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Executive Summary 

This deliverable D6.3 – Security of federated machine learning algorithms – is the only 

deliverable for task T6.3 (Assessing the security of machine learning algorithms under the 

different privacy operation modes) in WP6. This includes a report with a comprehensive 

evaluation of the robustness of the different algorithms developed in the MUSKETEER 

Machine Learning Library (MMLL) against different attacks both at training (poisoning attacks) 

and test time (evasion attacks). The assessment is performed for both supervised and 

unsupervised learning tasks across the different Privacy Operation Modes (POMs) considered 

in the project. The defensive mechanisms evaluated in this deliverable are already described 

in D5.4 and D5.5.  
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1 Introduction 

1.1 Purpose 

In deliverables D5.2 and D5.3 in WP5 we have shown that the standard federated learning 

techniques implemented in the MUSKETEER Machine Learning Library (MMLL) are vulnerable 

to different types of attacks. Thus, at training time, federated learning algorithms are 

vulnerable to poisoning attacks, where the behaviour and performance of the learning 

algorithms can be manipulated by the attackers by poisoning the datasets of some of the 

participants or by sending malicious model updates to the aggregator. Thus, as shown by 

[Blanchard et al. 2017], just a single attacker is enough to compromise standard aggregation 

methods such as Federated Averaging (FA) [McMahan et al. 2017]. At test time, similar to 

centralized machine learning algorithms, federated learning algorithms are also vulnerable to 

evasion attacks, where the attackers aim to produce errors in the predictions of the resulting 

machine learning model by injecting small perturbations to the original data points sent to the 

model for their evaluation. These manipulated data points are commonly known as 

adversarial examples [Biggio et al. 2013], [Szegedy et al. 2013].  

In WP5 we have developed different mechanisms to defend and mitigate the effect of such 

attacks for the different algorithms in the MMLL library. At training time, we have included 

different robust aggregation mechanisms capable of defending against both data and model 

poisoning attacks as well as mechanisms to eliminate poisoning points in the datasets 

provided by the different clients at training time. We have also implemented strategies based 

on adversarial training [Madry et al. 2018] to defend against adversarial examples at test time, 

limiting significantly the success of evasion attacks. All these defensive mechanisms were 

described in deliverables D5.4 (for poisoning attacks) and D5.5 (for evasion attacks). Some of 

these defences are only available for certain Privacy Operation Modes (POMs). The reason is 

that the use of homomorphic encryption limits the type of mathematical operations that can 

be performed and, thus, many of these robust techniques cannot be implemented with the 

operations available when working with encrypted data. To still provide some protection even 

under such limitations, for example, in the case of poisoning attacks, we have used data pre-

filtering techniques to mitigate the attacks. As discussed in D5.4, there is a trade-off between 

the privacy offered by the different POMs and their robustness to e.g., poisoning attacks.  

In this deliverable we aim to provide a comprehensive assessment of the robustness of the 

different algorithms implemented in the MMLL library. Compared to the results reported in 

the deliverables associated to WP5, in this deliverable, D6.3, we provide a more systematic 

analysis of the robustness against both poisoning and evasion attacks for the algorithms and 

defensive techniques implemented across the different POMs and for the different learning 

tasks supported in the library, i.e., supervised and unsupervised learning. The assessment we 
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provide here and the way in which it has been conducted also provides a testing framework 

that can be used when assessing the robustness of algorithms deployed in a federated learning 

setting. Unless otherwise specified in subsequent sections, all the results reported are 

applicable to v2.2.0 of MMLL library (pre-release, dated 5th November 2021) and do not take 

into account modifications made after this date. In particular, there has not been sufficient 

time to evaluate and report on modifications made to the MMLL library (under the same 

version number) on the 17th and 24th November 2021.  

The empirical evaluation reported in this deliverable endorses the capacity of the different 

defensive mechanisms implemented in the MMLL library to mitigate the effect of a 

comprehensive set of attacks, achieving the target figures described in the KPIs for the project 

for the robustness of the algorithms implemented in MUSKETEER i.e., mitigating effect of up 

to 20% malicious users, and even offering additional capabilities such as the one to identify 

the malicious users.  

 

1.2 Related Documents 

This deliverable is closely related to the work undertaken in WP5. Thus, we use the threat 

model described in deliverable D5.1 as a reference for describing the attack scenarios and 

settings used in our assessment of the robustness and security of the federated learning 

algorithms implemented in the platform. This assessment relies on the attacks considered and 

described in D5.2 for poisoning attacks at training time and D5.3 for evasion attack at test 

time.  

The assessment in this deliverable not only includes the evaluation of the robustness of the 

standard federated learning algorithms developed in WP4, which, as shown in D5.2 and D5.3, 

are very brittle in the presence of an adversary, but also assesses the performance of the 

defensive techniques developed in WP5 (see D5.4, D5.5, D5.6 and D5.7) when the system is 

under attack.  

Compared to previous deliverables in WP5, in this deliverable we aim to provide a more 

comprehensive evaluation of the security and robustness of the MMLL across the different 

POMs and for different machine learning tasks, including supervised and unsupervised 

learning.  

 

1.3 Document Structure 

The rest of the document is structured as follows: In Section 2 we provide the details of the 

datasets used for the evaluation of the robustness of the algorithms in MMLL. In Section 3 we 
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present the security assessment of the supervised learning algorithms in MMLL library against 

poisoning attacks across the different POMs. Section 4 analyses the robustness of the 

unsupervised learning algorithms against poisoning attacks. Section 5 analyses the robustness 

provided by data pre-processors against data poisoning. Section 6 includes the evaluation of 

the robustness of the supervised algorithms in the platform against evasion attacks at test-

time. Finally, Section 7 concludes this deliverable.  

2 Datasets used for the evaluation.  

We have used the following datasets in the different experiments in this deliverable: 

• MNIST dataset [LeCun et al. 2010] which is a grayscale hand digit 

recognition dataset with 10 classes of digits ranging from 0 to 9. The 

input sample is a grey-scale image of size 28 ×  28 and dataset contains 

60000 training samples and 10000 test samples.  

• BMNIST dataset which is transformed MNIST [LeCun et al. 2010] with 

even/odd classes. The dataset splits are identical to the MNIST dataset. 

• Fashion MNIST (F-MNIST) dataset [Xiao et al. 2017] which is a grayscale 

image dataset with 10 classes representing fashion categories with class 

labels from 0 to 9. The input sample is a grayscale image of size 

28 ×  28 and dataset has 60000 training samples and 10000 test 

samples. It shares the same image size and number of classes as MNIST 

but is more challenging dataset. 

• 2D-Synthetic dataset which is a synthetic dataset with input samples 

consisting of 2 features from D4.6. This dataset will be used for training 

a K-Means clustering algorithm. 

• Pima dataset which is a binary classification dataset with input samples 

consisting of 8 features from D4.6. This dataset will be used for testing 

our outlier detection schemes for training a logistic classifier. 

 

3 Robustness of Supervised Learning Algorithms against Poisoning 

Attacks 

In this section, we evaluate the robustness of the supervised learning algorithms in the MMLL 

library against data and model poisoning attacks across the different POMs, which includes 

algorithms for linear and non-linear classification and regression. Similar to D5.6 and D5.7, we 
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analyse the overall performance of standard Federated Averaging (FA) [McMahan et al. 2017], 

Coordinate-Wise Median (COMED) [Yin et al. 2018], and Adaptive Federated Averaging 

[Muñoz-González et al. 2019] aggregation rules, which are supported by the MMLL library. 

