

H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

January 21

D3.4 Final Prototype of the MUSKETEER
Platform

Ref. Ares(2021)771461 - 30/01/2021

 D3.4 Final Prototype of the MUSKETEER Platform 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 31 August 2021

Author(s): Mark Purcell (IBM), Ambrish Rawat (IBM)

Participant(s): IMP; IDSA

Reviewer(s): Muhammad Zaid Hameed (IMPERIAL), Antoine Garnier (IDSA)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP3

Dissemination level: Public

Version: 1.0

Contact: markpurcell@ie.ibm.com

Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving

Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 824988. The sole

responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be

made with reference to the publisher.

 D3.4 Final Prototype of the MUSKETEER Platform 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

This deliverable (D3.4 "Final Prototype of the MUSKETEER Platform") is a document describing

the demonstration of the final prototype. It is the culmination of milestone 3 and builds upon

the documents D3.1/D3.2/D3.3, providing feature updates as well as highlighting how these

features complete the platform requirements.

Document History

Version Date Status Author Comment
1 17 December 2020 Outline draft Mark Purcell First draft

2 19 January 2021 Improved draft Mark Purcell Section
1,2,3

3 25 January 2021 Improved draft Ambrish Rawat Section 4

4 27 January 2021 Review feedback Mark Purcell Reviewed
5 29 January 2021 Final draft Mark Purcell Ready

6 30 January 2021 Final review Gal Weiss

 D3.4 Final Prototype of the MUSKETEER Platform 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES .. 5

LIST OF TABLES ... 5

LIST OF ACRONYMS AND ABBREVIATIONS ... 6

1 INTRODUCTION .. 7

1.1 Purpose ... 7

1.2 Related documents .. 7

1.3 Outline ... 8

2 REQUIREMENTS ... 9

2.1 Scope ... 9

2.2 Industrial and technical requirements .. 9

2.2.1 User roles .. 9

2.2.2 Functional requirements ... 9

2.2.3 Non-functional requirements ... 12

2.3 Summary ... 13

3 FEATURE COMPLETION... 14

3.1 Tasks .. 15

3.2 Ring Topology .. 15

3.2.1 Aggregator Start Training Round .. 15

3.3 Model Integrity .. 16

3.3.1 Checksum .. 16

3.4 Model Lineage ... 17

3.4.1 Basic Lineage ... 17

3.4.2 Participants Perspective .. 18

3.4.3 Retrieving Lineage ... 18

3.5 Data Economy .. 19

3.5.1 Assigning Value.. 20

3.6 Model Access Control ... 20

 D3.4 Final Prototype of the MUSKETEER Platform 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.6.1 Model Listing ... 20

3.6.2 Download Model ... 21

3.6.3 Delete Model ... 22

3.7 Towards Accountability of Federated Learning ... 22

4 DEMONSTRATIONS .. 23

4.1 Basic demo... 23

4.1.1 Model Lineage ... 24

4.2 Hackathon ... 25

4.2.1 Agenda... 25

4.2.2 Setup and Problem Statement .. 26

4.2.3 Evaluations .. 26

4.2.4 Hackathon Conclusion ... 27

5 CONCLUSIONS .. 28

6 REFERENCES ... 29

7 ADDENDUM ... 30

 D3.4 Final Prototype of the MUSKETEER Platform 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1: MUSKETEER’s PERT diagram ... 8

Figure 2: Architecture... 14

Figure 3: Aggregator Start Training Round Request .. 15

Figure 4: Participant Training Round Complete ... 18

Figure 5: Model Lineage Command ... 18

Figure 6: Model Lineage Response .. 19

Figure 7: Value Assignment .. 20

Figure 8: Model Listing ... 21

Figure 9: Model Listing Response .. 21

Figure 10: Get Model Response ... 21

Figure 11: Value Assignment .. 22

Figure 12: Model Lineage API call in Task_Manager.. 24

Figure 13: Example of Model lineage after two rounds of training ... 24

List of Tables

Table 1: Functional requirements for managing platform users ... 9

Table 2: Functional requirements for managing Federated ML tasks 10

Table 3: Functional requirements for executing Federated ML tasks 11

Table 4: Non-functional requirements ... 12

Table 5: Hackathon results ... 27

 D3.4 Final Prototype of the MUSKETEER Platform 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition

AMQP(S) Advanced Message Queuing Protocol (secure)
API Application Programming Interface

COS Cloud Object Storage
FaaS Functions-as-a-Service
GDPR General Data Protection Regulation
GQM Goal/Question/Metric
IP Internet Protocol

JSON JavaScript Object Notation
KPI Key Performance Indicator
ML Machine Learning

MMLL Musketeer Machine Learning Library
MNIST Modified National Institute of Standards and

Technology
POM Privacy Operation Mode
SQL Structured Query Language
SSL Secure Sockets Layer
URL Uniform Resource Locator
WP Work Package
YAML Yet Another Markup Language

 D3.4 Final Prototype of the MUSKETEER Platform 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

This document is the description of the fourth deliverable (D3.4) of work package 3 (WP3). It

describes the final prototype for the platform provided by WP3. Functionally, this platform

provides the infrastructure and implements the services that are required to enable the

federated ML algorithms developed in WP4 and WP5 in end-to-end applications. It also

supports the assessments to be carried out in WP6 and provides interfaces which allow for

the development of client connectors and end-to-end demonstrations of the industrial use

cases in WP7.

