addition, to connect data from different
source types, the component can manage and support different kinds of data: in
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fact, a user can load a .csv tabular data from the file system, images files, binary
data, a table from a database and so on.

. Abstract Communication Interface allows the import and use an implementation

of the communication library. In the MUSKETEER project the Communication
Messenger library used is the pycloudmessenger library developed by IBM 1. After
such a library is configured and installed, the MUSKETEER Client Connector
can use the APIs to communicate with the MUSKETEER cloud server provided
by IBM.

. Execution component instantiates and runs federated machine learning algorithms

according to interfaces defined by the Federated Machine Learning library im-
ported into the MUSKETEER client Connector. In the MUSKETEER project, the
FML library imported is provided by the partners TREE Technology and Carlos
IIT de Madrid University.

4.4 Giveitatry

The first prototype of the MUSKETEER Client Connector is available as open source
software from GitHub repositories (Client Connector Backend?, Client Connector

Actor CLIENT CONNECTOR

USER INTERFACE

CLIENT BACK-END

To connect data from several
source and type to the CC

DATA CONNECTOR

Users and tasks management:

Running a task as participant
or aggregator

« users registration/login
+ tasks listing

« tasks creation
« tasks running

FML LIBRARIES

PARTICIPANT K-MEANS

LINEAR
REGRESSION

MUSKETEER CORE
PLATFORM

ABSTRACT
CCOMMUNICATION
INTERFACE

(IBM SERVER)

AGGREGATOR

PYCLOUD
MESSENGER

‘COMMUNICATION MESSENGERS

Fig. 4 MUSKETEER Client Connector Architecture.

! https://github.com/IBM/pycloudmessenger

2

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-

backend
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Frontend?3). Together with the source code you can also find the installation guide.
We kindly invite you to download the Client Connector components and try it by
setting up your test case of Federated Machine Learning process.

5 Federated Machine Learning in Action: An Efficiency
Assessment

This section provides a test use case to show a practical application of Federated
Machine Learning in the manufacturing context. The test bed aims to demonstrate, in
a easily intuitive way, the potentiality of such algorithms in production environments.

5.1 Robots learn from each other

COMAU is an automation provider and its robots are installed in dozens of plants,
in the automotive domain. In this context, these industrial automation customers
are not eager to share their data. Nevertheless, those data are precious for the robot
maker with regards to both business (new added value services for customers) and
technical aspects (to improve robot performance and quality). Robot joints contain
a belt that naturally loses its elasticity over time. With time and usage, the belt
tensioning changes and actually, in order to prevent failures caused by a wrong
tension, operators have to regularly check the belt status with a manual maintenance
intervention. These operations require time, effort and eventually a production stop.
Moreover, these manual tasks bear the risk to be useless if the belt status is still
good. The identified solution implemented for this case is a Machine Learning
model able to predict the status of the belt based on the analysis of a set of specific
parameters. In order to achieve a solution that provides a reasonable quality of the
prediction, it is extremely important to identify the proper training set to use. Given
that the same kind of Robot may be operating in different plants and under control
of different owners (customers of COMAU), it is possible to assume that: (i) each
one of the customers may be interested in running the same predictive ML model
for those specific class of robots so as to increase their efficiency; (ii) each one of
the customers may face the issue of not having enough training data to produce an
effective Machine Learning model suitable for the production: (iii) customers are
not keen to open their data to third parties. In a similar scenario, the MUSKETEER
platform comes into play enabling data sharing in a privacy preserving way for
COMAU and its customers and thereafter with the possibility to use all available
training data to build a classification model based on federated machine learning. To
test the MUSKETEER platform functionalities and in particular the MUSKETEER

3 https://github.com/Engineering-Research-and-Development/musketeer-client-connector-
frontend
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Client Connector, two test beds called RobotBox have been setup. The first RobotBox
(from now on called “real RobotBox”) is located in COMAU headquarters in Turin
and the second one (the “virtual RobotBox™) is a virtual simulator hosted in a
ENGINEERING facility in Palermo. Both test beds are simulating two different
customer plants.