This section is organised as follows: First, we describe the attacks used for our assessment. An 

in-depth review of all the attacks against supervised learning algorithms in federated settings 

are described and provided in deliverable D5.2. Second, we provide an overview of robust 

defences implemented to mitigate the attacks and the applicability of our robust defences 

across the different POMs in the MMLL library. The interested reader may refer to deliverable 

D5.4 for a detailed overview of robust defences. Finally, we report our empirical results for 

the algorithms implemented in the different POMs. 

 

3.1 Summary of the Attacks used for the Assessment.  

There are currently no known methods to evaluate the robustness of a federated machine 

learning algorithm other than subjecting them to known attacks and evaluating the impact of 

the attacks i.e., robustness cannot be measured a priori. Here we summarise the state-of-the-

art attacks used for the evaluation (the detailed description and classification of data and 

model poisoning attacks in federated learning can be found in deliverable D5.2). 

 

Label flipping attacks 

In indiscriminate data poisoning attacks, the goal of the attacker is to degrade the 

performance of the trained model. A natural way to decrease the model’s performance in 

supervised settings through data poisoning is to corrupt the labels of the training inputs by 

random discrete noise. For label-flipping attackers, we sample the labels for the training inputs 

from the multinomial distribution, so the malicious participant sends updates which increase 

the entropy of the prediction distribution. In the case of multiple colluding attackers, all the 

attackers use the same distribution to flip the labels. 

 

Byzantine attacks 

[Blanchard et al. 2017] proposed a model poisoning attack where the malicious participants 

sample the parameters from a random distribution and send the random values to the 

aggregator. The random values are drawn from a Gaussian distribution with a very large 

variance. Thus, when using standard aggregation rules, such as FA, that rely on computing a 

weighted average of the parameters, the large values of the malicious random model updates 

dominate the computation of the average. Even a single Byzantine attacker can completely 
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degrade the performance of the model. The effect is further exaggerated when multiple 

attackers collude. 

 

Stealthy Model Poisoning attacks 

[Bhagoji et al. 2019] proposed a stealthy model poisoning attack. The attacker's objective is 

to degrade the performance of the model maximally, while also ensuring that the malicious 

updates are similar to the benign updates. To evaluate the robustness of our models, we used 

a variation of [Bhagoji et al. 2019] stealthy model poisoning attack. Our attack has two steps. 

In the first step, we train the malicious client on the client’s benign data to get the benign 

updates. Then, we trained the malicious client to maximize the training loss subject to the 

regularization that the updates are similar to the benign updates. Then, the attacker’s 

objective is as follows: 

 

arg min
𝑊𝑘

 − ∑ 𝐿(𝑥𝑖
𝑘 , 𝑦𝑖

𝑘; 𝑊𝑘) +  𝜆||𝑊𝑏
𝑘 − 𝑊𝑘||

𝑛𝑘

𝑖=1

 

where 𝐿 is the training loss, 𝑊𝑘
𝑏 is the benign updates, and 𝜆 is the regularisation strength. A 

higher value of 𝜆 decreases the attack’s strength and makes the detection of malicious clients 

more difficult. We select the appropriate value of the regularisation weight 𝜆 using a grid 

search to maximise the effectiveness of the attack. 

 

3.2 Summary of Defences Available 

Standard Federated Averaging relies on the computation of the average of the values provided 

by the participants for each parameter in the machine learning model. The mean of values is 

very brittle and sensitive to the outliers. A single adversary or a single faulty user can 

dramatically affect the performance of the final model. Please refer to deliverable D5.4 to see 

the detailed discussion about the limitations of Federated Averaging. To overcome the 

vulnerability of the standard aggregation methods implemented in the MMLL library, we have 

implemented Robust API with support of two robust aggregation methods capable of 

mitigating the effect of poisoning attacks and faulty users: 1) coordinate-wise median and [Yin 

et al. 2018], and 2) Adaptive Federated Averaging [Muñoz-González et al. 2019]. 
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Coordinate-wise median 

[Yin et al. 2018] proposed robust aggregation method, so called COMED, which relies on the 

computation of the median of the values provided by the clients at each training iteration for 

each parameter in the machine learning model. The median of the values is robust statistics 

with a breakdown point of 0.5. 

 

Adaptive Federated Averaging 

COMED is an effective technique, but it does not allow to identify the malicious clients sending 

malicious or faulty model updates. This can be limiting from a practical perspective, as it can 

hinder the investigation of potential problems in the platform (compromised or malicious 

clients and faults) and to have mechanisms for clients’ accountability. To overcome these 

limitations, in MUSKETEER we proposed Adaptive Federated Averaging (AFA) [Muñoz-

González et al. 2019], a robust aggregation technique for federated learning in supervised 

learning settings that allows, not only to mitigate the effect of poisoning attacks, but also to 

identify the malicious or bad model updates at each training round. AFA uses Hidden Markov 

Model (HMM), which is used to estimate the probability of a client providing a good model 

update for every participant in the federated learning task. A comprehensive description of 

the AFA algorithm can be found in [Muñoz-González et al. 2019] and deliverables D5.4 and 

D5.7. 

 

3.3 Applicability of the Defences for each POM 

In Table 1. Applicability of defences for each POM in supervised learning tasks., we show the 

general applicability of the different defensive mechanisms implemented in the MMLL library 

to defend against poisoning attacks across the different POMs. Our robust defences are 

implemented using an abstract RobustAPI and support any parametric machine learning 

algorithms, including linear models and non-linear models, such as Neural Networks. To 

benefit from the defences we have implemented, an algorithm must be implemented to make 

use of the RobustAPI. This approach facilitates the deployment of the defences across several 

algorithms implemented in the library and enables users to make use of the defences when 

using MUSKETEER platform and developing their own customised solution. Unfortunately, our 

RobustAPI cannot be implemented for POM 2 and POM 3, where the computation of the 

aggregated model in the server is done in the encrypted domain, which has limited operations, 

and thus, robust aggregation methods cannot be applied. For POM 4 and POM 5 the 

applicability depends on the degree of access to the model updates that is awarded to the 

aggregator. POM 6 operates in multiple ways which significantly increases the difficulty of 
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providing support for its defence against malicious clients. When client updates are sent in a 

round robin fashion, robust aggregation methods cannot be applied because the aggregator 

does not have access to the individual updates. Similarly, when the information exchanged 

with the aggregator is not gradient based e.g., covariance matrices as specified in D4.7, robust 

aggregation techniques cannot be applied. Only, the Logistic Classifier and Multiclass Logistic 

Classifier models present under POM 6 in the MMLL library are gradient based. Unfortunately, 

support for the Robust API in these algorithms was not available at the time of the evaluation. 

It is also important to note that in all the POMs where robust aggregation methods are not 

possible, label sanitization and/or outlier detection can be used to mitigate as far as possible 

poisoning attacks. The MMLL library can also be easily extended to support novel aggregation 

rules.   

 
Table 1. Applicability of defences for each POM in supervised learning tasks. 

POM  Label Sanitization Outlier Detection Robust API 

POM 1 ✔ ✔ ✔ 

POM 2 ✔ ✔ N/A 

POM 3 ✔ ✔ N/A 

POM 4 ✔ ✔ N/A* 

POM 5 ✔ ✔ ✔* 

POM 6 ✔ ✔ ✔* 

  

3.4 Assessment of POM 1 

Here, we report the experimental evaluation for POM 1. We evaluated the robustness of two 

neural network models trained on MNIST and F-MNIST datasets under normal operation and 

against label-flipping attackers, byzantine attacks with strength 𝑠 = 5.0, and stealthy model 

poisoning attackers. The two neural networks have the following network architecture: 

● A network with two fully connected layers (256 and 64 units). We will refer to this 

architecture as NN in our experiments.  

● A network with two convolutional layers (8 and 16 filters). We will refer to this 

architecture as CNN in our experiments.  

