
H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

November 20

D7.2 Client connectors’ architecture design –
Final version

 D7.2 Client connectors’ architecture design – Final version 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 30 November 2020

Author(s): Susanna Bonura, Davie Profeta and Domenico Messina (ENG)

Participant(s): ENG, IBM, IDSA

Reviewer(s): Lucrezia Morabito (COMAU), Mark Purcell (IBM)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP7

Dissemination level: Public

Version: 1.0

Contact: Susanna Bonura – susanna.bonura@eng.it

Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving

Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 824988. The sole

responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be

made with reference to the publisher.

 D7.2 Client connectors’ architecture design – Final version 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

The client connector is the component required for a participant to join the MUSKETEER

Platform. It is the software application supporting MUSKETEER platform participant in his data

exchange, share and process, so to guarantee that he is sovereign of his data.

The client-side connectors have to support the set of privacy operation modes (POMs) made

available throughout the project according to the architecture defined in T3.1 and meet the

requirements of the federated and privacy-preserving machine learning services designed in

WP4. Moreover, the client component provides services for locally combining model updates

into one consistent, up-to-date model instance. The client component serves as adaptor for

the integration and industrial validation of the MUSKETEER platform in WP7.

The client connector, running on a secure and private space, provides the interface (Client

Connector External APIs) for receiving a set of instructions from a master controller of the

MUSKETEER server, related to the transferring of the required datasets and/or models

(according to the POM chosen) from/to the MUSKETEER core to the secure and private space

for the training of an MUSKETEER ML model.

Two different architectures of the client connector are presented. The Desktop Client

Connector can be used when data is collected in a non-centralized way and there is no need

to use a cluster to distribute the workload, both in terms of computing and big data storage.

Anyway, the Desktop version could also leverage GPUs for the training process, enabling the

processing of a large amount of data in terms of volume. Finally, the Desktop Client Connector

can be easily deployed in any environment thanks to the use of Docker in order to containerize

the Client Connector application. The Cluster Client Connector is devised to meet big data

processing and federated machine learning needs. From the user perspective, there are not

many changes related to the user interface and the user experience because the frontend

consistency is kept in both versions. Contrarywise, there are deep differences in the backend

side of the architecture due to the distributed nature of the system.

The client connector component is comprised of two local connectors. One is external, to

allow users to share their (encrypted) data and/or to receive (encrypted) model updates

generated on the server side, by exposing an endpoint to upload/download information

and/or to retrieve trained models or (encrypted) model updates, depending on the POM. The

second one is local and implements a set of interfaces to access and, if needed, pre-process

data stored in local databases or file systems.

 D7.2 Client connectors’ architecture design – Final version 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Document History

Version Date Status Author Comment

0.1 1/10/2020 Table of Content ENG First draft
0.2 5/10/2020 Architecture images updated ENG Update
0.3 9/10/2020 Inputs for desktop client

connector general description
ENG Update

0.4 16/10/2020 Inputs for cluster client
connector general description

ENG Update

0.5 23/10/2020 Reference to the MUSKETEER
Platform architecture added

ENG Update

0.6 2/11/2020 Completed. Ready for internal
review

ENG Second draft

0.7 5/11/2020 Review inputs from IBM ENG Update
0.8 6/11/2020 Review inputs from FCA ENG Update
0.9 9/11/2020 Finalization Cleaning to be ready for

submission
1.0 9/11/2020 Final Version IBM Final

 D7.2 Client connectors’ architecture design – Final version 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES .. 5

LIST OF ACRONYMS AND ABBREVIATIONS ... 6

1 INTRODUCTION .. 7

1.1 Purpose ... 7

1.2 Related Documents .. 7

1.3 Document Structure ... 8

2 CLIENT CONNECTOR: A GENERAL DESCRIPTION... 9

3 MUSKETEER TECHNICAL REQUIREMENTS .. 11

4 MUSKETEER PLATFORM ARCHITECTURE ... 13

4.1 MUSKETEER ML Task entity .. 16

4.2 Client Connector entity... 18

5 MUSKETEER CLUSTER CLIENT CONNECTOR ARCHITECTURE 21

5.1 MUSKETEER Cluster Client Connector ... 22

5.1.1 Cluster Client Connector: Proposed APIs .. 28

5.1.2 Cluster Client Connector: Workflows .. 33

5.2 MUSKETEER Desktop Client Connector ... 37

5.2.1 Desktop Client Connector: Proposed APIs .. 39

5.2.2 Desktop Client Connector: Workflows .. 48

6 CONCLUSION.. 51

7 REFERENCES ... 52

 D7.2 Client connectors’ architecture design – Final version 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1 - MUSKETEER’s PERT diagram .. 8

