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Executive Summary 

This deliverable (D6.2 Scalability of machine learning algorithms over every POMs) is the 

result of task T6.2 (Assessing scalability and computational efficiency of federated privacy-

preserving machine learning algorithms) and describes the results obtained after intensive 

tests carried out to analyse the main technical characteristics of every algorithm over every 

POM. We have followed the Goal Question Metric methodology described in D6.1, and the 

main goals are to assess the scalability, computational efficiency and performance of the 

proposed and implemented schemes in the MUSKETEER Machine Learning Library (MMLL). 
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1 Introduction 

1.1 Purpose 

The MUSKETEER project aims at building an Industrial Data Platform (IDP) such that different 

users can contribute with their own data to solve a given Machine Learning (ML) task 

without compromising the confidentiality of the data. The core component of the platform 

providing the capability of training ML models while preserving confidentiality in the data, is 

named as the MUSKETEER Machine Learning Library [MMLL_2021] and comprises several 

ML Algorithms developed under different Privacy Operation Modes (POMs), as described in 

Deliverables D4.5 and D4.7.  

As a reminder a brief summary of each POM is presented below: 

• POM 1. This POM is designed for scenarios where the final trained model is not 

private, since at the end of the training every worker node and also the master node 

have a copy the model. This POM implements a federated-learning framework based 

on the concept introduced by Google in 2016 (Konečný et al. 2016a). 

• POM2. This POM also implements the Federated Machine Learning (FML) paradigm 

described in POM1, but uses additively homomorphic encryption (Yi et al., 2014) to 

preserve model confidentiality from the central node.  

• POM3. This POM is an extension of POM2 that makes use of a proxy re-encryption 

protocol to allow that every data owner can handle her/his own private key (Hassan 

et al., 2019). The aggregator has access to all public keys and is able to transform 

data encrypted with one public key to a different public key so that all the 

participants can share the final model.  

• POM 4. This POM uses an additively homomorphic cryptosystem to protect the 

confidentiality of the data and requires the cooperation of a special node named as 

Crypto Node (CN), which is an object/process providing support for some of the 

cryptographic operations not supported by the homomorphism (González-Serrano et 

al., 2017).  

• POM 5. This POM is able to operate only with the aggregator and worker nodes. It 

uses an additively homomorphic cryptosystem to protect the confidentiality of the 

model (Giacomelli et al, 2017). The data is also protected, since it does not leave the 

worker facilities, and only some operation results are sent to the aggregator. 

• POM 6. This POM does not use encryption; it relies on Secure Two-Party 

Computation (Cramer and Damgård, 2015) protocols to solve some operations on 

distributed data such that both mod and data privacy is preserved (Chen et al., 2019).  

https://arxiv.org/pdf/1610.02527.pdf
https://link.springer.com/chapter/10.1007/978-3-319-12229-8_2
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8862813
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8862813
https://www.sciencedirect.com/science/article/pii/S0031320317302406?casa_token=GZwmWfOmRQcAAAAA:yccGOTutWQWfbzof3GLojo9BEBG3YDenUlvqvhLB9XxS95hGZUWMJ-yuUCTQS4vj3W0YjXn_lYQ
https://www.sciencedirect.com/science/article/pii/S0031320317302406?casa_token=GZwmWfOmRQcAAAAA:yccGOTutWQWfbzof3GLojo9BEBG3YDenUlvqvhLB9XxS95hGZUWMJ-yuUCTQS4vj3W0YjXn_lYQ
https://link.springer.com/chapter/10.1007/978-3-319-93387-0_13
https://books.google.es/books?hl=es&lr=&id=HpsZCgAAQBAJ&oi=fnd&pg=PR9&dq=Secure+Multiparty+Computation.&ots=aPDcweJ-uP&sig=AyYTysdpRSawJhnuhl3rU5WwOEQ#v=onepage&q=Secure%20Multiparty%20Computation.&f=false
https://arxiv.org/pdf/1901.00329.pdf
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The deliverable D6.1 described the assessment methodology that has been proposed to 

characterize the behaviour and main performance indicators of the implemented algorithms 

in MMLL, from a technical point of view. 

The assessment experiments described in this document focus on the evaluation of the ML 

components from a general point of view, not focusing on any specific application domain, 

and therefore datasets will not be provided by the use cases. We have, instead, used 

standard open datasets, such that the experiments can easily be replicated by other 

researchers and potentially compared with the results obtained with other analogous 

systems. 

1.2 Related documents 

As indicated in the PERT diagram below (Figure 1), the results from this deliverable will 

provide input to WP7 (User Cases), such that they can better decide which POM/algorithms 

are the most adequate to solve a given task. Although not shown in that PERT diagram, the 

inputs are mainly defined by the project KPIs and objectives that concern the performance 

of the implemented Machine Learning algorithms. Deliverables D4.5 and D4.7 describe in full 

detail the implemented algorithms under the different Privacy Operation Modes, which 

comprise the MUSKETEER Machine Learning Library (MMLL) [MMLL_2021]. This report 

focuses on the technical assessment of the developed ML library under the different POMs 

and this information will help in the selection of models while developing the use cases 

solutions in the context of WP7. 
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Figure 1. MUSKETEER’s PERT diagram 

1.3 Document structure 

This document is structured as follows:  

• The current section (Introduction) presents the purpose of the document, as well as 

the relationship with other WPs in the project.  

• In Section 2 the selected assessment methodology it is provided: Goals, Questions 

and Metrics [Solingen_1999]. 

• In Section 3 we describe the collection of open access datasets that have been used 

throughout this assessment work. 

• In Section 4 we describe the experimental setup that has been used to run the tests 

and collect the needed information to answer the questions defined in the 

aforementioned GQM methodology. 

• In Section 5 we explain the detailed results of the GQM (Goal 1) for POMs 1, 2 and 3.  

• In Section 6 we explain the detailed results of the GQM (Goal 1) for POMs 4, 5 and 6. 

• In Section 7 we have synthesised a simple questionnaire that helps the end user to 

select the most appropriate POM for a given task. 

• In Section 8 we present the main conclusions. 

• Section 9 collects the main references. 

• Section 10 (Appendix I): comprises the full collection of figures used to obtain the 

conclusions for POMs 1, 2 and 3. 

• Section 11 (Appendix II): comprises the full collection of figures used to obtain the 

conclusions for POMs 4, 5 and 6. 

2 Goals-Questions-Metrics (GQM) methodology revisited 

The Goals-Questions-Metrics (GQM) methodology [Solingen_1999] has been adopted in 

D6.1 to define the main common evaluation framework to be used to assess the scalability, 

computational efficiency, performance, security, and data value estimation capabilities of 

the proposed and implemented Machine Learning Algorithms (MLAs) under the different 

Privacy Operation Modes (POMs), according to Tasks T6.2, T6.3 and T6.4 in WP6. We briefly 

summarize here the main GQM characteristics; the interested reader may refer to D6.1 for a 

deeper understanding of this methodology. Anyhow, in what follows we will briefly revisit 
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GQM and explain its main characteristics, focusing on the aspects to be evaluated in this 

report. The GQM approach is usually illustrated using the following Figure. 

 

Figure 2. Goals, Questions and Metrics (GQM) paradigm example 

This methodology, used in agile environments, allows for identifying and further refining a 

collection of explicit measurement goals, depicted on the top level of Figure 2. After the goal 

identification phase, one or more questions can be defined for every goal. Finally, one or 

more metrics are described to answer those questions. Summarizing: 

• “Goals” define what the project wants to improve. 

• “Questions” refine each goal in a more quantifiable way. 

• “Metrics” indicate the metrics required to answer each question. 

In this document we will focus on the Goal G1 described in D6.1 (the results for Goals 2 and 

3 will be reported in D6.3 and D6.4, respectively):  

Goal 1: Assessing performance, scalability and computational efficiency of MLAs (G1) 

which has been refined into the following sub-goals:  

• G1.1: Assessing the performance of MLA 

• G1.2: Assessing the reliability of MLA 

• G1.3: Assessing the scalability of MLA 

• G1.4: Assessing the computational efficiency of MLA 

Therefore, the objective is to evaluate the developed MLAs to determine if their general 

behaviour is as expected, mainly from the point of view of performance: 

• Does MMLL provide models as competitive as those obtained with other libraries? 

• Does the computational cost of the training procedure grow in a controlled manner? 

• Do we need to provide an excessive amount of memory, computational or 

communication resources for the library to work? 

Depending on the MLA under analysis, the question may be slightly different. For instance, in 

the case of a clustering algorithm, the question to measure the performance could be:  
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“Is the MLA able to provide a data clustering in such a way that objects in the same group 

are more similar to each other than to those in other groups?” 

Whereas for a classification algorithm, the corresponding question would be:  

“Given a training dataset, is the ML library able to provide predictions of the class of each 

data, according to some related categorical variable?” 

In both cases, once the corresponding metric is defined (accuracy, average distance to 

closest centroid, etc.), the Goal is achieved if the metric obtained with MMLL is within a 5% 

of variation with respect to the metric obtained with the reference library (scikit-learn, 

Kheras, Tensorflow, etc.) 

In the assessment Sections 5 and 6 we will provide detailed (quantitative) answers for the 

questions defined in D6.1, such that the Goals are adequately covered.  For operative 

reasons we will provide separate assessment results for POMs under the federated learning 

setting (Section 5) and those POMs that operate under the Hones but Curious hypothesis 

(Section 6) but we have followed the same GQM methodology in all cases. 

3 Selected datasets and their characteristics 

In this section we briefly describe the datasets selected to carry out the assessment 

experiments. To facilitate the replicability of the experiments by other researchers we will 

rely on publicly available datasets. We propose to use a collection of datasets with a wide 

range of characteristics to explore their behavior under different conditions: number of 

training patterns, number of features, type of target values (continuous for regression, 

discrete for classification, non-existent for clustering, etc.). For every experiment, one or 

more public datasets will be selected, to facilitate the replication of experiments by other 

researchers.  

As already mentioned, the evaluation experiments described in this document focuses on 

the evaluation of the ML components from a general point of view, and therefore we will 

not use the datasets provided by the use cases. The datasets from the use case pilots will be 

used in WP7 for the final platform validation. 

We have used the following datasets (listed in alphabetical order): 

• Abalone (Predict the age of abalone from physical measurements): Dataset to 

predict the age or gender of abalone from eight physical measurements. The age 

of abalone is determined by cutting the shell through the cone, staining it, and 

counting the number of rings through a microscope. Other measurements, which 

are easier to obtain, are used to predict the age. [Abalone] 
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• Airfoil (Airfoil Self-Noise Data Set): This NASA data set comprises different size 

airfoils at various wind tunnel speeds and angles of attack. The attributes include 

frequency, angle of attack, chord length, free-stream velocity and suction side 

displacement thickness, and the variable to predict is the scaled sound pressure 

level, in decibels. [Airfoil] 

• BlogFeedback (BlogFeedback Dataset): This data originates from blog posts. The 

raw HTML-documents of the blog posts were crawled and processed. The 

prediction task associated with the data is the prediction of the number of 

comments in the upcoming 24 hours. In order to simulate this situation, we choose 

a basetime (in the past) and select the blog posts that were published at most 72 

hours before the selected base date/time. Then, we calculate all the features of 

the selected blog posts from the information that was available at the basetime, 

therefore each instance corresponds to a blog post. The target is the number of 

comments that the blog post received in the next 24 hours relative to the 

basetime [BlogFeedback]. 

• Boston (Housing Dataset): contains information collected by the U.S Census 

Service concerning housing in the area of Boston Mass. It was obtained from the 

StatLib archive [Boston]. It has two prototasks: nox (Boston-nox), in which the 

nitrous oxide level is to be predicted; and (Boston-price) price, in which the 

median value of a home is to be predicted. [Boston] 

• Cardio (Cardiotocography Data Set): Fetal cardiotocograms (CTGs) plus respective 

diagnostic features are provided. The CTGs were also classified by three expert 

obstetricians and a consensus classification label assigned to each of them. 