We used the same training parameters in all experiments. We trained the models for 20 

communication rounds with 30 participants. The number of local epochs is 10, and the batch 

size is 128. The local optimizer is Adam with a learning rate of 0.0003. The number of malicious 
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participants is set to 20% of all participants, i.e., 6 out of 30 participants. We consider four 

types of colluding attack scenarios, similar to those scenarios used in D5.6 and D5.7: 

1. All malicious participants perform a label flipping attack using the same 

noise distribution to flip the labels. 

2. All malicious participants send random model updates drawn from the 

same noise distribution with 𝑠 = 5.0. 

3. All malicious participants send stealthy model updates fitted the same 

malicious data. The regularisation weight 𝜆 is set to 1𝑒−4 and 10 for NN 

and CNN, respectively. 

4. Three sets of colluding attackers, where 2 malicious participants are 

label-flipping attackers, 2 malicious participants are byzantine, and the 

remaining 2 participants are stealthy model poisoning attackers.  

3.4.1 MNIST dataset 

In this section, we present the results of the assessment of the MMLL library on the MNIST 

dataset with all benign participants, with 6 label flipping attackers, with 6 Byzantine attackers, 

with 6 stealthy model poisoning attackers, and with a combination of all attackers in Figure 1-

Figure 10. As we can see in Figure 1 and Figure 2, our robust aggregation methods do not 

impact the model's performance when all participants are benign. In Figure 3 and Figure 4, we 

present the results of federated learning in the presence of label flipping attackers. The results 

confirm that FA is not robust to label flipping attackers. We can observe that both AFA and 

COMED are able to mitigate label flipping attackers and produce a model with the 

performance similar to the model learned with all benign participants. Also note, that AFA 

successfully detects and blocks all label flipping attackers at communication round 6 (this 

event is shown in the plots with a red cross).  

 

  

(a) validation loss (b) validation accuracy 

Figure 1: Validation performance of the NN model on MNIST when all participants are benign 
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(a) validation loss (b) validation accuracy 

Figure 2: Validation performance of the CNN model on MNIST when all participants are benign 

 

  
(a) validation loss (b) validation accuracy 

Figure 3: Validation performance of the NN model on MNIST against 6 untargeted label flipping attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 4: Validation performance of the CNN model on MNIST against 6 untargeted label flipping attackers 
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In Figure 5 to Figure 8, we present the results of federated learning with Byzantine model 

poisoning and stealthy model poisoning attackers. Coordinated Byzantine attack significantly 

decreases the model’s validation loss and accuracy when using non-robust aggregation rule 

i.e., FA. In contrast, our two defensive methods significantly reduce the influence of Byzantine 

attackers and allow to train the model with a performance close to the baseline model trained 

when all clients are benign. The stealthy model poisoning attack is the strongest model 

poisoning attack that we considered in the experiments. AFA aggregation rule outperforms 

COMED defence against stealthy model poisoning attacks.  

 

  
(a) validation loss (b) validation accuracy 

Figure 5: Validation performance of the NN model on MNIST against 6 Byzantine attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 6: Validation performance of the CNN model on MNIST against 6 Byzantine attackers 
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(a) validation loss (b) validation accuracy 

Figure 7: Validation performance of the NN model on MNIST against 6 model stealthy attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 8: Validation performance of the CNN model on MNIST against 6 model stealthy attackers 

 

Finally, in Figure 9 and Figure 10, we present the results of the empirical evaluation against a 

combination of all attackers. Both COMED and AFA are able to successfully mitigate three 

groups of colluding attackers, which demonstrate the effectiveness of our defensive methods. 
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(a) validation loss (b) validation accuracy 

Figure 9: Validation performance of the NN model on MNIST against a combination of all attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 10: Validation performance of the CNN model on MNIST against a combination of all attackers 

 

3.4.2 Fashion MNIST dataset 

In this section, we present the results of the assessment of the MMLL library on the F-MNIST 

dataset with all benign participants, with 6 label flipping attackers, with 6 Byzantine attackers, 

with 6 stealthy model poisoning attackers, and with a combination of all attackers in Figure 11 

to Figure 20. The results are similar to the results on the MNIST dataset. Without any defence 

in the presence of the attackers, the performance of Federated Averaging can be drastically 

impacted by malicious participants. 
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(a) validation loss (b) validation accuracy 

Figure 11: Validation performance of the NN model on FMNIST when all participants are benign 

 

  
(a) validation loss (b) validation accuracy 

Figure 12: Validation performance of the CNN model on FMNIST when all participants are benign 

 

  
(a) validation loss (b) validation accuracy 

Figure 13: Validation performance of the NN model on FMNIST against 6 untargeted label flipping 
attackers 
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(a) validation loss (b) validation accuracy 

Figure 14: Validation performance of the CNN model on FMNIST against 6 untargeted label flipping 
attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 15: Validation performance of the NN model on MNIST against 6 Byzantine attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 16: Validation performance of the CNN model on FMNIST against 6 Byzantine attackers 
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(a) validation loss (b) validation accuracy 

Figure 17: Validation performance of the NN model on FMNIST against 6 model stealthy attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 18: Validation performance of the CNN model on FMNIST against 6 model stealthy attackers 

 

  
(a) validation loss (b) validation accuracy 

Figure 19: Validation performance of the NN model on FMNIST against a combination of all attackers 
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(a) validation loss (b) validation accuracy 

Figure 20: Validation performance of the CNN model on FMNIST against a combination of all attackers 

 

Overall, as we demonstrated in this section, our robust defences can mitigate the effect of 

multiple colluding or groups of colluding attackers for all models and datasets. In this section, 

we presented the results only for Neural Networks, but similar results are expected for other 

supervised linear parametric models supported by the MMLL library, such as Support Vector 

Machine (SVM), Logistic Classifier (LC), Linear Regression (LR), as we also showed in 

deliverable D5.4. In this sense, the scenarios considered here with the two neural network 

architectures are more challenging for the defender, compared to the case of linear classifiers, 

as the number of parameters is significantly higher, which gives more opportunities to the 

adversary to craft more successful attacks, for example, by using the stealthy poisoning attack. 

Furthermore, our robust API is flexible and can also be used in POMs 4 and 5 in those cases 

where the central aggregator receives unencrypted model updates. 

 

3.5 Assessment of POMs 2 and 3 

POMs 2 and 3 require the aggregator to compute all the operations in the encrypted domain. 

Thus, as explained before, robust aggregation schemes are not available as they cannot be 

applied as, some of the operations required to implement these algorithms are not supported 

in the encrypted domain with homomorphic encryption. However, as described in Table 1, in 

the MMLL library we have implemented alternative mechanisms to defend against poisoning 

attacks in these situations (see deliverable D5.4 for more details): outlier detection and label 

sanitisation. The evaluation of the robustness of these techniques is presented in Section 5.  
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3.6 Assessment of POMs 4 and 5 

In POM 4, the aggregator node uses an additively homomorphic cryptosystem to protect the 

confidentiality of the data and uses the support of a crypto node, which operates on blinded 

data for unsupported operations (D4.7, p11). The aggregator (called MN in D4.7) is assumed 

not to be able to collude with the crypto node. To our understanding, this mode of operation 

does not make POM 4 suitable for the application of aggregation-based defences. In 

particular, several operations necessary for aggregation-based defences such as comparisons 

are not supported by the homomorphic cryptosystem. In contrast, in POM 5, it is the client 

(referred to as WN in D4.7) which carries out the operations needed by the aggregator using 

the homomorphic cryptosystem and the aggregator has access to the model (D4.7, p12). We 

have therefore focussed our evaluation on POM 5 and report the results below. Although use 

of the RobustAPI was not implemented for this algorithm, we have manually adapted the 

implementation of the algorithm to be able to carry out the evaluation. If, under POM 4 the 

aggregator is given sufficient access to the model updates to enable the use of our robust 

aggregation techniques, we expect the results to be similar. 