This document is an update to the previous deliverable documents (D3.1/2/3) for WP3. As

such, if any underlying information regarding system components has not changed, these

components are not discussed again. However, any enhancements or new features are

discussed in this document. This is particularly relevant in relation to the features that were

incomplete as of D3.2. These features are discussed in detail in this document. Similarly, the

demonstration focuses on enhanced features, not re-iterating on features from previous

demonstrations that are unchanged. Therefore, the scope of the document and the

demonstration, is to discuss the fully-featured platform in the context of its use in a prototype

that exercises the D3.4 additional features.

1.2 Related documents

This deliverable is related to the following documents (also see Figure 1):

• D3.1 Architecture Design – Initial Version – detailing the architecture

as of M12.

• D3.2 Architecture Design – Final Version – detailing the final

architecture as of M18.

• D3.3 First Prototype of the MUSKETEER Platform – the precursor to this

document, detailing the first prototype as of M18.

• D2.1 Industrial and technical requirements – in so far as the platform

architecture has to address functional and non-functional technical

requirements described in that document.

• D2.2 Legal requirements and implementation guidelines – in so far as

the design of the platform architecture should follow the

implementation guidelines arising in the context of the applicable legal

and ethical framework.

 D3.4 Final Prototype of the MUSKETEER Platform 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• D4.3 Pre-processing, normalization, data alignment and data value

estimation algorithms – Final version – which discusses data value,

important for the data economy and data aggregation procedures.

Figure 1: MUSKETEER’s PERT diagram

1.3 Outline

The remainder of this document is structured as follows:

• Section 2 reviews the relevant functional and non-functional

requirements related to WP3 for the final prototype.

• Section 3 describes the platform additions since D3.2 and D3.3, that

support the full feature set required by the use cases.

• Section 4 provides a walkthrough of the demonstration that is based on

the activities of the MUSKETEER hackathon.

• Finally, Section 5 concludes the WP3 work.

 D3.4 Final Prototype of the MUSKETEER Platform 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2 Requirements

As this document is the final deliverable for WP3, this chapter presents the requirements (as

discussed in D2.1), highlighting the progress on each individual requirement.

2.1 Scope

As discussed in D2.1, when defining the scope of the MUSKETEER platform, it is important to

draw distinctions between the centralized server platform, the federated ML algorithm

library, and the client connectors. This section builds upon D3.2 and details the requirements

that are now satisfied in the final prototype.

2.2 Industrial and technical requirements

D2.1 (Industrial and technical requirements) outlined all of the functional and non-functional

requirements for the complete MUSKETEER platform. In this section, the centralized server

platform related requirements are re-iterated, with section numbers mapping directly to the

same section numbers in D3.1 and D3.2, for ease of reference. Requirements already satisfied

in D3.2 (highlighted in green text), are still operative unless otherwise specified. For each

requirement, the ID is highlighted as green, if the final prototype, described in this document,

satisfies the requirement. As of D3.4 all requirements are now satisfied by the final prototype.

2.2.1 User roles

There are no additional user roles beyond those identified in D3.1.

2.2.2 Functional requirements

There are no additional functional requirements beyond those specified in D3.1. What follows

is an update for each requirement grouped by the type of action.

2.2.2.1 Managing platform users

Table 1: Functional requirements for managing platform users

ID Description of the requirement

FR001 Ability for platform admin to grant username and password to new general

user (D2.1-FR034).

 D3.4 Final Prototype of the MUSKETEER Platform 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.2.2.2 Managing Federated ML tasks

Table 2: Functional requirements for managing Federated ML tasks

FR002 Ability for platform admin to revoke username and password of existing

general user (D2.1-FR034).

FR003 Ability for general user to avail of platform functionality through

authentication with their username and password (D2.1-FR001).

FR004 Ability for general user to change their password (D2.1-FR002).

ID Description of the requirement

FR005 Ability for general users to create a new Federated ML task, including an

unstructured description and all structured information that is required to

define the task, such as the input data format, required mechanism for pre-

processing the raw input data, the number of participants, starting/stopping

criterions, etc. (D2.1-FR016, D2.1-FR019, D2.1-FR043).

FR006 Ability for a task creator to update the task description and information.

FR007 Ability for general users to list all the existing Federated ML tasks that have

been created; view their description, definition and status; compute summary

statistics, e.g., total number of tasks and participants (D2.1-FR007, D2.1-

FR008, D2.1-FR009, D2.1-FR010, D2.1-FR022, D2.1-FR027, D2.1-FR039)

FR008 Ability for a general user to join a task that has already been created and that

accepts new participants (D2.1-FR012).

FR009 Ability for a task member to actually participate in the training of that task’s

Federated ML model, either as aggregator or as participant (D2.1-FR024).

FR010 Ability for a task member to leave that task (D2.1-FR029).

FR011 Ability for a task creator to cancel that task (D2.1-FR020). See section 3.1.

FR013 Ability for general users to list all the Federated ML models; view their

description, definition, KPIs etc. if available (D2.1-FR011). See section 3.6

FR014 Ability for general users to download trained Federated ML models (D2.1-

FR013, D2.1-FR026). See section 3.6.