Classification was both with respect to a morphologic pattern and to a fetal state. 

The features comprise fetal movements per second, percentage of time with 

abnormal short-term variability, histogram mean, beats per minute, among many 

others. The objective here is to identify a normal fetal state. [Cardio] 

• Diabetes (Pima Indians): The dataset consists of several medical predictor 

(independent) variables and one target (dependent) variable. Independent 

variables include the number of pregnancies the patient has had, their BMI, insulin 

level, age, etc. The goal is to predict the onset of diabetes based on diagnostic 

measures [Diabetes]. 

• Income (Adult income): Prediction task is to determine whether a person makes 

over 50K dollars a year. The input variables are both numerical and 

categorical.  [Adult] 

• Iris (The data set contains 3 classes of 50 instances each, where each class refers to 

a type of iris plant. One class is linearly separable from the other 2; the latter are 
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not linearly separable from each other. The attribute to predict is the class of iris 

plant.) [Iris] 

• Landsat (Statlog (Landsat Satellite) Data Set): The database consists of the multi-

spectral values of pixels in 3x3 neighborhoods in a satellite image, and the 

classification associated with the central pixel in each neighborhood. The aim is to 

predict this classification, given the multi-spectral values. The classification label of 

the central pixel. The number is a code for the following classes: red soil, cotton 

crop, grey soil, damp grey soil, soil with vegetation stubble, mixture class and very 

damp grey soil.  [Landsat] 

• MNIST: (Modified National Institute of Standards and Technology database) is a 

large database of handwritten digits that is widely used for training and testing in 

the field of machine learning [MNIST]. The input data are pixels values of 28x28 

images, and the targets are the ‘0-9’ labels. A binary classification version is also 

used, where the objective is to differentiate between even and odd numbers. 

• Parkinson (Parkinsons Telemonitoring Data Set): Created at the University of 

Oxford, in collaboration with 10 medical centers in the US and Intel Corporation 

who developed the telemonitoring device to record the speech signals. The 

original study used a range of linear and nonlinear regression methods to predict 

the clinician's Parkinson's disease symptom score on the UPDRS scale. The dataset 

is composed of a range of biomedical voice measurements from 42 people with 

early-stage Parkinson's disease recruited to a six-month trial of a telemonitoring 

device for remote symptom progression monitoring. The main aim of the data is to 

predict the motor and total UPDRS scores ('motor_UPDRS' and 'total_UPDRS') 

from the 16 voice measures. [Parkinson] 

• Redwine (Red Wine Quality Index): contains 1,599 red wines with 11 variables on 

the chemical properties of the wine. At least 3 wine experts rated the quality of 

each wine, providing a rating between 0 (very bad) and 10 (very excellent) 

[Redwine]. 

• Retinopathy (Diabetic Retinopathy Debrecen):  This dataset contains features 

extracted from the Messidor image set to predict whether an image contains signs 

of diabetic retinopathy or not. All features represent either a detected lesion, a 

descriptive feature of an anatomical part or an image-level descriptor. Attributes 

include quality assessment, pre-screening, Euclidean distance of the center of the 

macula and the center of the optic disc, diameter of the optic disc or the binary 

result of the AM/FM-based classification. The objective is to predict if the image 

contains signs of DR (Accumulative label for the Messidor classes 1, 2, 3) or not. 

[Retinopathy] 
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• Segmentation (Statlog (Image Segmentation) Data Set): The instances were drawn 

randomly from a database of 7 outdoor images. The images were manually 

segmented to create a classification for every pixel. Attributes are like the column 

of the center pixel of the region, contrast of horizontally adjacent pixels, measure 

of the excess red, etc. The objective is to classify images in the following groups: 

brick face, sky, foliage, cement, window, path, grass. [Segmentation] 

• Superconductivity (Superconductivity Data Set): Dataset to predict the 

superconducting critical temperature based on the features extracted from the 

superconductor’s chemical formula [Superconductivity]. 

3.1 Summary of datasets characteristics 

In the following table (Table 1) we will summarize the characteristics of the used datasets. In 

the references section (Section 9) we also provide the link to their original download site. 

The characteristics indicated in the table correspond to the data partitioning used in the 

assessment experiments, mainly showing the number of patterns available for training, the 

size of the validation and test datasets, and the number of input features, as well as their 

type. The kind of tasks that a dataset can be used to are summarized in the last column. 

Dataset Name Number of 
Patterns1 
(train) 

Number of 
Patterns 
(validation2) 

Number of 
Patterns 
(test2) 

Number of 
Features 

Type of 
features 

Targets  Tasks3 

Abalone 4177   8 float cat MCC, 
CL 

Airfoil 750 250 503 5 float float R 

BlogFeedback 52397   280 float float R 

Boston 51,630   14 float, int float R 

Diabetes  500 100  168   8  Int, float  int  BC 

 

1 Training patterns or records. 

2 In some cases, no validation set was provided in the original partition, so a fraction of the training data was 

selected to serve as a validation set.  

3 BC: Binary Classification, MCC: Multi-Class Classification, CL: Clustering, R: Regression 
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Fashion-MNIST 50,000 10.000 10,000 784 Int cat MCC, 
BC*, CL 

 Income  26,049 6,512 16,281 107  float, cat int  BC, R 

Iris 100 25 25 4 float cat MCC, 
CL 

Landsat 3,500 1,435 2000 36 float cat MCC 

MNIST 50,000 10,000 10,000 784 Int cat MCC, 
BC*, CL 

Parkinson 4,000 800 1075 18 float float R 

 Redwine  1,000 200  398   11  float float   R 

Retinopathy 900 100 151 18 float bin BC 

Segmentation 1,900 200 210 19 float cat MCC 

Superconductivity 21263   81 float float R 

(*) If the partition is available in the original dataset. 

(**) If the original dataset does not provide validation or test sets, we define them by splitting the training set. 

Table 1. Summary of datasets characteristics 

4 Experimental setup 

We assume that, additionally to the training data from every user, local validation and test 

datasets are available. This assumption is only needed for the assessment purpose, in the 

normal operation of the MUSKETEER platform those datasets are not mandatory, and all of 

the algorithms are able to train a model without a validation set, although in some cases an 

improved convergence/speedup is obtained if such a validation dataset is provided. Anyhow, 

it is a common situation that the user in charge of aggregating the weights of a model has a 

test set, to evaluate the final performance achieved by the trained models.  

Also, the local validation dataset may be used to adjust some of the parameters of the 

model in an experimental loop external to MMLL, i.e., the end user needs to run the  

MUSKETEER experiments to obtain those hyperparameters, since they are not obtained 

automatically within MUSKETEER. After the training is complete, the final performance is 

evaluated using the local test set. 
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The assessment experiments have been run for every available algorithm under the different 

POMs, such that conclusions on their behavior and characteristics can be extracted. 

Every process in the experiments (aggregator, worker/participant, cryptonode) is run using a 

single core and all communications take place using the MUSKETEER Cloud communications 

facilities [Pycloudmessenger]. 

• The Aggregator is the central object or process that controls the execution of the 

training procedure.  

• The Workers or participants run at the end user side as a part of the MUSKETEER 

client, and they have a direct access to the raw data provided by every user. 

• Some POMs require the cooperation of a special node named as Crypto Node (CN), 

which is an object/process providing support for some of the cryptographic 

operations not supported by the 

In every experiment, the datasets have been equally divided among the workers (e.g. when 

5 workers are running, each one loads 20% of the data samples). 

5 Assessment of POMs 1, 2 and 3. 

5.1 Introduction 

For this specific assessment we intended to measure above some performance metrics by 

running MUSKETEER federated framework in a set of AWS virtual machines. 

We had 4 different setups to execute a full training cycle with the following number of 

worker processes: 1, 5, 10, 20. 

Each machine will host up to 5 worker processes. 

Each worker process will run inside a Docker container. 

There will be a dedicated machine for each master process. 

In the following picture a graphic representation of the setup is presented: 

https://www.docker.com/
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Figure 3. AWS Machines setup 

Specifically, we have assessed the following variables: 

• RAM consumption: We have measured the RAM consumption of every Docker 
container every two seconds. To obtain a single metric of RAM consumption in the 
master node and a worker node, we have averaged the samples of RAM.  

• Training time: Total time for a model to complete the training process excluding the 
pre-processing and testing steps. 

• Data transferred in bytes: bytes sent / bytes received by the master node. 

• The performance of the ML model over the test set, according to the problem. 
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5.1.1 Clustering 

5.1.1.1 K Means 

Clustering aims at dividing the population or data into a number of groups such that data 

points in the same groups are more similar to other data points in the same group than 

those in other groups. In simple words, the aim is to segregate groups with similar 

characteristics and assign them into clusters. 

Algorithm implemented: K-Means 

Goal: In order to analyse the scalability, we have executed the algorithms K-means for the 

three different federated learning POMs (1, 2 and 3) using different number of workers and 

dataset sizes (different number of samples and features) and we have measured different 

performance metrics to study how the POM, dataset and number of workers influence in 

these metrics. 

Performance metric: Average Euclidean distance to the closest centroid. 

Dataset used: 

o Iris (Small size) 

o Abalone (Medium size) 

o MNIST (Large size)  

  



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

21 D6.2 Scalability of machine learning algorithms over every POMs   

Training time: 

 

For medium and large size datasets, POM1 

is the fastest one. It does not need 

encryption and the master node can 

broadcast the information to the worker 

nodes at the same time in every iteration. 

The behaviour of POM2 is similar to POM1 

but it needs to encrypt and decrypt the 

information in every iteration, that is why 

the training time is higher than in POM1. 

POM3 cannot make use of the broadcast 

command (and the communication is one 

of the bottlenecks in federated learning). 

That is why the runtime is higher than 

POM2. 

Every iteration of the training process is fast 

for small datasets. That is why we can 

observe some strange behaviour in the 

dependencies (the state of the network 

influences more the training time than the 

process itself). 
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Performance metric: 

 

The performance metric of the clustering 

algorithm is not affected by the number of 

worker nodes or the POM used.  

However, for small datasets, the random 

initialization of the algorithm and the 

reduced number of training samples can 

affect the result. That is why we can 

observe some differences when we run the 

algorithm several times. 

As we increase the number of training 

patterns, we reduce the effect of this 

random initialization.  
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Bytes sent by the aggregator: 

 

In every iteration of the training 

process, the aggregator send the K 

means centroids to every worker. 

However, in POM1 and POM2, the 

master node broadcast the data, so it 

only needs to submit the data once to 

the pycloudmessenger library and the 

bytes sent by the master node does not 

depend on the number of workers and 

remains constant. 

In the case of POM3, the training 

process is sequential with the number of 

workers and the centroids are sent to 

every worker one by one, for that 

reason we can observe a linear 

dependency of the information sent 

with the number of workers. 

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted centroids take up more 

memory), for that reason, in training 

processes with 1 worker, the 

information sent by the master is lower 

in POM1 than in POM2 and POM3 and is 

similar in both methods with 

encryption. 
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Bytes received by the aggregator: 

 

In all the POMs analysed here, in every 

training iteration, the worker nodes 

send a copy of their local centroids to 

the master node. For this reason, we 

can observe a linear dependency of the 

information received by the master 

node with the number of worker nodes.  

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted centroids take up more 

memory). For this reason, the slope of 

the linear dependency is higher in 

POM3 and POM2 than in POM1 and 

when a single worker is running, the 

information received by the master is 

lower in POM1 than in POM2 and 

POM3. 
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RAM (MB) consumption by master and workers: 

  

For small datasets, the RAM memory used by the processes is negligible than the RAM 

memory used by the complete container. 

The influence of number of workers and the POM cannot be observed. 

  

For medium size datasets, the RAM memory used by the processes is still more or less 

negligible than the RAM memory used by the complete container. 