We evaluated the robustness of Logistic Classifier (LC) trained on BMNIST dataset under 

normal operation and against label-flipping and Byzantine attackers.  

Our experimental parameters are as follows: We trained the Logistic Classifier (LC) model for 

50 communication rounds with 5 participants. We stopped the federated learning when the 

relative difference between the model parameters between communication rounds was less 

than 0.01. We have considered two types of attack scenarios: 1) one participant is a label-

flipping attacker; 2) one participant is a Byzantine attacker with strength 𝑠 = 5.0. 

In Figure 21: The ROC curves of the logistic classifier trained with all benign participants on 

BMNIST using FA (a), COMED (b), AFA (c), respectively we present the results of training the 

logistic classifier in POM5 federated settings when all participants are benign. As we can see, 

the ROC curves of our robust defences in Figure 21: The ROC curves of the logistic classifier 

trained with all benign participants on BMNIST using FA (a), COMED (b), AFA (c), respectively 

are similar to the ROC curve of the model trained with standard federated averaging in Figure 

21: The ROC curves of the logistic classifier trained with all benign participants on BMNIST 

using FA (a), COMED (b), AFA (c), respectively. It means that our defence does not negatively 

affect the performance of the final model. Next, we report our results for two attack scenarios 

with label flipping and byzantine attackers. 
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(a) 

 
(b) 

 
(c) 

Figure 21: The ROC curves of the logistic classifier trained with all benign participants on BMNIST using FA (a), COMED 
(b), AFA (c), respectively 

 

In Figure 21: The ROC curves of the logistic classifier trained with all benign participants on 

BMNIST using FA (a), COMED (b), AFA (c), respectively and Figure 23, we present the results 

of training the logistic classifier in POM5 federated settings when one participant is label-



 

 

 

 D6.3 Security of Federated Machine Learning Algorithms  28 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

flipping or byzantine attacker, respectively. Unsurprisingly, standard gradient averaging is not 

robust to label-flipping and byzantine attackers. Label-flipping and byzantine attackers 

decrease AUC on the test set from 0.942 to 0.901 and 0.564, respectively. The byzantine attack 

is much stronger since it can directly manipulate the averaged model, while the label-flipping 

attack indirectly influences the aggregated model. Against a single byzantine attacker in Figure 

23, the final model trained with a gradient averaging has AUC on the test set similar to the 

coin flip. On the other hand, our defences are able to mitigate both label-flipping and 

byzantine attackers, which can be seen from the respective ROC curves in Figure 21: The ROC 

curves of the logistic classifier trained with all benign participants on BMNIST using FA (a), 

COMED (b), AFA (c), respectively and Figure 23. In this section, we evaluated the Logistic 

Classifier (LC) model, but our assessment results are expected to be similar to other 

parametric models supported by the MMLL library. 

 

 
(a) 

 
(b) 
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(c) 

Figure 22: The ROC curves of the logistic classifier trained with one label-flipping attacker on BMNIST using FA (a), 
COMED (b), AFA (c), respectively 

 

 
(a) 

 
(b) 
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(c) 

Figure 23: The ROC curves of the logistic classifier trained with one Byzantine attacker on BMNIST using FA (a), COMED 
(b), AFA (c), respectively 

 

3.7 Assessment of POM 6 

As mentioned in Section 3.3 above, POM 6 operates in multiple ways. As specified in D4.7 p. 

13, “POM6 is not a general procedure, it requires that every algorithm is implemented from 

scratch, and it is not guaranteed that any algorithm can be implemented under POM6.” It is 

therefore impossible to assess the robustness of POM 6 algorithms in the general case and 

every single algorithm implemented needs to make use of the defences according to its mode 

of operation. When a round-robin approach is being used or when the information revealed 

to the aggregator does not consist in gradients, aggregation methods cannot be employed. 

Only, the Logistic Classifier and Multiclass Logistic Classifier models present under POM 6 in 

the MMLL library are gradient based. Unfortunately, Version 2.2.0 of MMLL library on 

November 5 does not have the API implementation for RobustAPI for these algorithms. We 

have therefore not been able to include these algorithms in the evaluation for supervised ML 

models in POM 6. Note that in all cases data pre-filtering techniques such as outlier detection 

and label sanitisation can be employed to provide some level of protection. The evaluation of 

the protection offered by such techniques is detailed in Section 5.  
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4 Robustness of Unsupervised Learning Algorithms against 

Poisoning Attacks 

In this section we evaluate the robustness of the unsupervised learning algorithms in the 

MMLL against poisoning attacks across the different POMs. Similar to D5.6 and D5.7, we 

analyse the performance of the robust K-Means clustering algorithm (see deliverable D5.4) 

implemented for the MMLL library against poisoning attacks with colluding adversaries, which 

represent a more dangerous threat for the system. For the experiments, we consider a 

scenario where 30 clients are participating in training a clustering model for 20 communication 

rounds and each client updates the centroids using their local training data before sending the 

updated centroids back to the aggregator. The aggregator, after receiving centroids from all 

clients, computes the aggregated centroids using the corresponding aggregation rule. Total 

number of Byzantine or malicious clients participating in the training are 6 which corresponds 

to 20% of the total clients participating in the training. We consider MNIST, F-MNIST and 2D-

synthetic datasets for evaluation. For MNIST and F-MNIST, K-means clustering algorithm is run 

to estimate 20 centroids, and for 2D-syntehtic dataset it estimates 6 centroids. Furthermore, 

we use the MMLL library and pycloudmessenger to train the model in this federated learning 

setting. To reduce the computational power and time required for training the model on a 

desktop machine emulating 30 participating clients and a server, we use a reduced training 

datasets for both MNIST and F-MNIST (10,000 random training samples instead of 60,000 

training samples of complete training dataset) and split them equally among all clients. On the 

other hand, because of this reduced training dataset size, defending against attacks is a more 

challenging task as the ML algorithm can only use a smaller subset of training data to train the 

model at each client. 

 

4.1 Summary of the Attacks used for the Assessment.  

Here we summarise the attacks used for the evaluation (the detailed description can be found 

in D5.2). For creating the different scenarios, we consider two different types of attacks for 

the evaluation of the proposed robust clustering scheme. These attacks were already used for 

previous deliverables in WP5 (see deliverables D5.2, D5.4, D5.6 and D5.7). 

 

Indiscriminate data poisoning attack 

In indiscriminate data poisoning attacks, as the goal of the attacker is to degrade the 

performance of the trained model for a large set of inputs. A very simple (yet effective) 

indiscriminate attack, previously described in deliverable D5.2, to compromise K-Means 

consists on manipulating the value of the training data of the malicious participants by using 
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the following transformation: for every input sample 𝑖 of the malicious participant 𝑘, we 

compute 𝑥𝑖
′𝑘 = 𝑐𝑙𝑖𝑝(1 − 𝑥𝑖

𝑘 , 0, 1), where the 𝑐𝑙𝑖𝑝 function keeps the sample value in valid 

input range [0, 1]. This completely shifts the distribution of the data points for the malicious 

participants compared to the benign ones.  

 

Random model updates 

In this type of poisoning attack, the malicious participant 𝑘 sends a uniform random noise i.e., 

𝑐′𝑡
𝑘 = 𝒰𝑁𝑐 × 𝑝[0, 1] as the model centroids update to the central node, where 𝒰𝑁𝑐 × 𝑝[𝑎, 𝑏] 

denotes the uniform distribution on [𝑎, 𝑏]𝑁𝑐 × 𝑝 and 𝑁𝑐 denotes the number of cluster 

centroids and 𝑝 denotes the centroid dimension. In colluding attacks, the set of malicious 

participants send malicious centroids following the same noise distribution. 