5.2 Defining quality data

Going a bit more into the details, the RobotBox replicates an axis of a COMAU
robot. It is composed of a motor, a belt, a gearbox reducer and a weight (yellow part
in Fig. 5). In order to collect data at different belt tensioning levels, we had to space
out the motor and gearbox from each other. To do this we installed a slicer to move
the motor and a dial gauge to measure the distance between the two parts. We have
decided to consider 3 different belt tensioning levels. The RobotBox always performs
the same movement, called cycle. After each 24 second-cycle, we collected signals
from the RobotBox motion controller. For each cycle we calculated 141 features
describing the different signals aspects (e.g. mean value, maximum, minimum, root
mean square, skewness, integral, etc.). Those features have been chosen based on the
knowledge and literature about belt tensioning. For each level, we have performed
around 6000 cycles, for a total of 18000 samples for each RobotBox, considering
the 3 different belt tension levels. For this scenario, we have chosen to train a
classification model using an artificial neural network. COMAU plays the role of
the aggregator for the federated machine learning task and for this use case also
the role of the first participant. On the other side, ENGINEERING plays the role

Liechtenstein

real RobotBox \ Switzertang S T4 virtual RobotBox
|| PR e ‘

[T

Fig. 5 RobotBox testbeds used for the experiment.
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of the second participant. So, COMAU (located in Turin) created the task choosing
the MUSKETEER Privacy Operation Mode 1 (POM1), where data cannot leave the
facilities of the participants, the predictive models are transferred without encryption
and the artificial neural network as algorithm. Moreover, the maximum number of
iterations was set to 300, the learning rate to 0.00015. The architecture of the model
shaped as a neural network is a 3 layer-neural network with 48, 16 and 3 units tuned in
the preparatory phase of this evaluation. After the task creation, including validation
and test data, COMAU joined the federated process as participant that provides the
training data of the real RobotBox. Finally, ENGINEERING joined the same task
providing the training data of the virtual RobotBox.

5.3 Federated data sharing is better than playing alone

The final results of the federated task are very promising in comparison with the
results of a non-federated approach. Looking the right side of Fig. 6 it is possible to
see how the overall accuracy obtained by the trained model, thanks to the federated
task, with both RobotBoxes is 89% and the related confusion matrix is very diagonal.
On the other hand, on the left side of Fig. 6, the accuracy of a model trained only
with the data of the real RobotBox or only with the data of the virtual RobotBox is
lower, respectively 86% and 81%.

= Train with only gray RobotBox » Federated result
= Accuracy: 0.86 Confusion Matrix - Gray = Accuracy: 0.89
2 0.00 0.00
2
S 1 019 m 0.15 Confusion Matrix - FML Gray and White
3
&
o 008 0.01 0.91 2 0.97 0.03 0.00
0 1 2 2
Predicted label ©
= Train with only white RobotBox g 1 0.08 0.88 0.04
°
= Accuracy: 0.81 Confusion Matrix - White =
2 X 0.07 0.01 0 0.09 0.08 0.83
2
L B - . . :
2
o 007 0.0 0Es Predicted label
0 1 2
Predicted label

Fig. 6 Comparison of the non-federated and federated approach.
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6 Use case scenario: Improving welding quality assessment
thanks to federated learning

The emerging data economy holds the promise of bringing innovation and huge
efficiency gains to many established industries. However, the confidentiality and
proprietary nature of data is often a barrier as companies are simply not ready to
give up their data sovereignty. Solutions are needed to realize the full potential of
these new profit pools.

6.1 A twofold challenge

MUSKETEER offers to tackle these two dimensions by bringing efficiency while
respecting the sovereignty of data providers in industrial assembly lines. Two chal-
lenges are presented:

e Improving welding quality assessment to develop predictive maintenance for
robots while increasing product safety at the same time.

* Training a welding quality assessment algorithm on large datasets from multiple
factories.