Since POM1 does not make use of encrypted information in memory, we can observe a 

lower memory consumption. 
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For large size datasets, we can observe the influence of the POM and dataset size in the 

memory consumption. 

In POM1 we can observe a lower memory consumption (no encryption has been used). 

Since we split the dataset among the different workers, the memory consumption in every 

worker decreases as we increase the number of workers. 

The master node of POM3 receives the centroids of every worker, so the memory 

increases as we increase the number of worker nodes. 

5.1.2 Binary classification 

Binary classification is a process or task of classification, in which a given data is being 

classified into two classes.  It’s basically a kind of prediction about which of two groups the 

thing belongs to. 

Algorithms implemented: Neural Networks, DSVM, FBSVM 

Goal: To analyse the scalability, we have executed the algorithms K-means for the three 

different federated learning POMs (1, 2 and 3) using different number of workers and 

dataset sizes (different number of samples and features) and we have measure different 

performance metrics to study how the POM, dataset and number of workers influence in 

these metrics. 

Performance metric: Accuracy. 

Dataset used: 

o Diabetes(Small size) 

o Adult (Medium size) 

o MNIST (Large size) 



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

27 D6.2 Scalability of machine learning algorithms over every POMs   

5.1.2.1 Neural Networks 

We have used neural networks with an input layer that contains a number of neurons equal 

to the number of input features, two hidden layers and every hidden layer contains a 

number of neurons equal to two times the number of features and an output layer that 

contains a single neuron. 

 

Figure 4. Neural networks (binary) 

For this reason, the number of weights for every dataset is: 

• Small dataset: 8x16 + 16x16 + 16x1 = 400 weights 

• Medium dataset: 123x246 + 246x246 + 246x1 = 91020 weights 

• Large dataset: 4x8 + 8x8 + 8x3 = 3708348 weights 

The federated training procedure has been model average, using an Adam optimizer in every 

worker. The step in the Adam optimizer and the number of training iterations have been 

obtained using validation. 

For the large dataset, only POM1 could be used since the excessive training time in POM 2 

and 3 associated to the encryption and decryption of millions of weights (the training 

procedure could take weeks). 

Training time: 
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For small datasets, the training time 

of POM1 and POM2 is comparable. 

 

However, as we increase the 

dataset (and also the size of the 

neural network that contains two 

hidden layers that depends on the 

number of input features), the 

training time of POM2 grow up. 

 

For large datasets, POM 1 is the 

only privacy operation mode 

capable to address the training 

process in a reasonable amount of 

time. 
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Performance metric: 

 

In a Neural Network, the random 

initialization of the weights and also 

the random shuffle of data along the 

training process can influence the 

final accuracy of the predictive 

model. 

For small datasets, this effect can be 

appreciated, different executions 

obtain ML models with different 

accuracy. This effect is reduced as we 

increase the dataset size. 
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Bytes sent by the aggregator: 

 

In POM1 and POM2 the information 

remains constant with the number of 

worker nodes. The master node 

broadcast the data, so it only needs to 

submit the data once to the 

pycloudmessenger library and the bytes 

sent by the master node does not 

depend on the number of workers and 

remains constant. 

In the case of POM3, the training 

process is sequential with the number of 

workers and the centroids are sent to 

every worker one by one, for that 

reason we can observe a linear 

dependency of the information sent 

with the number of workers. 

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted data take up more memory), 

for that reason, in training processes 

with 1 worker, the information sent by 

the master is lower in POM1 than in 

POM2 and POM3 and is similar in both 

methods with encryption. 
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Bytes received by the aggregator: 

 

After every training iteration, the 

worker nodes send a copy of their local 

centroids to the master node. For this 

reason, we can observe a linear 

dependency of the information received 

by the master node with the number of 

worker nodes.  

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted data take up more memory). 

For this reason, the slope of the linear 

dependency is higher in POM3 and 

POM2 than in POM1 and when a single 

worker is running, the information 

received by the master is lower in 

POM1 than in POM2 and POM3. 
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RAM (MB) consumption by master and workers: 

  

For small datasets, the influence of RAM consumption can not be observed because it is 

negligible in the RAM memory used by the complete Docker container. 

  

Since POM1 does not make use of encrypted information in memory, we can observe a 

lower memory consumption. 

In POM3, the memory consumption in the master node is higher and increases with the 

number of workers because it receives a copy of the ML model from every worker in with 

different encryption keys. 
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Since we split the dataset among the different workers, the memory consumption in every 

worker decreases as we increase the number of workers. 

5.1.2.2 DSVM 

A gaussian kernel has been used. The kernel parameter and the number of centroids have 

been obtained using cross validation. 

The number of centroids used is: 

• Small dataset: 100 centroids 

• Medium dataset: 100 centroids 

• Large dataset: 1500 centroids 

DSVM has been just implemented for POM1. 

Training time: 

 

The training time increases with the 

number of workers due to the 

bottleneck associated to receive the 

information from every worker after 

every iteration. 
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Performance metric: 

 

The accuracy obtained with DSVM is 

very stable. The number of workers 

does not affect the predictive model.  

This is the main advantage of this 

training procedure. Other 

approaches such as model averaging 

in NN or FBSVM can be affected in 

non-iid problems. 

The accuracy obtained with DSVM 

has been higher than the obtained 

with FBSVM. 

In the case of the large dataset, the 

accuracy of DSVM is lower than then 

deep neural network (that is the 

state of art in many large scale 

problems). 
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Bytes sent by the aggregator: 

 

The number of iterations of DSVM is not 

fixed. Different executions could have 

different number of iterations. 

That is why the information sent by the 

aggregator is not constant with the 

number of workers as in other 

algorithms. 
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Bytes received by the aggregator: 

 

In every training iteration, the worker 

nodes send a copy of their local 

centroids to the master node. For this 

reason, we can observe a linear 

dependency of the information received 

by the master node with the number of 

worker nodes.  

As we increase the number of worker 

nodes, we increase the information 

received by the master node. 
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RAM (MB) consumption by master and workers: 

  

RAM memory used by the processes is negligible in the container. The influence of 

number of workers and the POM cannot be observed. 

  

We can observe a reduction in the memory of the worker with the number of workers 

(because the dataset is split among the different workers and as we increase the number 

of workers, less data contains every worker) 
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The effect of the memory reduction in the worker is higher for large datasets. 

5.1.2.3 FBSVM 

A gaussian kernel has been used. The kernel parameter and the number of centroids has 

been obtained using cross validation. 

The number of centroids used is: 

• Small dataset: 100 centroids 

• Medium dataset: 100 centroids 

• Large dataset: 1500 centroids 
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Training time: 

 

 

FBSVM is the fastest of the algorithm 

implemented for binary classification. 

 

POM1 is the fastest one. It does not need 

encryption and the master node can 

broadcast the information to the worker 

nodes at the same time in every iteration. 

 

The behaviour of POM2 is similar to POM1 

but it needs to encrypt and decrypt the 

information in every iteration, that is why 

the training time is higher than in POM1. 

 

POM3 cannot make use of the broadcast 

command (and the communication is one 

of the bottlenecks in federated learning). 

That is why the runtime is higher than 

POM2. 
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Performance metric: 

 

 

Although FBSVM is faster, the accuracy is 

not stable. 

 

We can appreciate how the accuracy 

decreases slowly as we increase the 

number of workers. 

 

This training procedure presents some 

problems in non-iid datasets. 
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Bytes sent by the aggregator: 

 

In every iteration of the training 

process, the aggregator sends the SVM 

weights to every worker.  

However, in POM1 and POM2, the 

master node broadcast the data, so it 

only needs to submit the data once to 

the pycloudmessenger library and the 

bytes sent by the master node does not 

depend on the number of workers and 

remains constant.  

In the case of POM3, the training 

process is sequential with the number of 

workers and the SVM weights are sent 

to every worker one by one, for that 

reason we can observe a linear 

dependency of the information sent 

with the number of workers.  

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted SVM weights take up more 

memory), for that reason, in training 

processes with 1 worker, the 

information sent by the master is lower 

in POM1 than in POM2 and POM3 and is 

similar in both methods with 

encryption.  

 

 

  



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

43 D6.2 Scalability of machine learning algorithms over every POMs   

Bytes received by the aggregator: 

 

In every training iteration, the worker 

nodes send a copy of their local SVM 

weights to the master node. For this 

reason, we can observe a linear 

dependency of the information received 

by the master node with the number of 

worker nodes. 

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted weights take up more 

memory). For this reason, the slope of 

the linear dependency is higher in 

POM3 and POM2 than in POM1 and 

when a single worker is running, the 

information received by the master is 

lower in POM1 than in POM2 and 

POM3. 
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RAM (MB) consumption by master and workers: 

  

RAM memory used by the processes is negligible in the container. The influence of 

number of workers and the POM cannot be observed. 

  

The information exchanged among the master and workers is smaller than the other ML 

models of the platform, that why the memory consumption is similar among the three 

different POMs (no large matrices are exchanged). 
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For large size datasets, we can observe the influence of the POM and dataset size in the 

memory consumption. 

The memory consumption in the master node remains constant. However, since we split 

the dataset among the different workers, the memory consumption in every worker 

decreases as we increase the number of workers. 

The information exchanged among the master and workers is an array containing the 

weights instead of data matrices, that why the memory consumption is similar among the 

three different POMs. 

5.1.3 Multiclass classification 

In machine learning, multiclass or multinomial classification is the problem of classifying 

instances into one of three or more classes. Multiclass classification makes the assumption 

that each sample is assigned to one and only one label but not both at the same time. 

Algorithms implemented: Neural Networks 

Goal: To analyse the scalability, we have executed the algorithms K-means for the three 

different federated learning POMs (1, 2 and 3) using different number of workers and 

dataset sizes (different number of samples and features) and we have measure different 

performance metrics to study how the POM, dataset and number of workers influence in 

these metrics. 

Performance metric: Accuracy. 

Dataset used: 

• Iris(Small size). 4 features  

• Abalone (Medium size) 8 features 

• MNIST (Large size) 784 features 
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5.1.3.1 Neural Networks 

We have used neural networks with two hidden layers and every hidden layer contains a 

number of neurons equal to two times the number of features. 

 

Figure 5. Neural networks (multilclass) 

For this reason, the number of weights for every dataset is: 

• Small dataset: 4x8 + 8x8 + 8x3 = 120 weights 

• Medium dataset: 4x8 + 8x8 + 8x3 = 432 weights 

• Large dataset: 4x8 + 8x8 + 8x3 = 3711492 weights 

The federated training procedure has been model average, using an Adam optimizer in every 

worker. The step in the Adam optimizer and the number of training iterations have been 

obtained using validation. 

For the large dataset, only POM1 could be used since the excessive training time in POM2 

and POM3 associated to the encryption and decryption of millions of weights (the training 

procedure could take weeks). 
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Training time: 

 

The training of POM2 and POM3 takes 

weeks for the large dataset.  

POM1 is obviously the fastest one. It 

doesn't need encryption and the 

master node can broadcast the 

information to the worker nodes at 

the same time in every iteration. The 

training time increases with the 

number of workers due to the 

bottleneck associated to receive the 

information from every worker after 

every iteration. 

The behaviour of POM2 is similar to 

POM1 but it needs to encrypt and 

decrypt the information in every 

iteration, that is why the training time 

is higher than in POM1. 

POM3 cannot make use of the 

broadcast command (and the 

communication is one of the 

bottlenecks in federated learning). 

That is why the runtime is higher than 

POM2. 

Every iteration of the training process 

is very fast for small datasets. That is 

why we can observe some strange 

behaviour in the dependencies (the 

state of the network influences more 

the training time than the process 

itself). 
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Performance metric: 

 

The accuracy obtained in the 

different POMs is very similar since 

the operations performed are 

exactly the same. 

The number of training iterations in 

the federated schema was fixed 

using a previous validation step. 