 D3.4 Final Prototype of the MUSKETEER Platform 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.2.2.3 Executing Federated ML tasks

Table 3: Functional requirements for executing Federated ML tasks

FR015 Ability for a task creator to delete the Federated ML models trained as part of

that task (D2.1-FR021). See section 3.6.

ID Description of the requirement

FR016 Ability for an aggregator or participant to retrieve the definition of a specific

task.

FR017 Ability for an aggregator to retrieve the list of all participants of a specific task.

FR018 Ability for an aggregator to broadcast a message to all the participants.

FR019 Ability for an aggregator to send a message to a specific participant.

FR020 Ability for a participant to send a message to the aggregator.

FR021 Ability for a participant to route a message to the “next” participant (according

to an underlying ring topology), without having to send it via the aggregator.

See section 3.2.

FR022 Ability for an aggregator to receive a message sent by a participant, together

with an identifier of the participant who sent it.

FR023 Ability for a participant to receive a message sent by the aggregator.

FR024 Ability for a participant to receive a message routed from the “previous”

participant (according to an underlying ring topology), including an identifier to

distinguish from messages sent by the aggregator. See section 3.2.

FR025 Ability for an aggregator to store task status updates.

FR026 Ability for an aggregator to store intermediate or final versions of the trained

Federated ML model. See section 3.4.

FR027 Ability for an aggregator to store information regarding the data value

contributions per participants. See section 3.5.

 D3.4 Final Prototype of the MUSKETEER Platform 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.2.3 Non-functional requirements

The non-functional requirements specified in D3.2 are repeated below. The features backing

these requirements were monitored and validated during the Hackathon, where a number of

external parties collaborated on the platform to build federated machine learning models.

Table 4: Non-functional requirements

ID Description of the requirement

NR001 High availability (D2.1-NR001). See section 2.3.

NR002 Security, specifically regarding access control and adherence to industry

security standards (D2.1-NR002).

NR003 Robustness of the overall platform with respect to software errors (D2.1-

NR016). See section 2.3.

NR004 Availability of appropriate logging mechanisms for all operations (D2.1-

NR010).

NR005 Recoverability, specifically of the training of Federated ML models, from

temporary system or component failures (D2.1-NR003, D2.1-NR004, D2.1-

NR005, D2.1-NR015). See section 2.3.

NR006 Scalability, specifically the efficient execution of Federated ML training

algorithms (D2.1-NR006), and efficient handling of simultaneous requests

(D2.1-NR014). See section 2.3.

NR007 High usability, specifically regarding the ease of software installation for end

users (D2.1-NR009) and the design of interfaces for interactions with the

platform, including their documentation (D2.1-NR008).

NR008 Maintainability, specifically the availability of mechanisms to efficiently

perform system or component updates with minimum downtime for the

overall platform (D2.1-NR007, D2.1-NR013).

 D3.4 Final Prototype of the MUSKETEER Platform 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.3 Summary

During the hackathon (described in section 4.2), the platform was shown to be always

available over the course of several days of intensive use (NR001). Any errors that did occur,

for example, duplicate user registration entries were correctly reported back to the initiating

user (NR003). The platform also scaled sufficiently to support the hackathon parties (NR006).

More details on the hackathon can be found in section 4.2. Other features, such as NR005, are

satisfied by recent enhancements, such as model lineage, see section 3.4.

Over the course of the remainder of the project these important requirements (scalability,

availability etc.) will be monitored and KPIs provided to D7.5/6.

 D3.4 Final Prototype of the MUSKETEER Platform 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3 Feature Completion

Whilst the architecture (finalised in D3.2 at M18 of the project) is unchanged, several platform

features were added subsequently. Some of these features were identified quite early in the

project but were not required for the initial prototype (at M18), and others evolved from

discussions held during the project mid-term review.

To recap, the architecture is based on the Publish / Subscribe Design Pattern [1], and

interoperability between components (cloud-based and remote) is through a messaging

system, backed by RabbitMQ [2]. Messages are published to RabbitMQ and routed to

subscribed parties. RabbitMQ is instantiated in the public cloud and is an internet addressable

service, allowing remote clients to connect. The messages are constructed within APIs inside

the Federated Machine Learning Framework (FMLF) package [3]. The required information

per-message is detailed in D3.2. A discussion about the overall platform architecture is

available in D3.1/2.

Figure 2: Architecture

What now follows is a feature-by-feature discussion of the features implemented after the

initial prototype at M18. If a new or updated API is discussed, this is already implemented and

available as of D3.4.

 D3.4 Final Prototype of the MUSKETEER Platform 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.1 Tasks

Fulfilling the requirements in relation to task management, a modification to the existing

StopTask feature is now available. This permits a new status to be sent to the service,

“CANCEL” that aborts the current task. The API itself is unchanged.

3.2 Ring Topology

To complete the support for each aggregation procedure described in D4.3 (Section 2.2 - Data

aggregation procedures), a ring or round-robin communication topology is required.

This topology exists in parallel with the star topology and can be used interchangeable during

rounds of training. For example, training round one can use the star topology, round two, the

ring topology and round three, back to the star topology.

The star topology is equivalent to a broadcast, whereby the aggregator dispatches a message

to all participants in parallel, instructing them to start training. The participant-training-round-

complete messages are routed back to the aggregator asynchronously.