Figure 2 – Connector concept [1] ... 9

Figure 3 – Interaction among connectors according to IDSA RAM [1] 10

Figure 4 - MUSKETEER centralized server platform architecture .. 15

Figure 5 – Connector system layer architecture according to IDSA RAM [1] 19

Figure 6 - Client Connector Modes .. 22

Figure 7 – MUSKETEER Client Connector Architecture .. 23

Figure 8 – ‘List tasks” sequence diagram ... 34

Figure 9 - “create a task” sequence diagram ... 35

Figure 10 – “Task participation” sequence diagram .. 36

Figure 11 - Desktop Client Connector Architecture ... 37

Figure 12 - Desktop Client Connector Sequence Diagram – Listing tasks................................ 48

Figure 13 - Desktop Client Connector Sequence Diagram – Task participation 49

Figure 14 - Desktop Client Connector Sequence Diagram – Task aggregation........................ 50

 D7.2 Client connectors’ architecture design – Final version 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition

API Application Programming Interface
CA Consortium Agreement
DC Data Connector
DP Differential Privacy

DV Data Value
FS Feature Selection
FSM Finite State Machine
GA Grant Agreement
IDR Intermediate Data Representation
IDS Industrial Data Space

LC Logistic Classifier
LGFS Linear Greedy Feature Selection

MK Master Key
ML Machine Learning
MLP Multi-Layer Perceptron
MN Master Node

OS Operating System
PERT Program evaluation and review technique
PK Public Key
POM Privacy Operation Mode
PP Privacy Preserving

PPML Privacy Preserving Machine Learning
RAM Reference Architecture Model
ROC Receiver Operating Characteristics

SQL Structured Query Language
TA Task Alignment
UI User Interface

WN Worker Node

 D7.2 Client connectors’ architecture design – Final version 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

This document presents the final version of the MUSKETEER client connector architecture. It

derives from technical requirements for MUSKETEER platform and from user needs of the two

industrial scenarios considered within the project. The MUSKETEER client connector

architecture is compliant with the general MUSKETEER platform architecture, presented in the

deliverable D3.2 - Architecture design – final version.

1.2 Related Documents

This deliverable is the document describing the final version of main functionalities of the

client connector. It contains the design of two types of Client Connector architectures (cluster-

based and desktop-based) to meet two different sets of user needs and requirements.

This deliverable is related to the following documents (also see Figure 1):

• D3.1 Architecture Design – Initial Version – detailing the first version of the

MUSKETEER architecture.

• D3.2 Architecture Design – Final Version – detailing the final version of the

MUSKETEER architecture.

• D2.1 Industrial and technical requirements – in so far as the platform architecture has

to address functional and non-functional technical requirements described in that

document.

• D2.2 Legal requirements and implementation guidelines – in so far as the design of

the platform architecture should follow the implementation guidelines arising in the

context of the applicable legal and ethical framework.

• D2.3 Key performance indicators selection and definition – in so far as the platform

has to either provide the core capabilities that other functional components (e.g. the

algorithmic library or the client connectors) require to meet their goals, or to meet

specific goals itself.

• D4.1 Investigative overview of targeted architecture and algorithms – in so far as the

platform has to provide the core capabilities to support and enable the targeted

architecture and algorithms.

• D4.2 Pre-processing, normalization, data alignment and data value estimation

algorithms (initial version) – in so far as the platform has to provide the core

capabilities to support the deployment of the proposed algorithms.

 D7.2 Client connectors’ architecture design – Final version 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• D5.1 Threat analysis for federated machine learning algorithms – in so far as the

platform has to provide the core capabilities to support the deployment of the

proposed algorithms.

• D6.1 Assessment framework design and specification – in so far as the platform has

to provide the core capabilities to support the application of the proposed framework

and meet relevant key performance indicators (KPIs).

• D7.1. - Client connectors’ architecture design (initial version) – the precursor to this

document.

Figure 1 - MUSKETEER’s PERT diagram

1.3 Document Structure

In the next section (Section 2), the general description of client connectors is presented

according to the IDSA connector specifications.

In Section 3, MUSKETEER platform technical requirements are recapped in order to cross

check that the requirements involving end user software side, are met in the client connector

architecture design.

In Section 4, a summary of the MUSKETEER platform architecture is presented, so to have a

comprehensive picture before detailing client connectors.

 D7.2 Client connectors’ architecture design – Final version 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Section 5 presents the final version of the MUSKETEER client connector architecture,

according two flavours: desktop based one and cluster based one, showing for each of them

proposed APIs and workflows among components.