 

4.2 Summary of Defences Available 

Here we summarise the techniques available to defend against poisoning attacks in K-Means 

clustering algorithm (the detailed description can be found in D5.4). First, we discuss the 

implementation details of the robust clustering scheme that has been proposed in D5.4, 

designed to mitigate poisoning attacks. We consider a local outlier threshold of 0.05 during 

the robust centroids’ initialization process at the participants with 5 repetitions for the 

centroids initializations, choosing the centroid initialization with minimum distortion for each 

client. This local outlier detector aims to mitigate the effect of outliers and poisoning points 

introduced in the local training sets of the different participants. At the aggregator, we 

consider an aggregator outlier threshold of 0.1 and we take a minimum threshold of 10 

participants (in the federated learning tasks used in the experiments there are a total of 30 

participants) for supporting a centroid which equals to one third of total participants in the 

training. This mechanism is necessary to mitigate the effect of poisoning attacks aiming at 

creating fake clusters supported by a set of colluding attackers. Furthermore, we consider that 

the aggregator runs K-Means clustering algorithm for 10 steps to estimate the aggregated 

centroids from all received centroids. For comparison, we use the standard (non-robust) 

implementation of K-means clustering algorithm in the platform. In POMs where we cannot 

employ robust clustering scheme, we can use our data prefiltering schemes to provide 

robustness against indiscriminate data poisoning attacks. 

On the other side, in those scenarios where robust K-Means is not available (see below), we 

have used outlier detection as an alternative to mitigate poisoning attacks by filtering out the 

malicious training data points that could be present in the local datasets provided by the 

participants.  
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4.3 Applicability of the Defences for each POM 

In the tables below we show the applicability of the different defensive mechanisms 

implemented in the MMLL library to defend against poisoning attacks across the different 

POMs.  

 
Table 2. Applicability of defences for each POM in unsupervised learning tasks. 

POM  Outlier 

Detection 

Robust 

clustering 

POM 1 ✔ ✔ 

POM 2 ✔ N/A 

POM 3 ✔ N/A 

POM 4 ✔ ✔* 

POM 5 ✔ ✔* 

POM 6 ✔ ✔ 

 

The outlier detector can be used across all the POMs in the library. For K-Means the outlier 

detector can be applied by labelling all the data points with the same class label, as it were a 

classification problem with a single class. 

In POMs 2 and 3 the use of the robust clustering algorithm is not possible, as it requires to 

perform mathematical operations in the aggregator that are not available in the encrypted 

domain. On the other hand, for POMs 4 and 5, if the aggregator can get unencrypted centroids 

through the cryptonode in POM 4 or by decrypting themselves in POM 5, then robust K-Means 

clustering algorithm can be applied in both POMs.  

For POM 6, Robust K-means algorithm can be applied by integrating the RobustAPI in POM 6 

in a manner similar to POM 1. An integration of the RobustAPI into the algorithms under POM 

6 was not available in time for this evaluation so we have conducted an evaluation using a 

previous version of the MMLL library as detailed below.    

 

4.4 Assessment of POM 1 

Here we report the experimental evaluation for POM 1. We consider three different types of 

colluding attack scenarios, similar to those scenarios used in D5.6 and D5.7: 
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1. All malicious participants perform the indiscriminate data poisoning 

attack. 

2. All malicious participants send random model updates back to the 

aggregator using the same noise distribution. 

3. Two sets of colluding attackers, where 50% of malicious participants 

perform an indiscriminate data poisoning attack and the remaining 50% 

of malicious participants send random model updates to the aggregator 

using the same noise distribution.  

For analysing the effectiveness of the proposed defences, we will resort to visual inspection 

of the centroids learnt by the aggregator. We noticed that, given the dimensionality and 

characteristics of the benchmarks considered, traditional metrics, such as the distortion, are 

not very informative to diagnose and reflect the impact of the attack on the resulting model. 

However, the visual inspection of the centroids clearly shows the significance and impact of 

the attack on the resulting models.  

 

4.4.1 MNIST Dataset 

Figure 24 shows the results for standard (non-robust) K-means clustering algorithm 

performance in the presence of colluding adversaries. Figure 24 (a) shows the centroids 

learned when colluding attackers perform an indiscriminate data poisoning attack. It can be 

seen that 7 of the resulting centroids are completely dominated by the flipped pixel values 

introduced by the colluding attackers and do not contain any of the valid digit class 

representation. On the other hand, 2 centroids (8th in 1st row and 10th in 2nd row) are not 

dominated by the flipped pixel values (introduced by the colluding attackers) but, 

nonetheless, they do not contain any useful data representation.    

Similar results can be observed for Figure 24 (b) which shows that learnt centroids for the case 

when colluding malicious clients perform a random model update attack. Here, it can be 

observed that 8 centroids contain just random noise and 1 centroid (3rd in 1st row) contains a 

digit that is distorted beyond recognition and does not contain any useful representation.  

Finally, Figure 24 (c) shows the resulting centroids for the case when there are multiple groups 

of colluding attackers in the federated learning setup. These groups have different malicious 

objectives i.e., one group of colluding attackers performs indiscriminate data poisoning attack, 

whereas the other group of attackers’ crafts random model updates. By inspecting the 

centroids in Figure 24 (c), we find that both attacks have been successful in compromising the 

centroids learned according to their malicious objective at the same time. For example, the 

3rd and the 5th centroid in the 1st row represent centroids successfully attacked by a random 
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model update attack whereas 9th centroid in the 2nd row contains a centroid that is inserted 

by the indiscriminate data poisoning attackers. We also observe that since in this case, there 

are two different group of attackers present in the training and each has attack category has 

only 50% of the total attackers, the overall number of centroids compromised in this setting 

(Figure 24 (c)) are less compared to when only one group of attackers is present (Figure 24 (a) 

and (b)).  

   

 

(a) Scenario 1: All malicious clients employ indiscriminate data poisoning attack 

 

(b) Scenario 2: All malicious clients send random model updates as 

learnt centroids  

 

(c) Scenario 3: 50% of malicious clients employ indiscriminate data 

poisoning attack and the remaining 50% of malicious participants 

send random model updates as centroids. 

Figure 24: Learnt centroids for MNIST dataset using standard (non-robust) K-Means clustering algorithm 

 

Figure 25 shows the results for the three scenarios when proposed robust clustering has been 

applied. We observe that in all three scenarios, the learnt centroids from proposed robust K-

means clustering algorithm do not contain any centroid compromised from either the 

indiscriminate data poisoning attack or random model updates attack.  
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(a) Scenario 1: All malicious clients employ indiscriminate data poisoning attack 

 

(b) Scenario 2: All malicious clients send random model updates as 

learnt centroids  

 

(c) Scenario 3: 50% of malicious clients employ indiscriminate data 

poisoning attack and the remaining 50% of malicious participants 

send random model updates as centroids. 

Figure 25: Learnt centroids for MNIST dataset using proposed robust K-Means clustering algorithm 

 

4.4.2 F-MNIST Dataset 

Figure 26 shows the centroids learned in the three attack scenarios described before. From 

Figure 26 (a) we observe that only one centroid (10th centroid in the 2nd row) is completely 

dominated by the indiscriminate data poisoning attack and majority of the other centroids are 

valid images corresponding to different F-MNIST dataset classes. On the other hand, the attack 

with random model updates is more successful against F-MNIST dataset, as 9 learnt centroids 

in  Figure 26 (b) only contain noise. Finally, Figure 26 (c) shows the learnt centroids for the 

scenario when two groups of attackers are present in the training task: one group of attackers 

is performing an indiscriminate data poisoning attack and the other group of attackers is 

sending random model updates. It can be seen that both types of attacks are able to 

compromise the training process, as 4 centroids show random noise (corresponding to the 

random model updates attack), and 1 centroid shows flipped pixel values (corresponding to 

the indiscriminate data poisoning attack). We also observe the similar trend as in MNIST 

dataset that the total number of centroids corrupted by the random model updates attack is 
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smaller in Figure 26 (c) compared to the case when only a random model update attack is 

performed during training i.e., 4 vs 9 corrupted centroids.  