The ring topology is similar to a round-robin, whereby the aggregator dispatches a message

to a single participant, instructing that participant to start training. When that participant

completes local training and responds with a participant-training-round-complete message,

that message is routed to the next participant in the participant ring. The message from the

final participant in the ring is routed to the aggregator.

The topology to use for a given round is an aggregator defined decision. This requires an

update to the existing API.

3.2.1 Aggregator Start Training Round

As the task creator (the authenticated user), start a round of federated learning.

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "StartTraining",
 "params": ["<TaskName>", {<Model>}, "<ParticipantId>", "<Topology>"]
 }
 }
}

Figure 3: Aggregator Start Training Round Request

• <TaskName> - the name of the task to start training (string)

 D3.4 Final Prototype of the MUSKETEER Platform 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• <Model> - an initial model (JSON, optional)

• <ParticipantId> - the id (obfuscated) of a participant (string, optional)

• <Topology> - relates to POM type, e.g., “STAR” or “RING” (string)

3.3 Model Integrity

During federated learning, each participant trains a model based on local data and submits a

model update to the platform. As model updates can be quite large, the platform supplies an

object store and associated interface to upload/download these model updates. This object

store provides a long-term storage location for models and model updates.

Note: General message flow for control plane and data plane operations are detailed in D3.2.

Provided here is a zoom-in on the flow as it relates specifically to model updates:

1. Local training at the participant is complete

2. The participant user invokes the task_update function

a. An object store location (key) for the model update is requested

b. The model update is uploaded to the object store location

c. A message is formatted with the object store key

d. This message is published to RabbitMQ

3. The aggregator user receives a task_update notification

a. Included in the notification message is the object store key

b. The model update is downloaded from the object store location

Due to the asynchronous nature of operations on the platform, and the fact that the model

update is not transferred directly to the intended recipient (aggregator), the potential could

exist for the model update to be modified prior to download by the aggregator.

3.3.1 Checksum

To alleviate this and provide certainty that the model update downloaded by the aggregator

is identical to that which was uploaded by the participant, a model checksum is included with

the message dispatched by the participant as part of the task_update function. This checksum

is then recalculated at the aggregator after the download and the checksums are compared.

 D3.4 Final Prototype of the MUSKETEER Platform 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Similarly, for models uploaded by the aggregator, participants also compare the checksum

with the locally downloaded model.

The checksum employed is a cryptographic hash function based on SHA512 and the

implementation of this can be found in the pycloudmessenger/ffl subdirectory in the open-

source project [3].

3.4 Model Lineage

As aggregated models and participant model updates traverse the platform, it is possible to

maintain a record of each of these activities. The full extent of these records on a task-by-task

basis essentially results in a compilation of the activities that contributed to producing a

complete model, i.e., the model lineage (or ancestry).

This lineage can be retrospectively queried after the federated learning task is complete,

potentially providing a “replay” mechanism to the aggregator.

3.4.1 Basic Lineage

The minimal information required is to link the federated learning task (and joined

participants) to the actual contributions made by each party. In essence, to provide a mapping

of user (aggregator or participant) to the model object, as stored on cloud object store.

The following information is required to do this:

• Task id – the federated learning task

• User id – the user (aggregator or participant) initiating the activity

• External id – the key to the object store location

• Category – a model update, a complete model from the aggregator etc.

• Time stamp – when the activity was initiated

• Checksum – the checksum for the model (see above)

There are no API changes required to support this. It is fully encapsulated in the cloud micro-

services. The checksum is handled within the client-side implementation in

pycloudmessenger.

 D3.4 Final Prototype of the MUSKETEER Platform 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3.4.2 Participants Perspective

Additionally, each participant may wish to add specific information that relates to their

contribution during each round of federated learning. For example, a participant could provide

metadata in the form of a hashed string that reflects the data that was used during the round

of training. Or it could be a string representation of a dictionary with various participant

specific fields such as local optimiser state etc. This requires an update to the existing API.

3.4.2.1 Participant Training Round Complete

As a task participant (the authenticated user), inform the platform that local training is

complete:

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "TrainingComplete",
 "params": ["<TaskName>", <{Model}>, "<metadata>"]
 }
 }
}

Figure 4: Participant Training Round Complete

• <TaskName> - the name of the task (string)

• <Model> - a trained model (JSON, optional)

• <Metadata> - participant specific information (string)

3.4.3 Retrieving Lineage

A new API is required to retrospectively query this model lineage:

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "Lineage",
 "params": ["<TaskName>"]
 }
 }
}

Figure 5: Model Lineage Command

 D3.4 Final Prototype of the MUSKETEER Platform 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

{
 "service": {
 ...
 "data": [{
 "xsum": "<Checksum>",
 "metadata": "<Metadata>",
 "participant": "<ParticipantId>",
 "category": "<Category>",
 "object": "<ObjectId>",

 }]
 }
}

Figure 6: Model Lineage Response

• <Checksum> - the model’s checksum (string)

• <Metadata> - participant specific information (string)

• <ParticipantId> - the participant (string)

• <Category> - type of model activity (update, complete) (string)

• <ObjectId> - the key to the object store location (string)

Note: the lineage returned differs depending on the invoking user. An aggregator receives a

full lineage of all model activities, i.e., participant updates as well as aggregations. A

participant user receives a lineage of their own specific contributions to the model.