Finally, Section 6 concludes the deliverable. It outlines the main findings of the deliverable and

takes into account the chance for further analysis in conjunction with other work packages.

2 Client Connector: a general description

The client connector is the component required for a user who wants to join the MUSKETEER

Platform. In general, connectors are the central technological building block of the

International Data Spaces [1]. They are software components supporting participants in their

data exchange, share and training of machine learning models. At the same time, connectors

guarantee that the Data Owner is sovereign of his data.

Figure 2 – Connector concept [1]

Figure 2 shows the main elements composing a connector.

• The deployment context of a connector records the connector’s location, as for

example the data centre and coordinates, the type of its deployment (on-premises or

cloud-based), and the name of the Participant.

• The security profile indicates the capabilities of a connector to maintain a controlled,

secure and trusted environment for exchanging, sharing and processing data, through

remote integrity verification, application isolation, usage control support.

• The catalogue represents the repository of the metadata of resources, constructed in

accordance with the IDS Ontology, through which connectors provide or consume

data.

• Optionally, the catalogue, or individual sets of resource metadata (about functions and

interfaces, pricing models, licenses, etc.), may be advertised via intermediary nodes,

 D7.2 Client connectors’ architecture design – Final version 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

such as the broker service provider, which is an intermediary that stores and manages

information about the data sources available in the International Data Spaces, or in the

app store.

• Each host represents an individual communication capability of the connector, a server

that exposes resources via endpoints (HTTPS URLs, MQTT topics, etc.) according to the

communication protocol supported [1].

Figure 3 – Interaction among connectors according to IDSA RAM [1]

According the IDSA Reference Architecture Model (RAM), in general, a set of applications

(Apps) are deployed inside the connector, to facilitate data processing workflows.

The Figure 3 shows interaction among connectors, one for each user participating to the

federation, according to IDSA RAM, thus each participant should be able to run the Connector

software in their own IT environment.

Every connector participating in the IDS Platform must have a unique identifier and a valid

certificate. In addition, it must check and verify the identity of other connectors and provide

a valid certificate, so that each participant in the platform is able to verify the identity of any

other participant. The connector serving as the data source must be able to verify the

receiving connector’s capabilities and security features as well as its identity.

Communications among connectors can be encrypted and integrity protected. In addition,

connectors must be able to ensure that IDS participants’ data is handled according to the

usage policies specified: otherwise the data will not be exchanged.

 D7.2 Client connectors’ architecture design – Final version 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Data providers and data consumers must be able to decide which level of security they intend

to apply for their respective connectors by deploying connectors supporting the selected

security profile.

Participants must have the opportunity to describe, publish, maintain and manage different

versions of metadata, which describe the syntax, serialization and semantics of data sources.

Participant must be able to provide an interface for data and metadata access, to transmit

metadata of its data sources to one or more brokers, and to browse and search metadata in

the metadata repository, provided the participant has the right to access the metadata.

To create and structure metadata, participant may use vocabularies, that can be already

existing or created ad hoc by the operator.

Vocabulary hubs are central servers that store vocabularies and enable collaboration,

searching, selection, matching, updating, requests for changes, version management,

deletion, duplicate identification, and unused vocabularies.

Alternatively, they can run a Connector on mobile or embedded devices. The operator of the

Connector must be able to define the data workflow inside the Connector. Participants must

be identifiable and manageable. Passwords and key storage must be protected. Every action,

data access, data transmission, incident, etc. should be logged. Using this logging data, it

should be possible to draw up statistical evaluations on data usage etc. Notifications about

incidents should be sent automatically.

The Connector receives data from an enterprise backend system, either through a push-

mechanism or a pull-mechanism. The data can be provided via an interface or pushed directly

to other participants.

Finally, according the IDSA RAM, other Connectors can subscribe to data sources or pull data

from these sources. Data can be written into the backend system of other participants.

3 MUSKETEER Technical Requirements

This section shows the list of the technical requirements that were elicited starting from the

business requirements coming from the description of the user stories in Smart Manufacturing

and Health scenarios (for more detail please see the deliverable D2.1 - Industrial and Technical

Requirements).

The list of such technical requirements is shown in the following table.

For each requirement, the ID is highlighted in green text if the current prototype described in

D7.3 satisfies the requirement. A requirement may also be highlighted in orange text if the

 D7.2 Client connectors’ architecture design – Final version 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

current prototype partially satisfies the requirement. If a requirement is not currently satisfied

by the D7.3 prototype, it is not highlighted. These requirements are still subject to ongoing

development.

ID Description

TR001 The MUSKETEER platform shall ensure that access control over datasets is applied

according to the data policies and the terms of relevant active valid data sharing

contracts.