 

 

(a) Scenario 1: All malicious clients employ indiscriminate data poisoning attack 

 

 

(b) Scenario 2: All malicious clients send random model updates as 

learnt centroids 

 

(c) Scenario 3: 50% of malicious clients employ indiscriminate data 

poisoning attack and the remaining 50% of malicious participants 

send random model updates as centroids. 

Figure 26: Learnt centroids for F-MNIST dataset using standard (non-robust) K-Means clustering algorithm 

 

Figure 27 shows the learnt centroids when using robust K-means. It can be seen that all learnt 

centroids in three scenarios correspond to valid images from F-MNIST dataset and none of the 

indiscriminate data poisoning attack or random model update attack has been able to 

compromise any centroid. 

 

 

(a) Scenario 1: All malicious clients employ indiscriminate data poisoning attack 
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(b) Scenario 2: All malicious clients send random model updates as 

learnt centroids  

 

(c) Scenario 3: 50% of malicious clients employ indiscriminate data 

poisoning attack and the remaining 50% of malicious participants 

send random model updates as centroids. 

Figure 27: Learnt centroids for F-MNIST dataset using proposed robust K-Means clustering algorithm 

 

The results for MNIST and F-MNIST datasets show that standard (non-robust) K-means 

clustering algorithm is very vulnerable to different types of attackers and multiple groups of 

colluding attackers can easily infiltrate and poison the training process. As a result, the 

integrity of trained model is compromised and, in many cases, it will not learn a very useful 

representation of the data. On the other hand, proposed robust K-means clustering algorithm 

successfully defends against these different attackers and the learnt representations of the 

data are very similar to the case when all participating clients are benign. On the other side, 

the results in Figure 25 and Figure 27 show that the quality of the centroids learned with 

robust K-Mean is comparable to the quality of the non-compromised centroids learned by the 

standard implementation. In other words, the use of K-Means does not seem to affect the 

quality of the centroids learned. 

 

4.5 Assessment of POMs 2 and 3 

POMs 2 and 3 require the aggregator to compute its operations in the encrypted domain, 

where some basic operations, such as comparisons, are not available. Thus, it is not possible 

to implement our robust clustering algorithm there. However, in this case, as shown in Table 

2, outlier detection can be applied to filter-out suspicious points from the training sets 

provided by the participants. The results on how outlier detection helps to mitigate attacks is 

analysed in Section 5.1.  
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4.6 Assessment of POMs 4 and 5 

In POMs 4 and 5, the use of robust clustering is limited to those cases where the aggregator 

works with unencrypted data. Otherwise, as in POM 2 and 3, outlier detection (see Section 

5.1) must be used to defend against poisoning attacks.  

The algorithms available in the MMLL library under these POMs up to 5th November 2021 did 

not implement the RobustAPI. However, for those cases where robust K-Means can be 

applied, the training of the robust clustering algorithm is analogous to POM 1. Thus, in terms 

of performance, we would expect to obtain the same results under POMs 4 and 5 as under 

POM 1 (see Section 4.4).  

 

4.7 Assessment of POM 6 

Here we report the experimental evaluation for POM 6. This experiment has been performed 

in MMLL library version 0.5.0 (the same as was used for deliverable D5.4) as the K-means 

clustering algorithm available did not use the RobustAPI. However, the API designed for robust 

clustering is available for integration in the MMLL library in subsequent versions. The API has 

been used in the assessment of POM 1 in this deliverable and can be directly integrated in 

POM 6 when the implementation of the clustering algorithms follows the same rules. 

As previously described in the assessment of POM 1 (Section 4.4), we consider three different 

types of colluding attack scenarios: 

1. All malicious participants perform the indiscriminate data poisoning 

attack. 

2. All malicious participants send random model updates back to the 

aggregator using the same noise distribution. 

3. Two sets of colluding attackers, where 50% of malicious participants 

perform an indiscriminate data poisoning attack and the remaining 50% 

of malicious participants send random model updates to the aggregator 

using the same noise distribution. 

We consider the evaluation of the K-means clustering algorithm on 2D-synthetic dataset that 

allows us to get a better visualization perspective on how different attacks compromise the 

centroids estimated in standard (non-robust) K-means clustering algorithm in MMLL library 

and the performance of our proposed robust K-means clustering algorithm which mitigates 

different poisoning attacks.      
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Figure 28 (a-c) shows the learnt centroids (red circles) on top of the clean training data (blue 

circles) for standard (non-robust) K-Means clustering algorithm for different colluding attack 

scenarios. It can be seen that the colluding attackers in all three scenarios can successfully 

manipulate the centroids. However, centroids are not severely compromised especially in case 

of indiscriminate data poisoning attack where only 1 out of 6 centroids is not supported by 

the distribution of data. This is because the low dimensionality of the dataset and the fact that 

the data is spread across a broad region of the space of valid data points. In the case of 

scenario 2 (random model updates attack) and scenario 3 (both random model update and 

indiscriminate data poisoning attack), 2 out of 6 centroids are not supported by the data 

distribution. As mentioned before, the apparent lower success of the attacks (compared to 

MNIST and F-MNIST datasets) can be attributed to low dimensional and (slightly) symmetrical 

nature of training data, and data range in [-1, 1], as the learnt centroids are not severely 

compromised by the indiscriminate poisoning attack which flips and clip the sample value in 

range [0, 1] or the random model updates which send centroids from uniform distribution 

𝒰𝑁𝑐 × 𝑝[−1.5, 1.5]. But, in all cases, the attack is still able to compromise the integrity of 

trained model. 

On the other hand, Figure 29 shows that centroids estimated by the proposed robust 

federated K-Means algorithm are in the support of the distribution of benign data points and 

are mostly unaffected by the different colluding attackers across the three scenarios, 

validating the effectiveness of this technique to defend against poisoning attacks in 

unsupervised learning settings.  

 

 

(a) Scenario 1: All malicious clients perform an indiscriminate data poisoning attack 

malicious 
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(b) Scenario 2: All malicious clients send random model updates as learnt centroids  

 

(c) Scenario 3: 50% of malicious clients perform an indiscriminate data poisoning 

attack and the remaining 50% of malicious participants send random model 

updates as centroids. 

 
Figure 28: Learnt centroids for 2D-Synthetic dataset using standard (non-robust) K-Means clustering algorithm 

 

malicious 

malicious 
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(a) Scenario 1: All malicious clients perform an indiscriminate data poisoning 

attack 

 

(b) Scenario 2: All malicious clients send random model updates as learnt centroids  
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(c) Scenario 3: 50% of malicious clients perform an indiscriminate data poisoning 

attack and the remaining 50% of malicious participants send random model 

updates as centroids. 
Figure 29: Learnt centroids for 2D-Synthetic dataset using proposed robust K-Means clustering algorithm 

 

5 Robustness of the Data Pre-processors  

5.1 Outlier Detection 

In this section, we evaluate the performance of the outlier detection scheme implemented in 

deliverable D5.4 for the MMLL library. The outlier detection scheme is used as a pre-

processing step before the start of the training and is applicable for all POMs and different 

learning algorithms and helps to mitigate data poisoning attacks. As shown in Table 1 and 

Table 2, outlier detection can be applied for all POMs in both supervised and unsupervised 

learning tasks, being a useful mitigation for those POMs where robust aggregation cannot be 

applied.  