However, sometimes the training 

procedure needs more training 

iterations and obtains a lower 

accuracy (as we can see in the large 

dataset for POM 1 that is not stable 

and obtains a low accuracy for 5 

workers). 
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Bytes sent by the aggregator: 

 

In every iteration of the training 

process, the aggregator sends the 

weights of the neural network. 

However, in POM1 and POM2, the 

master node broadcast the data, so it 

only needs to submit the data once to 

the pycloudmessenger library and the 

bytes sent by the master node does not 

depend on the number of workers and 

remains constant. 

In the case of POM3, the training 

process is sequential with the number of 

workers and the weights are sent to 

every worker one by one, for that 

reason we can observe a linear 

dependency of the information sent 

with the number of workers. 

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted weights take up more 

memory), for that reason, in training 

processes with 1 worker, the 

information sent by the master is lower 

in POM1 than in POM2 and POM3 and is 

similar in both methods with 

encryption. 
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Bytes received by the aggregator: 

 

In all the POMs analysed here, in every 

training iteration, the worker nodes 

send a copy of their local weights to the 

master node. For this reason, we can 

observe a linear dependency of the 

information received by the master 

node with the number of worker nodes.  

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted weights take up more 

memory). For this reason, the slope of 

the linear dependency is higher in 

POM3 and POM2 than in POM1 and 

when a single worker is running, the 

information received by the master is 

lower in POM1 than in POM2 and 

POM3. 
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RAM (MB) consumption by master and workers: 

  

For small datasets, the RAM memory used by the processes is negligible than the RAM 

memory used by the complete container. 

The influence of number of workers and the POM cannot be observed. 

  

For medium size datasets, the RAM memory used by the processes is still more or less 

negligible than the RAM memory used by the complete container. 

Since POM1 does not make use of encrypted information in memory, we can observe a 

lower memory consumption. 
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Since we split the dataset among the different workers, the memory consumption in every 

worker decreases as we increase the number of workers. However, the memory in the 

master node remains constant. 

5.1.4 Regression 

Regression predictive modelling is the task of approximating a mapping function (f) from 

input variables to a continuous output variable. A continuous output variable is a real-value, 

such as an integer or floating-point value. These are often quantities, such as amounts and 

sizes.  

Algorithms implemented: Neural Networks 

Goal: To analyse the scalability, we have executed the algorithms K-means for the three 

different federated learning POMs (1, 2 and 3) using different number of workers and 

dataset sizes (different number of samples and features) and we have measure different 

performance metrics to study how the POM, dataset and number of workers influence in 

these metrics. 

Performance metric: R2 score, that is the most extended performance metric for regression 

problem. 

 

Best possible R2 score is 1.0 and it can be negative. A constant model that always predicts 

the expected value of y, disregarding the input features, would get a score of 0.0. 

Dataset used: 
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• Boston Housing (Small size). 13 features  

• Superconductivity (Medium size) 81 features 

• Blog Data (Large size) 280 features 

5.1.4.1 Neural Networks 

We have used neural networks with two hidden layers and every hidden layer contains a 

number of neurons equal to two times the number of features. 

 

Figure 6. Neural networks (regression) 

For this reason, the number of weights for every dataset is: 

• Small dataset: 13x26 + 26x26 + 26x1 = 1040 weights 

• Medium dataset: 81x162 + 162x162 + 162x1 = 39528 weights 

• Large dataset: 280x560 + 560x560 + 560x1 = 470680 weights 

The federated training procedure has been model average, using an Adam optimizer in every 

worker. The step in the Adam optimizer and the number of training iterations have been 

obtained using validation. 

For the large dataset, only POM1 could be used since the excessive training time in POM2 

and POM3 associated to the encryption and decryption of millions of weights (the training 

procedure could take weeks). 
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Training time: 

 

The training of POM2 and POM3 

could take weeks for the large 

dataset. That why the experiments 

couldn't finish. 

POM3 cannot make use of the 

broadcast command (and the 

communication is one of the 

bottlenecks in federated learning). 

The training process is sequential 

worker by worker and that is why 

the computational cost is higher 

than POM 1 and 2. 

For small datasets, the training time 

of POM1 and POM2 are similar. As 

we increase the dataset size, the 

encryption and decryption of the 

ML model in POM2 increases the 

training time. 
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Performance metric: 

 

In a Neural Network, the random 

initialization of the weights and also 

the random shuffle of data along the 

training process can influence the 

final accuracy of the predictive 

model. 

For small datasets, this effect can be 

appreciated, different executions 

obtain ML models with different 

accuracy. This effect is reduced as we 

increase the dataset size. 
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Bytes sent by the aggregator: 

 

In every iteration of the training 

process, the aggregator sends the 

weights of the neural network. 

However, in POM1 and POM2, the 

master node broadcast the data, so it 

only needs to submit the data once to 

the pycloudmessenger library and the 

bytes sent by the master node does not 

depend on the number of workers and 

remains constant. 

In the case of POM3, the training 

process is sequential with the number of 

workers and the weights are sent to 

every worker one by one, for that 

reason we can observe a linear 

dependency of the information sent 

with the number of workers. 

POM 2 and POM3 make use of 

homomorphic encryption (and 

encrypted weights take up more 

memory), for that reason, in training 

processes with 1 worker, the 

information sent by the master is lower 

in POM1 than in POM2 and POM3 and is 

similar in both methods with 

encryption. 
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Bytes received by the aggregator: 

 

In every training iteration, the worker 

nodes send a copy of their local weights 

to the master node. For this reason, we 

can observe a linear dependency of the 

information received by the master 

node with the number of worker nodes.  

POM2 and POM3 make use of 

homomorphic encryption (and 

encrypted weights take up more 

memory). For this reason, the slope of 

the linear dependency is higher in 

POM3 and POM2 than in POM1 and 

when a single worker is running, the 

information received by the master is 

lower in POM1 than in POM2 and 

POM3. 
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RAM (MB) consumption by master and workers: 

  

As in previous models, for small datasets, the influence of number of workers and the 

POM cannot be observed. 

  

Since POM1 makes not use of encrypted information in memory, we can observe a lower 

memory consumption. 

In POM3, the memory consumption in the master node is higher and increases with the 

number of workers because it receives a copy of the ML model from every worker in with 

different encryption keys. 
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The memory in the master node remains constant. Since we split the dataset among the 

different workers, the memory consumption in every worker decreases a little bit as we 

increase the number of workers.  

5.2 GQM Goal 1 (G1): Assessing performance, scalability, and computational 

efficiency. 

In this section we will provide an example of results analysis for some of the algorithms in 

POMs 1, 2, 3, following the GQM methodology described in D6.1.  

5.2.1 G1.1 and G1.2: Assessing the performance and reliability of MLA 

G1.1_Q1 Is the ML library able to provide a data clustering in such a way that objects 

in the same group are more similar to each other than to those in other 

groups? 

MMLLK- counts with the K-means algorithm, that is the most popular unsupervised machine 

learning algorithm for clustering. Its objective is to minimize the average squared Euclidean 

distance of data from their centroids where a centroid is defined as the mean of data in a 

cluster. 

If we take the Euclidean distance as the similarity metric, then the algorithm provides an 

effective way to cluster them. The next graphics show how the distance to the closest 

centroid is reduced after every iteration of the training process for the 3 datasets used in the 

assessment. 
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Section 5.1.1 contains more information about the performance of the K-means algorithm in 

the library.  

G1.1_Q2 Given a dataset, is the ML library able to provide predictions for unseen values 

of related non-categorical (real valued) variables? 

POM1, POM2 and POM3 count with Neural Networks capable to minimize distinct functions 

based on the prediction error over real valued variables: Mean Squared Error, Mean 

Absolute Error, Mean Absolute Percentage Error, Mean Squared Logarithmic Error, ... 

We have tested three different datasets (see section 5.1.4.1) and measured the R2 score, 

that is the most extended performance metric for regression problem. 
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Best possible R2 score is 1.0 and it can be negative (because the model can be arbitrarily 

worse). A constant model that always predicts the expected value of y, disregarding the 

input features, would get a score of 0.0. 

 

Considering that a 1.0 R2 score means a model with a perfect prediction and 0.0 means a 

model that always predicts the expected value of the variable, in every dataset we obtain a 

score over 0.0. This means, the prediction is always better than the expected value of the 

variable. The dataset S and M achieve an R2 score around 0.8 and 0.9 respectively (1.0 is a 

perfect prediction), while dataset L obtain an R2 score around 0.45. 

G1.1_Q3 Given a training dataset, is the ML library able to provide predictions of the 

class of each data, according to some related categorical variable? 

MMLL library counts with different classification algorithms in POM1, POM2 and POM3. We 

have tested these algorithms using different datasets. 

For multiclass classification we have used the datasets Iris (Small Size, 3 classes), Abalone 

(Medium size, 3 classes) and MNIST (Large size, 10 classes). For binary classification we have 
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used Diabetes (Small), Adult (Medium) and MNIST odd vs even (Large size). The accuracy 

obtained is summarized below: 

 

MULTICLASS PROBLEM Dataset S Dataset M Dataset L 

Neural Network (Multiclass) 0.97 0.57 0.91 

 

BINARY PROBLEM Dataset S Dataset M Dataset L 

Neural Network (Binary) 0.71 0.81 0.99 

DSVM 0.73 0.83 0.96 

FBSVM 0.75 0.84 0.95 

 

G1.2_Q

1 

Does each ML algorithm give comparable output working on the same data and in the 

same conditions in different sessions (reliability)? 

In POM 1, when one worker is running, the resulting predictive model is equivalent to a 

standard (centralized) ML library since the worker completes the training process with no 

encryption and the master node doesn't aggregate models from different workers. 

Every algorithm has a random initialization. According to the algorithm and training 

conditions we can observe different behavior of those models to converge to the same 

solution. 

In the case of Kmeans or Neural Networks, for small datasets, the random initialization 

influences the result and we can observe differences in the performance metric among 

different executions of the algorithm. However, for medium and large datasets, this effect is 

reduced and the results tend to be the same independently of the POM and number of 

workers used in the training process. 
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In the case of SVM implementations. In FBSVM we can appreciate how the accuracy 

decreases slowly as we increase the number of workers. This training procedure presents 

some problems in non-iid datasets. This problem is solved in DSVM, that tend to achieve the 

same solution independently of the number of workers. 
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5.2.2 G1.3: Assessing the scalability of MLA 

G1.3_Q1 Does the training algorithm scale up when the dimension of the application 

scenario grows in terms of the amount of data? 
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We have tested every algorithm using 3 different datasets that contains different number of 

training samples. 

The next pictures represent the training time as a function of the number of training samples 

in POM 1. According to the number of features we can observe different behaviours in terms 

of scalability. 
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Typically, the runtime increases with the number of training samples. However, every 

dataset is different and has associated a different number of training steps until 

convergence. For this reason, in some cases such as the Neural Networks for regression, we 

can observe how the runtime decreases because an increase of input features has motivated 

a decrease in the training iterations. 

G1.3_Q2 Does the training algorithm scale up when the dimension of the application 

scenario grows in terms of the number of users (data providers)? 

The following pictures contain the training time when N workers (data providers) are 

running divided by the training time when there is only 1 data provider. 

 

POM1 is the fastest one (see section 5.1). It doesn't need encryption and the master node 

can broadcast the information to the worker nodes at the same time in every iteration. We 

can see how the training time increases linearly with the number of workers due to the 

bottleneck associated to receive the information from every worker after every iteration. 

The behaviour of POM2 is similar to POM1 but it needs to encrypt and decrypt the 

information in every iteration, that is why the training time is higher than in POM1. 



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

67 D6.2 Scalability of machine learning algorithms over every POMs   

However, this encryption and decryption in the worker side can be performed in parallel, 

that why it doesn't affect to the scalability. 

POM3 cannot make use of the broadcast command (and the communication is one of the 

bottlenecks in federated learning). That is why the runtime is higher and achieves poorer 

scalability than POM1 and POM2. 