3.5 Data Economy

One of the identified requirements for federated learning in the MUSKETEER project is to

support an active data economy. In federated learning, this means providing the capability to

an aggregator to assign value to a given participant’s model contributions. Refer to chapter 5

in D4.3 for a detailed discussion on data value estimation.

In order for an aggregator to derive value from a participant’s model contributions, and assign

rewards to chosen participants, a number of additions to the model lineage mechanism are

required. The model lineage feature provides a mechanism to record all model activities,

updates and aggregations. Alongside these activities, additional information such as a value

assessment or a reward can also be recorded. This results in a full record of all value

assignments and rewards which can be reviewed by the aggregator.

The following information is added to the model lineage:

 D3.4 Final Prototype of the MUSKETEER Platform 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Contribution – an aggregator defined/assigned value to a participant

• Reward – an aggregator assigned value to a participant

3.5.1 Assigning Value

A new API is required to assign contribution values and rewards:

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "ValueAssignment",
 "params": ["<TaskName>", "<ParticipantId>", "<Contribution>", "<Reward>"]
 }
 }
}

Figure 7: Value Assignment

• <TaskName> - the name of the task (string)

• <ParticipantId> - the participant to assign value to (string)

• <Contribution> - the aggregator assigned value (JSON)

• <Reward> - an optional reward (JSON)

3.6 Model Access Control

The MUSKETEER platform supports running many federated learning tasks in parallel. Upon

success, each of these tasks results in a complete model. However, by default, this model

should not be publicly accessible, but rather, access controlled with read access granted to a

discrete group of users and write (and delete) access to a smaller group of users.

Built upon the model lineage feature, access control lists are maintained automatically to

grant access to models on a task-by-task basis only to participants of the given task. Each task

aggregator also has write-access to the model.

3.6.1 Model Listing

A new API is required to list all models:

 D3.4 Final Prototype of the MUSKETEER Platform 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "ModelListing"
 }
 }
}

Figure 8: Model Listing

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>"
 }]
 }
}

Figure 9: Model Listing Response

• <TaskName> - task name for which a model is available (string)

This returns all models that are available on the platform.

3.6.2 Download Model

This API is unchanged from previously. However, internally, if access to the model requested

was not granted, an access violation message is returned. Additionally, the response now also

includes the checksum field, so that upon download, the model’s integrity can be ascertained.

{
 "service": {
 ...
 "data": [{
 "name": "<TaskName>",
 "model": {
 "url": "<ModelURL>",
 "xsum": "<Checksum>",
 "model": {<Model>}
 }
 }]
 }
}

Figure 10: Get Model Response

• <TaskName> - the name of the task (string)

• <Model> - a model (JSON, optional)

• <ModelURL> - a URL to a model (string, optional)

 D3.4 Final Prototype of the MUSKETEER Platform 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• <Checksum> - the model’s checksum (string)

3.6.3 Delete Model

Models can also be deleted. But this is access controlled, with access to the API restricted to

the task aggregator only.

{
 "service": {
 "name": "ModellingService",
 "args": {
 "cmd": "DeleteModel",
 "params": ["<TaskName>"]
 }
 }
}

Figure 11: Value Assignment

• <TaskName> - the name of the task (string)

3.7 Towards Accountability of Federated Learning

With the addition of the model lineage enhancements discussed in section 3.4, there now

exists a mechanism to review retrospectively the ancestry of a model. At a minimum, this

enables a fully traceable, auditable review of how a model was trained.

Additionally, by providing the required underlying features and software for this lineage,

several points in the code are now identified as locations whereby further information related

to lineage or audit could be recorded. For example, future extensions to the MUSKETEER

platform could now include a blockchain-style accountability framework. This could provide

even more reliable accountability records, detailing all activities that occurred during the

training phases.

Harnessing Federated Learning with such accountability mechanisms may become, going for-

ward, a critical capability for the acceptance and deployment of AI models that are trained via

federated learning mechanisms. For example , deployment in highly regulated and/or mission-

critical contexts, certification of AI models by independent accredited bodies, and adherence

to accountability as prescribed by the European General Data Protection Regulation (GDPR).

 D3.4 Final Prototype of the MUSKETEER Platform 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4 Demonstrations

This section describes the final demonstration [4] of the platform with an emphasis on the

advanced functionalities that were introduced within this deliverable. In particular this

demonstration describes how the model lineage capability can be incorporated for any

federated learning systems built using the Musketeer Machine Learning Library (MMLL) [5].

Finally, it concludes with the description and outcomes of a real-world demonstration where

the platform was used to enable the different aspects of a Hackathon.

4.1 Basic demo

The basic demo builds on the synthetic dataset example described in D3.3. As part of this

demo a CNN classifier is trained collaboratively across multiple clients. Each participant owns

a private dataset comprising of random samples from the MNIST dataset. This demo differs in

its use of MMLL [5] and is inspired from MMLL-demo [6]. However, as before, the demo is

driven by Python scripts which the aggregator and participants execute from their respective

terminal windows.