The presence of a huge number of machines in industrial automation factories
and the elevated cost of downtime result in large expenses for production line main-
tenance. Getting a more accurate evaluation of robot performance helps to avoid
damaging the production capacity contingently (by 5 to 20% in certain cases) as
presented in the report Predictive maintenance and the smart factory (Deloitte) [3].
The welding quality assessment can be improved using machine learning algorithms
which supports the status monitoring of machinery. But a single factory might offer
too few data points to create such algorithms. It requires accessing larger datasets
from Comau’s robots located in different places to boost the robustness and quality
of the machine learning model. However, Comau’s customers can be competitors.
Those companies do not intend to share data with competitors and simply waive
their data sovereignty. With federated machine learning techniques, Comau can of-
fer an appropriate level of security for customers and save them costs at the same
time. Besides, the aforementioned data might include personal information regard-
ing operators working in the manufacturing plant which can raise additional privacy
concerns that have to be tackled by the solution.

6.2 Training an algorithm while preserving the sovereignty of data
providers

At each piece’s welding point, some welding parameters are recorded automatically
from the welding robot (represented in Fig. 7), such as the current between the
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electrodes, resistance, number of points already welded by those electrodes and so
on.

Then, a minimum amount of those pieces are sampled from the line to make an
ultrasonic non destructive test to assess the welding spot quality. An operator applies a
probe on each welded spot which sends a signal to a computer to be interpreted (graph
representing the reflected sound energy versus time). The operator then classifies the
welding points into different categories. In a production line only one or two pieces
are verified each day whereas the total number of welded pieces goes up to 400 per
day. Therefore, only a scarce percentage of pieces are subject to ultrasound testing.
Besides, the manual test is limited to a few critical welding points on each piece,
called Q+ points, that are always the same. On each car body, there are more than
3,000 welding spots while the Q+ points represent only a very small percentage of
them. As an example, Fig. 8 shows which are the few Q+ points in a car door.

Our action here consists of collecting this manual ultrasound testing data and
combining it with the welding data from the robot in order to locally train the
algorithm. In parallel, this machine learning model is trained on different datasets
from other factories. Trained models are eventually merged on the MUSKETEER
platform (in different location) to provide the final version of the model. The entire
flow is represented in Fig. 9.

As mentioned, collecting data from different factories also raises privacy issues.
These data can be sensitive company data but also lead to personal data concerns (e.g.
data can include information about operators working at the plant). Using the MUS-
KETEER platform provides a robust solution mixing a federated machine learning
approach (local training) with privacy preserving technologies (highly customized
encryption, data poisoning attacks mitigation) while respecting sovereignty of the

Fig. 7 Model of a Comau robot and welding gun used for the welding of car parts.
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stakeholders as defined in the Reference architecture model of the International Data
Spaces Association (IDSA) [13].

6.3 Less data but more information

Based on the combined data coming from robots and ultrasound tests, a robust model
is built. In this case the Privacy Operation Mode selected is POM3 (Porthos), where
the final trained model is private, the model is hidden to the aggregator and the
encryption is implemented with a different private key for each data owner. One of
the main reasons to adopt this model is because there is no trust among the data
owners, for example in a scenario in which the data providers are competitors. Once
the model is trained and has a satisfactory accuracy, thanks to the federated approach,
it becomes possible to provide the classification of the welding spot directly from the
welding data. This leads to numerous advantages over the limited manual testing:

* Opportunity to estimate the quality of all the welding points (not only the Q+
points) and raise the safety of products accordingly.

e Opportunity to understand if a specific combination of parameters helps to weld
with fewer defects.

» Data sharing is allowed while sovereignty of each participant is preserved, and
privacy concerns are tackled.

Fig. 8 Presentation of Q+ points on a car door.
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7 Conclusion

In this chapter, we introduced MUSKETEER, a federated machine-learning-based
platform and the custom Privacy Operations Modes designed for it, aiming at in-
creasing privacy when sharing data. We presented an efficiency assessment of the
federated learning process. The results showed an improved overall accuracy of a
model trained in a federated task. The experiment was done using the MUSKETEER
platform. The chapter concluded with the presentation of a real use case in the auto-
motive sector to optimize the welding quality of robots in production lines. The data
coming from different locations was used to create a federated task.
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