G1.3_Q3 Does the training algorithm scale up when the dimension of the application 

scenario grows in terms of the amount of input features? 

We have tested every algorithm using 3 different datasets that contains different number of 

input features. 

The next pictures represent the training time as a function of the number of input features in 

POM1. According to the number of features we can observe different behaviours in terms of 

scalability. 
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Typically, the runtime increases with the number of input features. However, we are 

working with different datasets and problems and in the case of Neural Networks for 

regression, we can observe how the runtime decreases because an increase of input 

features has motivated a decrease in the training iterations.  

5.2.3 G1.4: Assessing the computational efficiency of MLA 

G1.4_Q1 Are the MLAs faster than their counterparts in competing libraries? 

We have identified a variety of privacy preserving ML systems, but for a fair comparison, 

these libraries should share same conditions than Musketeer MMLL. 

We have identified several platforms for privacy preserving ML. The main characteristics of 

the identified platforms are described in section 6.4.2. 

However, most of the systems are experimental with no accessible code. In other cases, the 

code is not ready to use for general purposes and it is just a demo just for a concrete dataset 

and algorithm with specific parameters and it is not capable to run a variety of datasets and 

models. 

In other cases, the demos require to open port numbers and socket communications that 

are not secure. In MUSKETEER, all interactions take place through the MUSKETEER central 

platform [Pycloudmessenger]. In our platform, only the connection details for the broker are 

made available, with all other entities, protected from direct attack. In this sense, we will 

disregard all those competing platforms that do not provide a communication means among 

different processes or the same level of security as MUSKETEER, since direct connections are 

usually much more effective (and faster but also more insecure) and the comparison would 

be unfair.  
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G1.4_Q2 Are the transmission costs reasonable? 

We have measured the bytes sent and received by the master node. Section 5.1 contains the 

complete list of graphics about data transmission in every algorithm. 

The following pictures belongs to the FBSVM algorithm, but the behaviour is very similar in 

all of them: 

 

In every iteration of the training process, the aggregator sends the ML model to every 

worker.  

Information sent from master to workers: 

However, in POM1 and POM2, the master node broadcast the data, so it only needs to 

submit the data once to the pycloudmessenger library and the bytes sent by the master 

node does not depend on the number of workers and remains constant.  

In the case of POM3, the training process is sequential with the number of workers and the 

ML model is sent to every worker one by one, for that reason we can observe a linear 

dependency of the information sent with the number of workers.  

POM2 and POM3 make use of homomorphic encryption (and encrypted SVM weights take 

up more memory), for that reason, in training processes with 1 worker, the information sent 

by the master is lower in POM1 than in POM2 and POM3 and is similar in both methods with 

encryption. 

In every training iteration, the worker nodes send a copy of their local SVM weights to the 

master node. For this reason, we can observe a linear dependency of the information 

received by the master node with the number of worker nodes. 

POM2 and POM3 make use of homomorphic encryption (and encrypted weights take up 

more memory). For this reason, the slope of the linear dependency is higher in POM3 and 
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POM2 than in POM1 and when a single worker is running, the information received by the 

master is lower in POM1 than in POM2 and POM3. 

Information sent from workers to master: 

In every training iteration, the worker nodes send a copy of their local SVM weights to the 

master node. For this reason, we can observe a linear dependency of the information 

received by the master node with the number of worker nodes. 

POM2 and POM3 make use of homomorphic encryption (and encrypted weights take up 

more memory). For this reason, the slope of the linear dependency is higher in POM3 and 

POM2 than in POM1 and when a single worker is running, the information received by the 

master is lower in POM1 than in POM2 and POM3. 

G1.4_Q3 Is the memory usage during training reasonable? 

We have measured every two seconds the memory consumption of the Docker container 

that contains the master node and one of the Docker containers that contains a worker 

node. To obtain a single metric, we have to average the results. 

The behaviour is very similar for every algorithm. For small datasets, the RAM memory used 

by the processes is negligible than the RAM memory used by the complete container. The 

influence of number of workers and the POM cannot be observed. 

For medium size datasets, the RAM memory used by the processes is still more or less 

negligible than the RAM memory used by the complete container. Since POM1 makes not 

use of encrypted information in memory, we can observe a lower memory consumption. 

For large size datasets, we can observe the influence of the POM and dataset size in the 

memory consumption. In POM1 we can observe a lower memory consumption (no 

encryption has been used). Since we split the dataset among the different workers, the 

memory consumption in every worker decreases as we increase the number of workers. The 

master node of POM3 receives the centroids of every worker, so the memory increases as 

we increase the number of worker nodes. 

Here we can see an example for the algorithm FBSVM. The complete list of graphics for 

every algorithm can be seen in section 5.1. 
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5.3 Summary of results 

We will summarize here the observed results for every algorithm and POM, in the form of a 

Table that indicates whether or not the GQM test is passed. We will use the results in this 

Table to draw the final conclusions about the performance of the implemented MMLL library 

and also to define some recommendations for the end users. 
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5.3.1 Assessment of algorithms under POM1 

Table 1. Summary of GQM tests results for algorithms in POM1 

  Kmeans Neural Networks DSVM FBSVM 

 

Performance 

G1.1_Q1 OK - -  - 

G1.1_Q2 - OK - - 

G1.1_Q3 - OK OK OK 

G1.2_Q1 OK OK OK NO (*) 

Scalability G1.3_Q1 L L L L 

G1.3_Q2 L L L L 

G1.3_Q3 L L L L 

Efficiency G1.4_Q1 - - - - 

G1.4_Q2 OK- OK OK OK 

G1.4_Q3 OK OK OK OK 

(*) We could appreciate that the accuracy decreases as we increase the number of workers. 
(**) For transmissions over the internet. 

POM1 doesn't need encryption mechanisms and the master node broadcast information to 

the workers, that can perform the computations in parallel. With this advantage, this POM 

provides higher scalability and efficiency than other POMs based on federated learning. 

As a weakness, the master node receives the ML model with no encryption, so this 

predictive model is not private for the orchestrator of the platform. This is a potential 

leakage risk if the orchestrator is an external third party provider. 

The only test not passed in this POM is G1.2_Q1 in the case of FBSVM. We have observed a 

decrease in the accuracy as we increase the number of workers. 

5.3.2 Assessment of algorithms under POM2 

Table 2. Summary of GQM tests results for algorithms in POM2 

  Kmeans Neural Networks FBSVM 
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Performance 

G1.1_Q1 OK -  - 

G1.1_Q2 - OK - 

G1.1_Q3 - OK OK 

G1.2_Q1 OK OK NO (*) 

Scalability G1.3_Q1 L L L 

G1.3_Q2 L L L 

G1.3_Q3 L L- (**) L 

Efficiency G1.4_Q1 - - - 

G1.4_Q2 OK- OK- OK- 

G1.4_Q3 OK OK OK 

(*) We could appreciate that the accuracy decreases as we increase the number of workers. 
(**) Neural Networks scale correctly with the number of input features, but we have used a higher number of neurons in the hidden layers 

as we increase the number of input features. The scalability as we increase the number of neurons in this way is low. 

In POM 2, the model is encrypted using homomorphic cryptosystem. For this reason, in 

G1.4_Q2 the transmission cost increases respect to POM 1 and we have marked the test 

with an OK- instead of OK. 

In addition, the computational cost of the encryption is high. We have used neural networks 

with a higher number of neurons in the hidden layers for datasets with higher number of 

input features. This reduces the scalability as a function of the input features in G1.3_Q3. 

5.3.3 Assessment of algorithms under POM3 

Table 3. Summary of GQM tests results for algorithms in POM3 

  Kmeans Neural Networks FBSVM 

 

Performance 

G1.1_Q1 OK -  - 

G1.1_Q2 - OK - 

G1.1_Q3 - OK OK 

G1.2_Q1 OK OK NO (*) 
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Scalability G1.3_Q1 L L L 

G1.3_Q2 L -- (**) L -- (**) L -- (**) 

G1.3_Q3 L - (***) L- (***) L 

Efficiency G1.4_Q1 - - - 

G1.4_Q2 NO (****) NO (****) OK 

G1.4_Q3 OK OK OK 

(*) We could appreciate that the accuracy decreases as we increase the number of workers. 
(**) The training procedure in this pom works in a sequential way with the number of data users. The scalability is lower than in previous 

POMs. 

(***) Neural Networks scale correctly with the number of input features, but we have used a higher number of neurons in the h idden 

layers as we increase the number of input features. The scalability as we increase the number of neurons in this way is low. 

(****) This algorithm sends matrices not in a broadcast way. It is a sequential training, so the transmission cost increases with low 

efficiency. 

In POM 3, the models are encrypted with homomorphic encryption and the training process 

is sequential with the number of workers. For that reason, the test of efficiency in 

transmission cost were not passed and the scalability as a function of the number of workers 

and input features is lower than in previous POMs. 

6 Assessment of POMs 4, 5 and 6. 

In this chapter we will analyse the experimental results from different perspectives, to 

extract qualitative measurements about every algorithm/POM with the goal of better 

understanding the characteristics of every approach, such that the end users will have a 

reference guide to select the best method for a given scenario. It is also important to 

understand the associated complexity of every approach, since the computational and 

communications resources needed by every POM may be different. Before presenting the 

detailed results of the assessment of MMLL algorithms developed under POMs 4, 5 and 6, 

we will first carry out some general experiments to obtain a global perspective of the 

complexity of the involved protocols and their requirements. Secondly, we will in depth 

analyse the result of the GQM experiments for models in POMS 4, 5 and 6, as described in 

D6.1, trying to assert the defined KPIs in the project. Finally, in Section 7, we will present a 

brief Q&A guide to help the end users to select the POM that best fits their needs.  
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6.1 Preliminary computational measurements 

Before analysing the results of the GQM assessment we will briefly discuss some of the 

general aspects concerning the main protocols and techniques used to implement the 

algorithms under POMs 4, 5 and 6. In the implemented algorithms, two fundamental 

confidentiality preserving mechanisms have been used. The first one is the Homomorphic 

Encryption (HE) used to encrypt the data or the model such that the operations take place in 

the encrypted domain. This technique has been used in the context of POMs 4 (data is 

encrypted) and 5 (model is encrypted). Another fundamental procedure used to build the 

algorithms is the Two-Party Computation protocol used to compute a Secure Dot Product 

(SDP), as described in [Zhu_2015]. In Figure 7 below, we show, for every dataset used in the 

assessment of POMs 4, 5 and 6, the computation time of a relatively simple operation: 

computing the dot product between the input training patterns and a linear model 

represented by a weight vector w.  

 

Figure 7. Computational comparison of different confidentiality preserving protocols.  

We observe how the fastest computation takes place when data is locally available and it is 

non encrypted (dashed line marked as “Unencrypted data”). This could also be the 

computation time when the data is distributed and we send the model to the participants in 

plain text (e.g. POM1), such that the operations take place in the unencrypted domain (clear 

text). When we try to protect the model from the participants, the dot product operation is 

not so straightforward, and secure protocols are needed. The Two-party computation Secure 

Dot Product described in [Zhu_2015] has been used in the context of POM6, and it provides 



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

76 D6.2 Scalability of machine learning algorithms over every POMs   

a distributed computation which preserves the model confidentiality, but at a computational 

cost of roughly 2 orders of magnitude with respect to the plain text computation.  For the 

datasets indicated in Figure 7, this operation is completed in less than 1 second.  

If a Secure Multiparty Computing protocol based on Homomorphic Encryption is used to 

solve that operation (as in POMs 4 and 5), the computation times increase by several (up to 

4 extra) orders of magnitude, requiring 100 seconds or more to complete this specific 

computation for some datasets. Furthermore, for an increased security, the key length in the 

HE schemes may also need to be increased, such that every time we double the key length, 

the computation time is increased -on average, multiplied by 3.3-. These computation times 

have been evaluated on a single core with the same characteristics in all cases. A very 

important speedup could be obtained by using specific hardware, such as Graphical 

Processing Units (GPUs) or any other parallel computation architecture that could speed up 

local computations. The good news here is that the encryption library used in POMs 4 and 5 

is external to MUSKETEER, such that if a specific speedup can be achieved by a particular 

combination of HE encryption software and specific hardware, that speedup could directly 

be applied to the training algorithms in the MUSKETEER platform. 