In order to run this demo, it is required that a copy of mnist_demonstrator.pkl file is obtained

and stored in the input_folder. The commands for aggregator and participants are as follows:

python pom1_NN_master_pycloudmessenger.py --user <user> --password
<password> --task_name <task_name>

python pom1_NN_worker_pycloudmessenger.py --user <user> --password
<password> --task_name <task_name> --id 0

python pom1_NN_worker_pycloudmessenger.py --user <user> --password
<password> --task_name <task_name> --id 1

The configuration and dependencies for this code base have been described in D4.4. Specific

details for POM1 can be obtained from D4.3. Scripts are provided for aggregator and

participants that allow them to perform the various steps required for end-to-end training

within a federated learning system. This includes steps like starting a task, registering

participants etc. as detailed in D3.3.

 D3.4 Final Prototype of the MUSKETEER Platform 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4.1.1 Model Lineage

In order to demonstrate the use of model lineage capabilities, the Task_Manager class of

demo_tools/task_manager_pycloudmessenger.py of MMLL-demo was suitably

adapted to include the added functionality as shown in Figure 12. Similarly, the aggregator

script pom1_NN_master_pycloudmessenger.py was adapted to include an extra API call

after the end of model training.

Figure 12: Model Lineage API call in Task_Manager

Figure 13 shoes sample model lineage obtained at the aggregator’s end for a simple

demonstration consisting of 2 clients which train for a total of 3 epochs.

Figure 13: Example of Model lineage after two rounds of training

 D3.4 Final Prototype of the MUSKETEER Platform 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4.2 Hackathon

As part of the MUSKTEER program, a two-day hackathon was organised on 24-25th November

2020 (see section 7 for the full agenda). A federated machine learning environment with

compromised clients was set up and numerous teams worked towards developing defence

mechanisms to combat these attacks. What follows discusses the agenda, problem statement

and the outcomes of this event.

4.2.1 Agenda

The event was organised as a two-day remote activity which involved a combination of talks

and hacking sessions for problem solving. People from different geographies participated in

the event with a total of three teams (Team A, Team B, and Team C) who registered to

compete for building the most effective defence algorithm to tackle unknown attack

scenarios. Over the two days the teams were presented with four scenarios with varying levels

of complexity and system compromise. Each team was assigned a mentor to guide them

through the hackathon process. The quality and creativity of the proposed algorithm along

with the performance were used to assess the hackathon winners. The details of the setup,

the attack scenarios and the evaluations are provided in the next sections.

• Day 1: Teams were introduced to the basic of federated machine

learning along with detailed description of the POMs within MMLL. This

was followed by a session with the mentors who helped them with the

setup and installation of a federated learning environment. Finally,

mentors helped them with the first round of evaluations on basic attack

scenarios. With the knowledge and feedback obtained from these

evaluations, the participants were in a position to devise defence

algorithms. The remaining day consisted of hacking sessions where

teams worked on their algorithms under the guidance of their mentors.

• Day 2: The teams were provided additional evaluations on the attack

scenarios while they continued developing and improving their

solutions. The teams found the engagement over the interactive

sessions with the mentors to be very beneficial in hypothesising

possible attack scenarios and devising solutions. Finally, the final set of

evaluations were performed over the different attack solutions and the

winning solution was selected based on the obtained numbers along

with the quality assessment of the algorithm.

 D3.4 Final Prototype of the MUSKETEER Platform 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4.2.2 Setup and Problem Statement

A common federated learning setup was adopted for the different attack scenarios of the

hackathon. This consisted of 10 workers which collaboratively trained a deep learning model

for MNIST digit classification task for a total of 20 communication rounds. The benign workers

used their private copy of randomly sampled images MNIST dataset. The Hackathon teams

assumed the role of an aggregator. They were subsequently notified that their proposed

methods would be evaluated against three scenarios with increasing levels of complexity.

• Scenario 0 : none of the 10 workers were malicious

• Scenario 1 : 2 of the 10 were faulty clients and supplied provided

noisy updates to the aggregator

• Scenario 2 : 2 clients were faulty and 2 compromised global

convergence with a label flipping attack.

• Scenario 3 : 4 clients behaved maliciously and employed an

indiscriminate model poisoning attack by optimising for a sign-

inverted loss function thereby maximising the loss function as

opposed to minimising.

The teams’ objective was to design aggregation protocols which can defend against these

attacks. The specifics of the attack scenario as described above remained undisclosed to the

teams.

In order to enable the learning across different geographies, MMLL with pycloudmessenger

was used through the hackathon. The code provided to each team was based out of the Neural

Network demo within POM1 and is publicly available [7]. This code includes files and

instructions for easy injection of robust defence methods and python scripts for launching

aggregators that initiate and orchestrate the overall training process. Furthermore, a set of

user accounts were provided to each team to help them communicate with the cloud services.

The respective mentors of each team acted as attackers and joined the tasks initiated by the

teams with 10 client processes for each scenario.

4.2.3 Evaluations

The complete solution proposed by each team was evaluated across all four scenarios. The

obtained accuracies on a set of benign MNIST images is reported in Table 5. In the absence of

a robust method, the system employed model averaging as the aggregation scheme. The high

accuracies for Scenario 0 ensure that the robust method maintains performance in the

absence of malicious clients. It was noted that for Scenario 3 the accuracy fluctuated

significantly across the different training rounds, and therefore an average across the last 5

communication rounds was used for comparing the performances.