We consider the federating training setup of a logistic classifier model similar to the one 

described in deliverable D5.4. We use Pima dataset and consider POM 5 for our evaluation. 

This training setup considers a total of 5 participants for the training of the model. One of 

these participants has poisoned the local training dataset which can undermine the 

performance of the trained model when using non-robust aggregation schemes, like FA. We 

consider the federated training for 20 communication rounds and the training stops when the 

change in the model parameters is less than 0.01.  For the outlier detector, we consider the 



 

 

 

 D6.3 Security of Federated Machine Learning Algorithms  44 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

normal samples threshold to be 0.90 and we consider 20 nearest neighbours for a sample’s 

outlier score estimation. Furthermore, for the poisoned data at the participant, we consider 

that sign of 50% of the training data at the participant has been flipped i.e., 𝑥′𝑖 = −𝑥′𝑖. 

 
Figure 30: Logistic classifier performance when all participants are benign 

 

Figure 30 shows the ROC curves when all participants are benign and proposed outlier 

detection scheme has not been used as a pre-processing step at the clients. It can be seen that 

AUC evaluated on the test set is 0.827. Figure 31 shows the performance of logistic classifier 

for the scenario when one of the participants has poisoned data. We observe that the 

performance of the trained classifier drops significantly to a smaller AUC of 0.738. This shows 

that standard implementations of algorithms in MMLL are very vulnerable and an attacker, 

who just crafts a very simple data poisoning attack that reverses the sign of only a proportion 

of training data at a participant, can decrease the accuracy of the federated learning model in 

the absence of any defensive strategy. 
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Figure 31: Logistic classifier performance when one participant has poisoned data 

 

On the other hand, Figure 32 shows the performance of logistic classifier when we apply the 

proposed outlier detector as a pre-processor on all clients’ training data to filter-out the 

poisoning points. We observe that the outlier detector can successfully minimize the influence 

of poison data on trained model and the ROC curve for the resulting model is very similar to 

the case when all the participants are benign with AUC 0.817 as shown in Figure 32. The small 

drop in performance is due to the fact that the scenario with poisoned datasets, has smaller 

number of effective (benign) training data points compared to the case where there is no 

attack. 
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Figure 32: Logistic classifier performance when one participant has poisoned data and proposed outlier detector is used 

as a pre-processor 

 

Finally, we also consider the federated training setup of logistic classifier when we use the 

proposed outlier detector as a pre-processor at the clients, even when all participating clients 

are benign. This is to analyse the effect of outlier detector as a data pre-filtering step at the 

clients to remove outliers (low quality data points that are not necessarily malicious) in the 

training datasets of the participants. The result in Figure 33 shows an improved AUC of 0.859 

compared to 0.827 observed in Figure 30 when all participants are benign during the training, 

but the proposed outlier detector has not been used as a pre-processor step. This shows that 

even in the absence of any adversary, outlier detection can be used to filter out low quality 

training data at the clients and can improve the performance of the trained model. 

The effect of outlier detection is the same regardless of the POM used, as it is applied before 

the training of the federated model starts. Thus, although in the experiments in this section 

we focused on POM 5, the results would be equivalent across the different POMs when using 

the same machine learning algorithm and settings.  
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Figure 33: Logistic classifier performance when all participants are benign and proposed outlier detector is used as a pre-

processor 

 

5.2 Label Sanitisation 

In supervised learning, we can mitigate the effect of label flipping attacks by using the data 

sanitisation strategy proposed in [Paudice et al. 2018] and described in deliverable D5.4. As 

shown in Table 1, label sanitisation can be applied for all supervised learning tasks across the 

different POMs in the MMLL library and a viable alternative for those POMs where robust 

aggregation cannot be applied. 

In the experiments for this section, we consider the federating training of a logistic classifier 

(LC) model. We use Pima dataset and consider POM 6 for our evaluation. The total number of 

participants is five. One of these participants is a label-flipping attacker, which can undermine 

the performance of the trained model when using non-robust aggregation schemes, like FA. 

We consider the federated training for 20 communication rounds. We stop the training when 

the change in the model parameters is less than 0.01.  For the label sanitisation, we consider 

the normal samples threshold to be 0.90. For the KNN Classifier, we consider 10 nearest 

neighbours to estimate the sample’s label. PIMA is a binary classification task, so the label 

flipping attacker simply flips the labels of the training data points. 
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Figure 34: Logistic classifier performance when all participants are benign 

 

Figure 34: Logistic classifier performance when all participants are benign shows the ROC 

curves when all participants are benign without any data pre-processing. AUC on the test set 

is 0.842. Figure 35: Logistic classifier performance when one participant is label flipping 

attacker shows the performance of the logistic classifier for the scenario when one of the 

participants is a label-flipping attacker (participant #3). We observe that AUC on the test set 

drops to 0.188. Predictably, standard algorithms in the MMLL library are extremely vulnerable 

to even a single malicious participant. Figure 36 shows the performance of the logistic 

classifier against one label-flipping attacker when we apply the proposed label sanitisation 

technique as a pre-processor on all clients’ training data to flip the most suspicious labels in 

their local training data to the closest class in the provided curated dataset. In this case, AUC 

on the test set is 0.787, which is comparable to the training logistic classifier in federated 

settings with all benign participants. Overall, we observe that label sanitisation successfully 

minimises the influence of label flipping attackers. The final ROC curve for the trained model 

is similar to that of the tested model when all the participants are benign. 

The effect of label sanitisation is the same regardless of the POM used, as it is applied before 

the federated learning starts. Thus, the results in this section are generalisable to different 

POMs when using the same machine learning algorithm and settings.  
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Figure 35: Logistic classifier performance when one participant is label flipping attacker 

 

 
Figure 36: Logistic classifier performance when one participant is label flipping attacker and proposed label sanitisation is 

used as a pre-processor 
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6 Robustness of Supervised Learning Algorithms against Evasion 

Attacks 

For this evaluation we test the MMLL library against evasion attacks when defensive steps are 

taken by the clients. This builds on the work presented in deliverables D5.3 and D5.5 which 

evaluated POM 1 on an older version of the library. Here we extend the evaluation to also 

include POM 2 and POM 3. For the evaluation of the attacks and defences we use v2.2.0 of 

the MMLL library. 

The structure of this evaluation is as follows: we give relevant background into evasion attacks 

in 6.1, introduce the attack we use in Section 6.2, the defence employed in Section 6.3, 

motivations for the POMs selected in 6.4 and finally show the results in Section 6.5 and 6.6.  

 

6.1 Evasion Attacks 

Evasion attacks are a well-known phenomenon in machine learning. In the classical setup, an 

attacker begins with a datapoint 𝑥 and optimises to find a perturbation 𝛿 such that a classifier 

will output different predictions for 𝑓(𝑥) compared to 𝑓(𝑥 + 𝛿). The perturbation 𝛿 is 

constrained to be small, in the image domain this is typically done using a 𝐿𝑝 norm. The 

difficulty from a defender’s perspective is that 𝛿 can be so small such that it is challenging to 

detect, and furthermore adaptive attackers can tailor their optimisation to evade many 

proposed defences [Athalye et al, 2018]. An example of how small the perturbations can be, 

and yet have a significant impact, is shown in Figure 37: A adversarial perturbation is added, 

such that the image on the right is indistinguishable to the human eye compared to the 

original, and yet changes the prediction of the neural network. 

 



 

 

 

 D6.3 Security of Federated Machine Learning Algorithms  51 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 37: A adversarial perturbation is added, such that the image on the right is indistinguishable to the human eye 

compared to the original, and yet changes the prediction of the neural network. 