Therefore, trying to obtain a trained model only available to the aggregator while hiding it to 

the participants is very costly, so this confidentiality option must be used only when it is 

really necessary. The most economic approach is that implemented using the Secure Dot 

Product and other clear-text operations used in POM 6, although this approach needs to 

reveal some partial statistics about the training data or some intermediate results, such as 

model outputs. The approaches that operate in the encrypted domain imply a much larger 

computational cost but they reveal less information about the training data.  

The actual computational requirements and training times will be further detailed when the 

assessment results are presented in the next sections. 

6.2 Data storage: memory and transmission 

In POM 6 data is not encrypted, son it basically uses the same (order of magnitude) storage 

space as in the centralized situation. However, the POMs relying on data encryption (POMs 4 

and 5), require an extra storage and transmission capability. To illustrate the scale of needed 

storage/transmission, we have computed the size in Mbytes of every one of the used 

datasets, and compared the plain size with the encrypted one, as shown in Figure 8 below. 
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Figure 8. Size of the assessment datasets, plain vs. encrypted.  

We observe that the size of the encrypted datasets is between 10-100 times larger than the 

plain data. This is also a factor that affects the total training time, when encrypted models or 

patterns need to be transmitted. We have estimated that, in our particular experimental 

conditions, the transmission rate is about 2.7 Mbytes per second on a steady regime. Once 

again, the communication means used by MMLL could be replaced by faster ones (dedicated 

transport networks) if needed for a specific application, but when the Internet is used as the 

communication platform, rates like this one are expected. 

6.3 GQM Goal 1 (G1): Assessing performance, scalability and computational 

efficiency. 

In this section we will analyse the obtained results, following the GQM methodology 

described in D6.1. We have selected here some representative results, but the exhaustive 

and complete set of figures of merit have been included in Section 10 (Appendix I), and at 

the end of this section we have included a Table summarizing the observed results for every 

model/POM.  

6.3.1 G1.1 and G1.2: Assessing the performance and reliability of MLA 

We cover in this section these two questions because they are answered/measured in the 
same graphics. The main questions to be answered here are:  
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G1.1_Q1 Are results comparable, within a 5% margin, to those obtained using a 

standard (centralized) ML library (e.g. scikit learn)? 

G1.1_Q2 Is the variation in different training experiments less than 5%? 

G1.1_Q1: “Are results comparable, within a 5% margin, to those obtained using a standard 
(centralized) ML library (e.g. scikit learn)?” 

G1.1_Q2: “Is the variation in different training experiments less than 5%?” 

To address these questions, we have run several training experiments with every algorithm 

and dataset, for every POM and with different number of workers (250 different trainings, 

each one repeated several times), and we represent the variation in performance of the 

collection of resulting performances for both the reference result (batch scikit-learn [scikit]) 

and MUSKETEER. The results are represented as “box plots” which represent the distribution 

of the obtained performances (the specific used metric depends on the task at hand). In the 

next Figure, we depict several examples of those experiments, the rest being included in 

Section 10 (Appendix I):  

 

(a) 
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(b) 

 

(c) 

Figure 9. Examples of observed performance and consistency. Metric distribution and 5% variation limits (dashed lines).  

We observe in Figure (a) the typical result for a model with little variance, i.e., those models 

that converge to almost the same solution irrespectively of the random initialization (e.g., 

LR, LC, MLC, etc.). We observe that all of the results, for an increasing number of workers, 

are within the 5% margin (marked with dashed lines in the figures), and are also very close to 

the centralized solution (first plot on the left). In all cases, there is a little variance from one 

experiment to another. We observe on (b) an example of those methods that are more 

sensitive to the initialization conditions or that rely on some random parameterization (e.g., 
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Kmeans, BSVM, etc.). They show a higher deviation among different runs, even in the 

centralized case solved with scikit-learn. Anyhow, the results are within the limits defined for 

the corresponding metric. Whenever the obtained performances are within these limits, we 

will represent these results in the summary Table 2 as “OK”. Finally, there are some cases 

where the limited operations available in the POM have also imposed a limit in the 

complexity of the optimization algorithm (solver) and, for some of the models, a poor 

convergence to the minimum is observed. This is the case mainly of POM4, where in the 

most complex models (e.g., MLC, KR, BSVM), the simple gradient descent solver has 

presented some convergence problems for some of the datasets. 

6.3.2 G1.3: Assessing the scalability of MLA 

To evaluate this aspect of MMLL we will have to answer the following questions:  

G1.3_Q1 Is the training time growing less than quadratic w.r.t. No. patterns? 

G1.3_Q2 Is the training time growing less than quadratic w.r.t. No. workers? 

G1.3_Q3 Is the training time growing less than quadratic w.r.t. No. features? 

To answer the first question Q1.3_Q1, we have measured the training time in datasets with 

different number of training patterns, as indicated in the next Figure:  

 

(a) 
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(b) 

 

(c) 

Figure 10. Examples of training time as a function of the No. of training patterns.  

Although it may seem at first glance that a quadratic growing may be observed, actually the 

best fit to these measurements is obtained using a polynomial curve which is a linear 

function of both the number of training patterns (P) and the number of input features, 

i.e.(F), as in Figure 10 (a) and (b). In these cases the complexity is O(PF) and therefore the 

behaviour is linear with respect to the number of training patterns. For instance, the 

observed large growth in Figure 10  (a) from 26.000 patterns (Income) to 50.000 (MNIST) is 

mainly due to the fact that the number of features grows from 107 to 784. In other cases, 

the complexity has a better fit with respect to the model size (number of centroids, C), as in 
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the case depicted in Figure 10 (c), where be observe a good fit with a complexity estimation 

of O(PC). Analogous reasoning can be applied to the corresponding figures for most of the 

algorithms, all of them depicted in Section 10 (Appendix I). Whenever a complexity growth 

less than quadratic is observed, we will annotate the result as “OK” in Table 2. 

The second question Q1.3_Q2 can be answered by plotting the training time of every 

dataset when an increasing number of workers are used. The machine were we have run the 

experiment is able to run 20 separate threads/cores, so we have tested the cases with 1, 5, 

10 and 15 workers, some of the remaining threads/cores being used for the aggregator (and 

cryptonode, in POM 4). Some typical observed evolution of training times is depicted in 

Figure 11 below:  

 

(a) 

 

(b) 
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(c) 

Figure 11. Typical examples of training time as a function of the No. of workers: POM6 in (a), POM4 in (b), POM5 in (c).  

We observe in Figure 11(a) that, in the case of POM6, the training time grows linearly with 

the number of workers because the used SDP needs the cooperation between aggregator 

and the workers to compute the results, and more workers means more serial interactions 

between aggregator and workers, plus the needed communications. No quadratic 

dependence is observed with respect to the number of workers, though, so the test is 

positive in these cases. 

 In the POM4 case (b), we observe that the training time is almost independent of the 

number of workers, since the encrypted data is first transmitted to the aggregator and the 

training interactions mainly take place between the aggregator and the cryptonode, 

irrespectively of the number of contributing users. In any case, no quadratic dependence is 

observed with respect to the number of workers, so the test is also positive.  

In the POM5 case (c), we observe that the training time decreases with the number of 

workers. This is due to the fact that computations take mainly place in the workers, since 

they operate their local data with the received encrypted model, and more workers means 

less data in every one of them4, and therefore the total computation time is reduced, since 

the needed operations are run in parallel. No quadratic growth is observed with respect to 

the number of workers, so the test is also positive.  

 

4 Remember that in all experiments, the same amount of data has been used, so if 2 workers are used, each 

worker has half the data, for 10 workers, each has 1/10 of the data and so on.  
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To answer the third question Q1.3_Q3, we have represented the training time in datasets 

with different number of input features, as indicated in Figure 12:  

 

(a) 

 

(b) 
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(c) 

Figure 12. Examples of training time as a function of the No. of input features.  

Again, as already discussed in relationship with question Q1.3_Q1, we observe a linear 

relationship with both the number of training patterns (P) and the number of input features 

(F), i.e., the complexity is O(PF) in cases (a) and (b), and complexity O(PC) in case (c). 

Therefore the behaviour is also linear with respect to the number of input features, the test 

being positive in all cases. 

Finally, we will compare the relative computational costs among POMs 4, 5 and 6. We have 

depicted in Figure 13 the comparison among POMs for the different common models.  

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 13. Total training time comparison for the different models under every POM. RR/LR in (a), LC in (b), Kmeans in (c), 
KR in (d), MLC in (e), BSVM in (f), MBSVM in (g). 

We clearly observe, as already anticipated in Figure 7, that algorithms in POM6 are the most 

lightweight ones, and those in POM4 are the most computationally demanding, often 

requiring 2 orders of magnitude more time to complete the training process with respect to 

POM6 ones. 

6.3.3 G1.3: Assessing the computational efficiency of MLA 

This goal has three associated questions:  

G1.4_Q1 Is MUSKETEER faster than competing platforms? 
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G1.4_Q2 Do we have a reasonable transmission cost? 

G1.4_Q3 Is there a reasonable memory usage? 

Concerning the first question, it comes out that we have found it difficult to carry out that 

comparison since the concept of “competing platform” is very dependent on the underlying 

security model and/or on the required security in the communications. We will postpone 

until Section 6.4 the analysis/discussion of this Question, and we concentrate by now in 

answering questions No. 2 and 3. To evaluate G1.4_Q2 we have measured the total amount 

of transmitted information and the total processing or transmission times, as depicted in the 

following Figures:  

 

(a) 

 

(b) 
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Figure 14. Examples of transmitted information, processing and transmission times as a function of the No. of workers.  

We observe in Figure 14 (a) that for this particular POM and algorithm, the amount of 

transmitted information by both the master and workers is below the reference thresholds 

(10x the dataset size5). In other cases, we have observed that, when the dataset is very 

small, the overhead transmission costs dominate and the ratio is higher, but for average or 

large sized dataset, the test is passed since the amount of transmitted information is mainly 

lower than 10 times the dataset size.  

Concerning the fraction of time dedicated to processing vs. transmission, we have 

represented in Figure 15 below the corresponding curves. 

 

(a) 

 

5 In POMs 4 and 5, that operate in the encrypted domain, the reference dataset size is defined using the 

encrypted version of the dataset, using the corresponding key length. 
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(b) 

Figure 15. Examples of transmitted information as a function of the No. of workers.  

We observe in Figure 15 that the transmission time is superior to the processing time in 

almost all cases. This is mainly caused by the slow rate of transmission over the internet and 

the specific network characteristics where the experiments have been run. It is always 

possible to balance this ratio by providing faster communication conditions to the platform. 

Anyhow, we will mark this test as NOT PASSED given the current assessment scenario.  

6.4 Comparison with other competing platforms 

When trying to complete the assessment for question G1.4_Q1: “Is MUSKETEER faster than 

competing platforms?” in the context of POMs 4, 5 and 6, our first problem was to properly 

identify those systems that could be considered as “competing platforms” under equal 

execution conditions. First of all, it is obvious that they should serve to the same purpose as 

the methods described in POMs 4, 5 and 6, i.e., training ML models while preserving the 

confidentiality of both training data and the resulting model. But not only that, to be fair in 

the comparison, those potential competitors must be based on the same boundary 

assumptions, otherwise the comparison would be unfounded.  

We have identified a variety of systems that claim to serve for the same purpose, but many 

of them do not share the same conditions. In what follows (Subsection 6.4.1), we will firstly 

review the requirements to consider a system as a “fair” competitor and in Subsection 6.4.2 

we will describe the main characteristics of the identified platforms for the Honest But 

Curious assumption (POMs 4, 5 and 6). 