 D3.4 Final Prototype of the MUSKETEER Platform 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table 5: Hackathon results

Team Scenario 0 Scenario 1 Scenario 2 Scenario 3

A 97.44% 97.42% 93.40% Avg. 97.3%

B 97.46% 97.54% 94.48% Avg. 77.11%

C 97.59% 96.50% 90.90% Avg. 78.93%

The participating teams proposed a wide range of creative solutions to tackle the

compromised training setups. However, Team A stood out as it achieved the best accuracy on

Scenario 3 with a considerable margin and performed comparably if not better on other

scenarios.

Notable, this winning solution used a combination of clustering and filtering to obtain reliable

updates at the aggregator. Proposed protocols from other teams used similarity metrics and

thresholding to filter outliers from the candidate updates.

4.2.4 Hackathon Conclusion

It was commented on by all, both external participants and organisers, that the event was very

enjoyable and worthwhile. Perhaps especially so, given the difficult circumstances re: Covid-

19 and the chance to collaborate widely, albeit within a virtual setting.

We look forward to further hackathons and experimenting on the platform with additional

scenarios in the coming months.

 D3.4 Final Prototype of the MUSKETEER Platform 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5 Conclusions

In this deliverable, the final feature enhancements for the MUSKETEER platform were

presented and their use described by means of a demonstration. This concludes the

deliverable documents for WP3 and results in the completion of MS3.

All feature requirements, as initially presented in D2.1 are now implemented and available on

cloud-based instances of the platform. These features have undergone significant testing,

both from a traditional perspective as well as through demonstrations and intensive use

during the hackathon.

The usability of the platform was shown over the course of the project, and particularly

validated during the hackathon, where external parties with no prior knowledge of the system,

were easily and quickly onboarded.

During some of the more recently added features, namely model lineage and data economy,

it has become clear that accountability of federated learning will be very important future

work. The platform has provided a strong basis to build upon, layering accountability modules

on top of the existing model lineage feature. Accountability modules could leverage

blockchain technology to provide fact-based provenance for federated learning. Such work

would likely make a valuable contribution in light of auditing requirements and GDPR.

Finally, over the course of the remainder of the project, the platform will remain in utilised for

the various use cases and will form a part of future demonstrations for other work packages.

KPIs will also be monitored with a contribution made to D7.5/6.

 D3.4 Final Prototype of the MUSKETEER Platform 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6 References

[1] S. Tarkoma (2012). Publish/Subscribe Systems: Design and Principles, John Wiley & Sons,
Ltd.

[2] https://www.rabbitmq.com/
[3] pycloudmessenger - https://github.com/IBM/pycloudmessenger
[4] D3.4 Demonstration - https://github.com/Musketeer-H2020/Demo_D3.4
[5] MMLL – https://github.com/Musketeer-H2020/MMLL
[6] MMLL-demo - https://github.com/Musketeer-H2020/MMLL-demo
[7] RobustMMLL - https://github.com/Musketeer-H2020/RobustMMLL-demo

https://www.rabbitmq.com/
https://github.com/IBM/pycloudmessenger
https://github.com/Musketeer-H2020/Demo_D3.4
https://github.com/Musketeer-H2020/MMLL
https://github.com/Musketeer-H2020/MMLL-demo
https://github.com/Musketeer-H2020/RobustMMLL-demo

 D3.4 Final Prototype of the MUSKETEER Platform 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7 Addendum

Included in this section is the hackathon information as used on 24th November 2020. Also

included is the preparation session for team mentors on 20th November 2020. The workload

for the hackathon was spread across multiple organisations in the consortium, reflected in the

assignments below.

Hackathon Documentation and Agenda

**All times Irish time zone.

Eventbrite link: https://www.eventbrite.com/e/hackathon-shielding-federated-learning-

against-attacks-tickets-126189703801

Closing date for registrations: November 19, 2020

Prep session: November 18, 2020 (zoom/webex) (IBM)

Prep session for mentors: November 20, 2020 (Ambrish will host and send an invite).

13:00-15:00 Technical prep –

Plan: share document with requirements beforehand; ensure that participants have a

working environment (Python packages, GitHub repo); answer questions; facilitate

test runs; onboard participants on Slack; test the new session

Outcomes: Hackathon participants have the installation and setup completed so we

don’t need to spend time on this on the first day. If they don’t join this prep session

and as a consequence don’t have a working environment on the first day, it’s time that

they lose for the hacking phases.

Hackathon Agenda 1st day: November 24, 2020

https://www.eventbrite.com/e/hackathon-shielding-federated-learning-against-attacks-tickets-126189703801
https://www.eventbrite.com/e/hackathon-shielding-federated-learning-against-attacks-tickets-126189703801

 D3.4 Final Prototype of the MUSKETEER Platform 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

9:00-9:15 – Hackathon welcome note [Gal]

9:15-10:00 – Technical Talk: Introduction to Federated Learning and MUSKETEER [Roberto]

Plan: Organisers provide a general introduction to Federated Learning in general

(concepts, roles etc.) and the research under the MUSKETEER project in particular,

along the lines e.g., of the BDVA presentation

Outcomes: general talk, intended to motivate the importance of FL, introduce general

concepts / terminology, provide intuition about the working of the platform

10:00-10:45 – Hackathon rules, guidelines, general instructions, Q&A [Ambrish]

Plan: Rules with details on number of teams, overview of the agenda, details of comm

channels, a walk though of the instructions, and logistics of evaluation, the assignment

of group mentors and details on breakout rooms will be provided

Outcomes: By the end of this session, it is expected that participants should be ready

to dive into the code and organisers should be ready with their breakout room setups

10:45-11:00 – Break

11:00-13:00 – [Breakout rooms] Hacking phase I [Giulio, Zaid and Roberto]

Plan: This session will begin in the breakout rooms where assigned mentors will work

with the teams to help them run the FL setups.