 

6.2 Summary of the Attacks used for the Assessment 

Test time evasion attacks against FL trained models function in an equivalent manner to 

modes trained in a centralised setting. There are therefore many different attacks developed 

by the community to simple one step methods [Goodfellow et al. 2014] to complex 

optimisation schemes [Carlini, N. and Wagner, D. 2017]. Here we evaluate the models using 

Projected Gradient Descent (PGD) as it is one of the most widely used benchmark attacks 

[Madry et al. 2018]. 

The parameters we use for the attack are a 𝐿∞ bound of 0.3, with 40 gradient iterations each 

using a step size of 0.01. We use the Adversarial Robustness Toolbox to run the attacks 

[Nicolae et al, 2018] providing a well-tested and opensource implementation of the PGD 

attack. 

 

6.3 Summary of Defences Available 

In a similar manner to the wide range of attacks there are many defences to choose from. We 

evaluate the models when they conduct adversarial training [Madry et al. 2018], as it is a well-

established defensive method which offers strong performance and is a widely used 

benchmark for both attacks and defences. Given (𝑥, 𝑦) data label pairs the defence aims to 

find a set of parameters 𝜃 to solve the following optimisation problem:  

 

𝑚𝑖𝑛
𝜃

 𝜌(𝜃), where 𝜌(𝜃) = 𝔼(𝑥,𝑦)∼𝐷 {𝑚𝑎𝑥
𝛿∈𝒮

 ℒ(𝑥 + 𝛿, 𝑦; 𝜃)}. 
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where ℒ is the loss function of the neural network, and 𝛿 is the adversarial perturbation. The 

adversarial perturbation is limited to a 𝐿𝑝 ball to which the defender will try and protect up 

to. For the MNIST dataset we examine 𝐿∞ = 0.3 which is a commonly used bound.  We 

additionally use random starting of 𝑥 while training where each datapoint is projected to a 𝐿∞ 

ball of maximum 0.3 when the adversarial example construction process begins to avoid 

overfitting. 

 

6.4 Applicability of the Defences for each POM 

We consider neural network-based architectures as being applicable for this assessment. 

Adversarial examples can be made for other machine learning models, however state-of-the-

art defences against adversarial examples have been designed and developed for protecting 

neural networks. Hence for this section POMs 1 – 3 will be in theory applicable. However, in 

practice only POM 1 is of practical relevance due to the computational overheads incurred 

with the encryption schemes employed in POM 2 and 3. More precisely, adversarial training 

requires large neural networks to handle the difficulty of the underlying task. However, for a 

network with just 8,000 parameters the extra time overhead is between 5 – 10 min for POM 

2 and POM 3 per round. When scaling to neural networks of realistic size with millions of 

parameters [Madry et al. 2018] the time overhead runs into 12+ hours making it impractical 

for use. 

For this assessment we are considering neural-network-based models and so do not 

adversarially train models in POMs 4 - 6. This is because to be effective classical adversarial 

training requires models with large capacities following results in prior literature works 

[Madry et al. 2018]. Therefore, shallow models such as logistic regression are ineffective at 

handling adversarial training on complex data like images. Hence, without adversarial training 

we did not run adversarial evaluations as it will not show anything which is not already well 

established by the machine learning community: that ML models are vulnerable to evasion 

attacks. Without defences, regardless of centralised or federated training, the resulting 

models are known to be vulnerable to adversarial examples e.g.  SVMs  [Papernot et al, 2016] 

or regression [Mode, G.R, and  Khaza, A.H  2020] [Zizzo et al, 2020]. 

 

6.5 Assessment of POM 1 

For POM 1 we use the MNIST neural network in [Madry et al. 2018] and we run MMLL for 80 

communication rounds with 3 clients, each of which has a random partition of the MNIST 

dataset. 
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The final performance of the model when trained adversarially is 98.24% on normal data and 

93.22% on adversarial examples. Conversely, the performance when trained normally without 

adversarial training is 0.01% for adversarial examples and 98.78% on normal data.  

The security curve showing the relationship between the epsilon budget and the accuracy of 

the model is shown in Figure 38. 

 

 
Figure 38: Performance of the models with varying attack budget 

 

6.6 Assessment of POMs 2 and 3 

Here, we used a much smaller neural network comprising of 2 convolutional layers and a final 

dense layer with slightly less than 8,000 parameters. Due to the high computational costs with 

running the encryption algorithms we run MMLL for 20 communication rounds with 3 clients, 

each of which has a random partition of the MNIST dataset. 

With a network of such a small size adversarial training predictably fails. The neural network 

does not learn the underlying task and outputs the prediction “1” for essentially all inputs and 

its accuracy on both adversarial and normal data is ~10%. This occurred on both POM 2 and 

3. Note that this is not due to federated learning: centralised adversarial training still results 

in a model outputting the same class for all inputs. 

If for POM 2 using FL we train the model normally (i.e., non-adversarially) then it functions 

well on normal data with 97.21% accuracy, however as it is undefended against evasion 

attacks its performance on adversarial data is 0.0%. Likewise, for POM 3 the normal data 
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performance is 97.94% and the adversarial performance is 0.0%. The corresponding security 

curve is shown in Figure 39. 

 

 
Figure 39: Performance of the smaller model used for POM2/3. As when PGD training is attempted the 

model essentially always outputs the same prediction the accuracy for the PGD model is constant. 

 

7 Conclusion  

In this deliverable we have presented a comprehensive evaluation of the robustness of the 

algorithms developed and implemented in the MMLL library for MUSKETEER. We have 

considered scenarios with poisoning attacks (at training time) and evasion attacks (at test 

time), both in supervised and unsupervised learning settings.  

As we already shown in previous deliverables in WP5 (see for example D5.2 and D5.3), 

standard federated learning algorithms can be very brittle in the presence of an adversary, 

who can compromise the performance of the resulting model both at training and at test time. 

On the other side, our evaluation has shown that the defensive techniques developed and 

implemented in the library are effective to mitigate these threats, achieving the KPIs described 

in the consortium agreement and offering significantly improved robustness (e.g., being 

robust to attack scenarios with 20% of malicious participants). The defences implemented in 

MUSKETEER have also been put to the test in the 2nd Hackathon, which was entirely designed 

around the participants attempting to break the defences.   

Our assessment has comprehensively included the analysis of the robustness of the federated 

algorithms across the different POMs implemented in the platform. Two main types of 
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defences have been implemented and evaluated: defences based on data pre-filtering and 

defences based on robust data aggregation. Defences based on pre-filtering can be applied 

across all the POMs and in all the modes and help protect the model from outsider attacks. 

Defences based on robust data aggregation help protect the learning against insider attacks, 

even when the malicious users collude but not if the malicious users are too numerous. Our 

aim was to achieve robustness for 20% malicious users. The results above demonstrate that 

we achieve this and exceed it, in some cases by a significant margin. In some cases, our 

defences go beyond simply mitigating the attacks as they also enable to identify the malicious 

users. However, defences based on data aggregation can only be used when the aggregator 

can perform the operations required. This is not the case when the aggregator operates on 

encrypted data or has to rely solely on the operations supported by homomorphic encryption. 

This is also the case for adversarial training. In this sense, there is a trade-off between privacy 

and robustness to attacks. Restricting the aggregator’s access to the updates also restricts its 

ability to defend against malicious clients. Users of the MUSKETEER platform are therefore 

advised to balance carefully data privacy risks and model integrity risks in their given context 

of application.  

Our assessment justifies the need of having mechanism to defend against training and test-

time attacks and endorses the usefulness and the efficacy of the techniques implemented in 

the MMLL library to mitigate such attacks.  
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