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

90 D6.2 Scalability of machine learning algorithms over every POMs   

6.4.1 Assumptions to select potential competitors 

Many of the systems described in the literature are proprietary or experimental systems and 

their code is not made publicly accessible, sometimes only briefly described in a published 

paper without access to any working code. Obviously, it is impossible to benchmark against 

those systems. In other cases, although some code is available, it is not ready to be used, or 

it is simply a demo illustrating some specific usage in a particular case. So a potential 

competing platform must be available/capable to run a variety of ML models. 

Another important factor is the underlying security model, since it is not fair to compare 

systems that require different hypothesis to operate. For instance, a very popular trend is to 

use the Secure Multiparty Computing approach under the (arithmetic) Secret Sharing 

principles. This design claims to be highly efficient, since no encryption is needed to protect 

the data, and operations can be implemented on clear data, conveniently distributed in 

shares stored in several non-colluding servers. It is clear that the security model used under 

these approaches is very different to those in MUSKETEER, since the needed non-colluding 

multiple servers may not be available in many scenarios.  

Another key aspect is that of communications. In many of the analysed potential 

competitors the means of communication between remote modules is a direct transfer, 

essentially presenting an interface that allows other modules to connect. This usually 

requires publishing details of an IP address and port number. The actual implementation of 

the communications can take different forms: direct socket communications, RESTful 

(REpresentational State Transfer, REST) APIs, gRPC remote procedure call, etc. These 

procedures that allow direct connections from the outside world may represent a potential 

security risk/threat (malicious attackers, man-in-the-middle attacks), ultimately 

compromising the entire system or even revealing sensitive raw data. In the MUSKETEER 

architecture, there are no direct connections between parties, and all interactions take place 

through the MUSKETEER central platform [Pycloudmessenger], which acts as a service 

broker, orchestrating and routing information between the different participants. In this 

way, only the connection details for the broker are made available, with all other entities, 

protected from direct attack. In this sense, we will disregard all those competing platforms 

that do not provide a communication means among different processes or the same level of 

security as MUSKETEER, since direct connections are usually much more effective (but also 

more insecure) and the comparison would be unfair.  

Summarizing, these are the factors that we will take into consideration: 

- Code must be publicly accessible and usable. 
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- The system must be ready to be used, with flexibility to choose different models and 

training datasets 

- The underlying security model must be the same 

- The implemented communications must be secure 

6.4.2 Analysis of competing platforms and their characteristics 

FRESCO is a FRamework for Efficient and Secure COmputation, written in Java and licensed 

under the open source MIT license [Fresco]. It is not a Machine Learning platform, it aims at 

supporting the development of both new applications using secure computation, and the 

development of new secure computation techniques. 

HElib is a software library that provides low-level routines for homomorphic encryption (HE) 

[HElib]. Currently available is an implementation of the Brakerski-Gentry-Vaikuntanathan 

(BGV) scheme, along with many optimizations to make homomorphic evaluation runs faster, 

focusing mostly on effective use of the Smart-Vercauteren ciphertext packing techniques 

and the Gentry-Halevi-Smart optimizations. This library is written in C++ and uses the NTL 

mathematical library. It is not a Machine Learning suite, though.  

HUSKY is a distributed framework to develop ML algorithms, with improved characteristics 

with respect to Spark, for instance. Husky offers a finer grain access than the synchronous 

map-reduce coarse grain approach used by Spark, and with a better asynchronous access. It 

is not a Machine Learning suite and it does not provide model confidentiality. [HUSKY] 

[Yang_2015] 

NuCypher is a fully homomorphic encryption (FHE) library implemented in Python 

[NuCypher] and running on GPUs. It provides basic encryption/decryption functionalities, 

but not Machine Learning models.  

PAPAYA (PlAtform for PrivAcY preserving data Analytics) develops a specific component 

named Privacy Engine (PE), with mechanisms to manage the privacy preferences, but also 

exercise the rights derivative from the GDPR (e.g. the right to erasure any personal data) 

[PAPAYA]. The main aim of the PAPAYA project is to make use of advanced cryptographic 

tools such as homomorphic encryption, secure two-party computation, differential privacy 

and/or functional encryption, to design and develop three main big data analytics 

operations. One application is Privacy preserving Neural Networks (PP-NN): this makes use 

of two-party computation and homomorphic encryption to enable a third-party server to 

perform neural network classification over encrypted data. It provides cryptographic 

primitives that can be exploited by future new data analytics modules. Mainly oriented 

towards data analytics over encrypted outsourced data. PAPAYA uses the advanced 
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cryptographic tools once the original neural network is modified in order to make it 

compatible with the actual cryptographic tool (for example, complex operations are 

approximated to low degree polynomials). In other cases, privacy-preserving collaborative 

training based on differential privacy is used. The code is not available. 

Pyfhel: PYthon For Homomorphic Encryption Libraries, implements functionalities of 

multiple Homomorphic Encryption libraries such as addition, multiplication, exponentiation 

or scalar product in Python. Useful both for simple Homomorphic Encryption Demos as well 

as for complex problems such as Machine Learning algorithms, but the latter are not 

implemented. [Pyfhel] 

PySyft is a generic framework for privacy preserving deep learning [Pysyft][Ryffel_2019]. 

Pysyft expands pytorch tensors to support DP, SMC (SPDZ protocol, secret sharing) and FL 

mechanisms. Incorporates federated learning, and with this framework you can either 

mitigate private data leakage with a trusted aggregator or use secure computation to keep 

the model updates encrypted until after they’ve been combined. They provide a 

standardized protocol to communicate tensors between workers using “pointers”. Some 

previous versions of the library used to offer “VirtualWorkers” to operate locally, but this 

option is no longer available. It also accepts plain network sockets and web sockets. They 

rely on a security model that requires at least three non-colluding servers that hold the data 

shares. They report extremely good and fast results –possibly unbeatable-, under the SMC 

assumptions (secret sharing over several non-colluding servers). Pysyft currently relies on 

peer-to-peer communications instantiated by “the Duet” service (communications that do 

not seem to be end-to-end encrypted). We have not been able to initiate that 

communication service due to firewall restrictions in our institution, since the implemented 

(socket-based) communication means are essentially non-secure. The data owner receives 

individual access requests from Data Scientists and every one of them has to be manually 

approve or define an exhaustive list of permitted/denied operations.  

TF-Encrypted is also a generic framework for privacy preserving Deep Learning 

[TFencrypted], that incorporates federated learning. The TFE github is unmaintained for two 

years, and currently it is not possible to execute the code due to incompatibilities with the 

most recent Tensorflow library. 

SHAREMIND is a framework for Fast Privacy-Preserving Computations. [Bogdanov_2008] 

[SHAREMIND] A virtual machine for privacy-preserving data processing that relies on SMC 

techniques. Information-theoretically secure in the honest-but-curious model with three 

computing participants. All computations are done by dedicated miner parties, less 

susceptible for external corruption. Uses secret sharing and share computing techniques for 

privacy-preserving data aggregation. It is possible to try out the privacy-preserving 
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programming paradigm and estimate the running time of a given application in a fully 

encrypted environment, compatible with the Sharemind Application Server. The user has to 

implement the desired privacy preserving application using SecreC 2, a specific programming 

language. No ML algorithms are available.  

CodedPrivateML is a fast and Privacy-Preserving Framework for Distributed Machine 

Learning [So_2019].  The software is not available. 

CrypTen is a framework for Privacy Preserving Machine Learning built on PyTorch. It relies 

on SMC via arithmetic secret sharing, and it also requires the non-colluding property among 

the shareholders. 

Tensorflow Privacy. Python library that includes implementations of TensorFlow optimizers 

for training machine learning models with differential privacy. [TFPrivacy]  

6.5 Summary of results 

Since the number of experiments is very large, as depicted in Figures collected in Section 10 

(Appendix I), we will summarize here the observed results for every algorithm and POM, in 

the form of a Table that indicates whether or not the GQM test is passed. We will use the 

results in this Table to draw the final conclusions about the performance of the implemented 

MMLL library and also to define some recommendations for the end users. Before going into 

detail about the results obtained with every POM, let us recall that the architecture of the 

models used across the different POMs is essentially the same, the only differences are in 

the way some computations take place, or the solver method that has been implemented in 

every POM given the operational limitations imposed by every approach. 

Although a detailed description of Goals, Subgoals and Metrics is included in D6.1, we briefly 

summarize here the main concepts:  

G1.1: Assessing the performance of MLA: Are the results comparable (within 5%) with scikit 
learn? 

G1.2: Assessing the reliability of MLA: Is the variation in different runs less than 5%? 

G1.3: Assessing the scalability of MLA 

G1.3_Q1: Is the training time less than quadratic w.r.t. no patterns? 

 G1.3_Q2: Is the training time less than quadratic w.r.t. no users? 

 G1.3_Q3: Training time less than quadratic w.r.t. no features? 

G1.4: Assessing the computational efficiency of MLA 

 G1.4_Q1: Faster than competing platforms (if any is available)? 

 G1.4_Q2: Is the transmission cost reasonable? 
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   Is the transmission ratio less than 10? 

Is the time dedicated to transmission less than half the total training time? 

G1.4_Q3: Is the memory usage reasonable (storage ratio is less than 10) w.r.t. 
number of o workers. 

6.5.1 Assessment of algorithms under POM4 

Table 4. Summary of GQM tests results for algorithms in POM4 

  LR LC Kmeans KR MLC BSVM 

Performance G1.1 OK OK OK NO OK-(*) OK-(*) 

G1.2 OK OK OK OK OK OK 

Scalability G1.3_Q1 L L L L L L 

G1.3_Q2 L L L L L L 

G1.3_Q3 L L L L L L 

Efficiency G1.4_Q1 - - - - - - 

G1.4_Q2 NO-(**) NO-(**) NO-(**) NO-(**) NO-(**) NO-(**) 

G1.4_Q3 OK OK OK OK OK OK 

(*) In this case gradient descent was used and two out of three datasets gave poor performance, hence the NO+. 
(**) For transmissions over the internet. 

As already discussed in the general section POM4 is the most computationally demanding 

approach, since the whole dataset is encrypted and both computations and communications 

are increased accordingly. The main advantage (but also disadvantage) of this POM is that 

the training data is outsourced to the aggregator and the workers do not need to 

contribute/participate/operate during the training process. This may represent a potential 

leakage risk but as a positive characteristic the workers do not need to spend computational 

power during training, so they can be more lightweight. The cooperation of a non-colluding 

process (cryptonode) is needed in this POM. Again, this can be seen as a potential –leakage- 

weakness or as an opportunity to speed up computations if the aggregator and cryptonode 

are able to count with especially powerful computing resources that can speed up 

operations in the encrypted domain by several orders of magnitude.  

Taking all this into account, you may observe in Table above that most GQM tests are 

positive for the simpler models, but we observe convergence problems in the more complex 
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ones. One fundamental restriction in POM4 is that we only have access to simple solvers 

(mainly those relying on gradient descent and its variants such as “momentum”), since 

second order statistics computations are prohibitive. In some complex models, the gradient 

descent has to operate in a very large –possibly non-convex and ill-conditioned- space, and 

the optimization mechanism may have serious problems to achieve a competitive solution 

(global minimum of the cost function).  

The test that presents more problems is that associated to G1.4_Q1 (Is transmission time 

less that computation time?). As discussed in Subsection 6.3.3, the transmission times at 

aggregator and cryptonode are not lower than the processing times, so we have marked that 

test as “not passed”. As also discussed, improved communication speed in an alternative 

scenario could facilitate to positively pass this test.  