Part1:

o Each group executes a vanilla FL task (Scenario 0).
o The participants will act as task creator/aggregator and clients and will run FL

via pycloudmessenger using fresh credentials provided to them by their
mentor.

o Any remaining technical issues (e.g. missing dependencies) can be resolved
here (normally, if participants attended the prep session on November 18,
there shouldn’t be any).

Part2:

o Each group will be exposed to a malicious scenario with failure modes
(Scenario 1).

 D3.4 Final Prototype of the MUSKETEER Platform 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

o The participants (one of them) will act as aggregator.
o Organizers will host all the clients, some of which are malicious.
o The participants will be able to observe the degraded performance of the

aggregator.

Part3:

• Participants will work on robust aggregator on their own. For local
development and testing, they can either connect among themselves through
pycloudmessenger, or run tests locally on their laptop via the local comms.

Outcomes:

Part 1:

o participants will have a hands-on experience with conducting FL via the
platform end-to-end, and we ensure their installation works.

o They will see performance of the vanilla aggregator with no malicious
participants

Part 2:

o After this, the participants will understand the failure modes; in particular,
they will see the degraded accuracy of the vanilla aggregator.

o We give them a pointer why / where (in the code) this is failing (namely,
where a plain average of updates is taken).

o So the participants will be motivated to defend against malicious clients and
know where to get started.

13:00-13:45 Lunch break

13:45 - 16:00 Hacking phase 2 [Giulio, Zaid and Roberto]

Plan:

• One organizer/mentor is available on standby for each group, be available on
Slack and check-in once per hour.

• Organizers communicate among themselves (how are all the groups doing, do
we need to lower / raise the bar, provide hints etc.) via private Slack channel
and/or dedicated call.

• An optional evaluation on Scenario 1 can be hosted by the mentors for their
respective groups at 14:15 pm.

 D3.4 Final Prototype of the MUSKETEER Platform 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• The required, End-of-Day-1 evaluation (still on Scenario 1) will be conducted
by the mentors at 15:45.

Outcomes: Participants receive feedback (use the same Scenario 1 throughout the first

day, so they’ll get a sense of achievement). Organisers/mentors touch base on

progress.

16:00 – 16:30 Day 1 debrief

• Participants can share impressions, lessons learned

• Q&A

• Qualitative feedback

• Brief participants on what to expect on Day 2 (more challenging scenarios that would
penalize overfitting to specific attacks)

Agenda 2nd day: November 25, 2020

9:00 – 9:15 – Recap from Day 1 and outlook on the day [Ambrish]

9:15 – 13:00 - Hacking Phase 3 (small groups). [Giulio, Zaid and Roberto]

Plan: Optional evaluation (on Scenario 2) at 9:15 is provided to motivate final

evaluations.

13:00 - 13:45 – lunch break + final evaluations [Giulio, Ambrish, Mark, Zaid, Luis, Roberto]

Plan: Collect final evaluations on Scenario 0, 1, 2, 3. [Decision on how to decide the

final leader boards based on the results]. Also ask the participants to walk us through

their solution (explain their algorithm(s)).

14:00 – 14:30 - Technical talk on robustness of federated machine learning [Luis]

Plan: Technical talk on robustness of federated machine learning.

 D3.4 Final Prototype of the MUSKETEER Platform 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

14:30 – 15:00 – Attack Scenarios used in the Hackathon [Ambrish and Zaid]

Plan: This talk includes details about the actual attack scenarios that were used.

15:00 – 15:30 – Assembly, winner ceremony, virtual group photo, and closing remarks [Mark

and Gal]

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related documents
	1.3 Outline

	2 Requirements
	2.1 Scope
	2.2 Industrial and technical requirements
	2.2.1 User roles
	2.2.2 Functional requirements
	2.2.2.1 Managing platform users
	2.2.2.2 Managing Federated ML tasks
	2.2.2.3 Executing Federated ML tasks

	2.2.3 Non-functional requirements

	2.3 Summary

	3 Feature Completion
	3.1 Tasks
	3.2 Ring Topology
	3.2.1 Aggregator Start Training Round

	3.3 Model Integrity
	3.3.1 Checksum

	3.4 Model Lineage
	3.4.1 Basic Lineage
	3.4.2 Participants Perspective
	3.4.2.1 Participant Training Round Complete

	3.4.3 Retrieving Lineage

	3.5 Data Economy
	3.5.1 Assigning Value

	3.6 Model Access Control
	3.6.1 Model Listing
	3.6.2 Download Model
	3.6.3 Delete Model

	3.7 Towards Accountability of Federated Learning

	4 Demonstrations
	4.1 Basic demo
	4.1.1 Model Lineage

	4.2 Hackathon
	4.2.1 Agenda
	4.2.2 Setup and Problem Statement
	4.2.3 Evaluations
	4.2.4 Hackathon Conclusion

	5 Conclusions
	6 References
	7 Addendum