6.5.2 Assessment of algorithms under POM5 

Table 5. Summary of GQM tests results for algorithms in POM5 

  LR LC Kmeans KR MLC BSVM MBSVM 

Performance G1.1 OK OK OK NO+(*) OK OK OK 

G1.2 OK OK OK OK OK OK OK 

Scalability G1.3_Q1 

(np) 

L L L L- L L L 

G1.3_Q2 

(nw) 

L L L- L- L L L 

G1.3_Q3 

(nf) 

L L L L- L L L 

Efficiency G1.4_Q1 - - - - - - - 

G1.4_Q2 NO(**) NO(**) NO(**) NO(**) NO(**) NO(**) NO-(**) 

G1.4_Q3 OK OK OK OK OK OK OK 

(*) In this case gradient descent was used and two out of three datasets gave poor performance, hence the NO+. 

(**) For transmissions over the internet. 

In POM 5, only the model is encrypted and sent to the workers to operate with it, the 

aggregator acting as a sort of cryptonode, giving cooperation to the workers to solve the 

unsupported operations. In this case there is no need for non-colluding third parties. As 
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already discussed in Subsection 6.1, this POM is not as computationally demanding as 

POM4, but the operation is still costly, since it takes place in the encrypted domain. 

However, in this case, the workers are able to compute second order statistics (e.g., 

correlation/covariance matrices), and the aggregator can implement improved solver 

methods with respect to vanilla gradient descent. As a result, performance assessment is 

positive in all cases but one (the Kernel Regression case), where gradient descent was used. 

We also observe that, apart from minor deviations in some of the experiments, the rest of 

GQM tests are also passed positively.  Also in this case, the efficiency criterion metric 

(communication time less than half the processing time) is not passed, hence the “NO“ in 

the G1.4_Q2 part (the other metric is positively passed). 

6.5.3 Assessment of algorithms under POM6 

Table 6. Summary of GQM tests results for algorithms in POM6 

  RR LC Kmeans KR MLC BSVM MBSVM 

Performance G1.1 OK OK OK OK OK OK OK 

G1.2 OK OK OK OK OK OK OK 

Scalability G1.3_Q1 (np) L L L L L L L 

G1.3_Q2 

(nw) 

L L L L L L L 

G1.3_Q3 (nf) L L L L L L L 

Efficiency G1.4_Q1 - - - -  - - 

G1.4_Q2 NO(*) NO(*) NO(*) NO(*) NO(*) NO(*) NO(*) 

G1.4_Q3 OK OK OK OK OK OK OK- 

 (*) For transmissions over the internet. 

We observe in POM6 that the performance tests are always positive, since the used solvers 

are more efficient than gradient descent and they are able to provide solutions comparable 

to scikit-learn. Also, scalability is very good. As in the previous cases, the high transmission 

times force that in this case the metric “communication time less than half the processing 

time” is not passed either, since the computation times are much reduced with respect to 

the previous POMs, but communications overheads do not reduce in the same proportion. 
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7 Simple guidelines for selecting the most appropriate POM. 

In what follows, by answering some simple questions, the interested user may decide which 

POM is the best for a particular task/MUSKETEER deployment. We will use here the 

following terms: 

• Master or aggregator: the process that centralizes/manages the training process. 

• Worker or participant: every process that participates in the training mainly 

providing a portion of the training data. 

• Public model: the final trained model is known to all, aggregator and participants. 

• Secret model: a selective access to the final trained model is needed: only the 

aggregator or the participants get the model. 

Q1: Do I need to protect the model? 

• No, I want that the final trained model is Public to all participants:  

 

Use POM1, which corresponds to a standard Federated Learning 

implementation. Computations are fast (no encryption is needed), and a potentially 

large number of models with unlimited complexity is available (e.g., those provided 

by Tensorflow/Kheras libraries). Partial information from the participants is shared, 

mainly average gradients, that can be further be protected using Differential Privacy.  

 

• Yes, I want that the final trained model is Private: 

 

 Q2: Who gets the trained model)? 

 

o Only the workers get the model: 

 

  Q3: Do workers trust each other?  

 

• Yes: Use POM2, the model is hidden to the aggregator, 

encryption is implemented with a single private key in every 

worker. 

 

• No: Use POM3, the model is hidden to the aggregator, 

encryption is implemented with different private key different 

for the different data owners. 

 

o Only the aggregator gets the model:  
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 Q4: can some partial information/statistics be exposed? 

 

• Yes:  

Use POM6, since it is fast (no encryption is used, a 

Secure Dot Product Two-Party protocol is used to compute 

Secure Dot Products, and Random Matrix Disguise is used to 

obtain averaged statistics), but not all models are feasible, and 

partial aggregated information (averaged gradient, covariance 

matrices) may be revealed. 

• No:  

Use POM4 or POM5:  

 

Q5: can I run a process (cryptoprocessor) on a separate 

entity non-colluding with the aggregator? 

 

 Yes:  

Use POM 4: all training process takes place on 

encrypted values, only the trained model is 

decrypted by the aggregator for further use 

outside MUSKETEER. Workers do not actively 

cooperate in the computations during the 

training process, they just encrypt and send 

their encrypted data to the aggregator.  

 

 No:  

 

Use POM5: data does not leave the participants, 

but they need to collaborate in the training 

process with some operations on the encrypted 

data.  The participants only receive encrypted 

information from the aggregator.  
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Figure 16. MUSKETEER’s graphical guide to select the appropriate POM 

8 Conclusions 

In this document we have presented the results of the assessment phase corresponding to 

Task 6.2: performance and scalability of the Machine Learning algorithms implemented 

under the different POMs. We provide the experimental results and metrics that allow us to 

answer the questions described in D6.1. As a conclusion, we have found that: 

• We have implemented and benchmarked a variety of Machine Learning Models to 

solve tasks such as prediction, classification or clustering, under the different Privacy 

Operation Modes (POMs), as described in the GA/DOW. The implemented models 

and training procedures comprise the MUSKETEER Machine Learning Library (MMLL). 

• We have benchmarked here the implemented MMLL methods from the performance 

and scalability perspective. All experiments have been run in real world situations, 

i.e., every participant runs in a single process, and all communications take place 

through the Cloud Communication service [Pycloudmessenger], an experimental 

design that mimics the future operation of the MUSKETEER platform in the real 

world. 

• There are two main groups of POMs: those that rely on Federated Learning 

assumptions (e.g., POMs 1, 2 and 3), and those that are not Federated and rely on 

the Honest but Curious assumption (POMs 4, 5 and 6), and besides protecting the 
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data confidentiality, also hide the model from the end users. In what follows we will 

describe the main conclusions observed about every one of these POMs: 

o POM1: Under this paradigm, a shared global model is trained under the 

coordination of a central node, from a federation of participating devices. 

FML enables different devices to collaboratively learn a shared prediction 

model while keeping all the training data on device, decoupling the ability to 

perform machine learning from the need to store the data in the cloud. At the 

end of the training, the master and every worker node have a copy of the 

model. Since there is not encryption, this is the fastest of the FL POMs, 

making possible to work with large scale datasets in a reasonable amount of 

time. 

o POM2: In POM1 data information may be leaked to an honest-but-curious 

server since the server has access to the predictive model. In some use cases, 

data owners belong to the same company (e.g. different factories of the same 

company) and the server that orchestrates the training is in the cloud. POM2 

fixes that problem with two properties. 

 No information is leaked to the server: POM2 leaks no information of 

participants to the honest-but-curious cloud server. 

 The accuracy is kept intact compared to POM1: Achieves identical 

accuracy to a corresponding system trained using stochastic gradient 

descent. 

For small datasets it provides similar scalability than POM1. However, for 

large ML models, the computational cost associated to the encryption and 

decryption increases the training time, making it impractical for large scale 

problems.  

o POM3: In POM2, every data owner trusts each other and they can share the 

private key of the homomorphic encryption (e.g. different servers with data 

that belongs to the same owner). Using the same key, every data owner uses 

the same encrypted domain. In many situations it is not possible to transfer 

the private key in a safe way. POM3 is an extension of POM2 that makes use 

of a proxy re-encryption protocol to allow that every data owner can handle 

her/his own private key. 

Due to this re-encryption mechanism, the training procedure is sequential 

worker by worker instead on parallel. That why this POM does not scale 

correctly with the number of workers. 
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o POM4: In this case the training data is outsourced (after encryption) and the 

main advantage is that the end users (data providers) do not need to 

cooperate/participate during the training process; all computations take place 

with the interaction of the aggregator and cryptonode, that must not collude. 

If the aggregator and cryptonode are able to provide especially powerful 

computational means, the training time can be proportionally reduced, the 

computational power of the other participants (data providers) not being so 

relevant. On the bad side, all operations take place in the encrypted domain 

(Homomorphic Encryption), with the corresponding computational and 

transmission overheads. Also, the range of available operations is limited, so 

the solver methods that can be implemented are mainly restricted to gradient 

descent and some simple variants (e.g. momentum). We have observed some 

convergence problems in complex models with large parameters space and 

non-convex (possibly ill-conditioned) error function surfaces.  

o POM5: Under this approach, the data is not encrypted and never leaves the 

data provider facilities; it is the model parameters that are encrypted, to 

protect the final trained model from the participants (only the aggregator 

gets that model). So, the computational burden is somehow reduced with 

respect to POM4, and it is also affordable to compute some other second 

order statistics that facilitate improved solver methods. Anyhow, those 

statistics are also exchanged in encrypted form, so the transmission costs are 

still high. As a result, we obtain improved performance results with respect to 

POM4 at a lower computational cost. However, in this case, the participants 

need to cooperate with the aggregator during the training process, so they 

must have as much computational capabilities as possible. Partial information 

such as model outputs on the training data or aggregated statistics (e.g., 

gradients, covariance matrices), are shared with the aggregator. 

o POM6: This is the most lightweight approach among those that hide the 

model from the participants, since no encryption is used. Instead, some two-

party protocols to compute a Secure Dot Product are used, as well as other 

information hiding approaches such as Random Matrix Disguise (RMD) 

approaches. The exchanged information is not encrypted, so the 

communication requirements are much reduced, and since the computations 

take place in clear text form, the speedup with respect to POMs 4 and 5 is 

also remarkable.   

As a final summary of results, we have provided in Section 7 a simple guide that may help 

the end user to select the POM that is more appropriate to the task at hand, mainly taking 
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into account which information is being protected (and from whom), as well as the 

computational and communication requirements needed in every case.  
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10 Appendix I: Full set of figures corresponding to POMs 4, 5 and 6 

10.1 POM 4 

10.1.1 Linear Regression (LR) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.1.2 Logistic Classifier (LC) 
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Scalability with respect to No. training patterns, number of features/model size. 

 

  



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

113 D6.2 Scalability of machine learning algorithms over every POMs   

10.1.3 Multiclass Logistic Classifier (MLC) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.1.4 Kernel Regression (KR) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.1.5 Clustering K-means (Kmeans) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.1.6 Budget Support Vector Machine (BSVM) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2 POM 5 

10.2.1 Linear Regression (LR) 

Airfoil 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2.2 Logistic Classifier (LC) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2.3 Multiclass Logistic Classifier (MLC) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2.4 Kernel Regression (KR) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2.5 Clustering K-means (Kmeans) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2.6 Budget Support Vector Machine (BSVM) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.2.7 Multiclass Budget Support Vector Machine (MBSVM) 

Iris 

 

 

 

  



 

 

 

 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

154 D6.2 Scalability of machine learning algorithms over every POMs   

 

10.3 POM 6 

10.3.1 Ridge Regression (RR) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.3.2 Logistic Classifier (LC) 
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Income 
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MNIST handwritten digits (even/odd) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.3.3 Multiclass Logistic Classifier (MLC) 
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10.3.4 Kernel Regression (KR) 
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10.3.5 Clustering K-means (Kmeans) 
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10.3.6 Budget Support Vector Machine (BSVM) 
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MNIST handwritten digits (even/odd) 
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Scalability with respect to No. training patterns, number of features/model size. 
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10.3.7 Multiclass Budget Support Vector Machine (MBSVM) 
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Scalability with respect to No. training patterns, number of features/model size. 
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