TR002 The MUSKETEEER platform shall forbid unauthorised user access to the platform

and the datasets.

TR003 The MUSKETEEER platform ensures different authorisation levels for accessing

datasets.

TR005

MUSKETEEER end user must have a unique identification that will be used in all the

data exchange/communications.

TR006 Registration into the MUSKETEER Platform with username a password.

TR007 MUSKETEEER end user could create one or more new tasks.

TR008 In MUSKETEER a task must be defined as a problem statement that feeds from data

and produces a trained machine learning model.

TR009 New tasks should obtain unique task identifier.

TR010 In MUSKETEER a task should have a general description.

TR011 The MUSKETEER Platform must, for each task, uniquely identify every input data

from every end user.

TR012

Description of the input features. The meaning of every field must be explicitly

described.

TR013

The MUSKETEER Platform must share a set of pre-processing algorithms such that

every end user pre-processes its own raw data to obtain a common representation

(e.g. high pass filtering, edge detection, bag of words with TFIDF weighting …).

TR014 MUSKETEER pre-processing modules should always produce an output vector with

the expected content and format.

TR015 MUSKETEER must make any ad hoc pre-processing algorithms (defined and

implemented by the end users) shared with other users contributing to the task.

 D7.2 Client connectors’ architecture design – Final version 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

TR016 In MUSKETEER, for each task, definition and nature of the problem to be solved,

must be shared among all the participants in a task such that they can contribute

with new data to the training process.

TR017 MUSKETEER Privacy Operation Modes (POMs) must cover all kinds of privacy

restrictions that end users would apply to his/her data.

TR018 Privacy restriction should be described in natural language to facilitate the

specification of the task to the end user.

TR019 MUSKETEER Platform should envisage monetary rewards as well as collaborative

results.

TR020 Browsing for published active tasks by MUSKETEER end users.

TR021 Creation and/or access to published active tasks by MUSKETEER end users.

TR022 Running of the training procedure associated to a given MUSKETEER ML task.

TR023 Monitoring of the progress of MUSKETEER ML tasks until completion.

TR024 MUSKETEER must provide the outcome of a task (reward, trained model, etc.).

TR025 MUSKETEER must allow data to be transferred and joined either in the server or in

a given user.

TR026 MUSKETEER must support the case where no raw data is transferred outside the

client facilities (the ML model training must take place in the server by using the

aggregated information from the clients).

It is worth to noticing that the fulfilment of requirements that are not highlighted, highly

depends on the design and implementation of the server-side and MMLL library. They can

only really be evaluated over time. As such, at this point in time, they cannot be considered

complete. The requirements highlighted in orange, are deemed partially complete already,

but a more thorough review over a longer period of time is also preferable.

4 MUSKETEER Platform Architecture

The MUSKETEER platform must provide the infrastructure and implement the services that

are required (gathered in WP3) to enable the distributed machine learning capabilities

developed in WP4 and WP5, along with interfaces supporting the use case integration in WP7.

The final version of the MUSKETEER platform architecture is described in the deliverable D3.2.

This architecture is based on micro-services and places a significant emphasis on open

standards. Many of the underlying components used are open source. The use of open

 D7.2 Client connectors’ architecture design – Final version 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

standards and services avoids vendor lock-in to a significant extent, thereby enhancing the

prospect of utilising alternative cloud providers or on-premise deployments in the future, if

that is so desired.

The MUSKETEER platform architecture is client-server (see Figure 4): the server component

coordinates the secure transportation of information and models across the participants, the

client components allow use case participants to share information (the kind of data to be

exchanged will depend on the Privacy Operation Mode (POM)), retrieve model updates,

incorporate those locally, and ultimately retrieve the trained machine learning models for the

deployment in their local business processes.

The server infrastructure is provided by IBM, using the IBM® Cloud™ platform. It will host

micro-services for data management, machine learning and internal/external data exchange

(i.e. IBM Cloud™ Messages for RabbitMQ, IBM® Db2® on Cloud, IBM® Cloud Object Storage,

IBM Cloud™ Functions, IBM Cloud™ Kubernetes Service).

For data management, different database persistence layers are envisioned to support

different types of data, like Object Storage for large unstructured data (such as images), or

Relational Database Management Systems for relational data (such as numerical sensor

measurements and associated metadata).

With regard to the machine learning capabilities, algorithms provided will be based on Python

with deep learning frameworks such as TensorFlow [5], Caffe [6], PyTorch [7], Keras [19], to

support efficient execution of model training on CPU and GPU processing.

An external connector implements the features that allow users to upload/download

information and/or to retrieve trained models or (encrypted) model updates, depending on

the POM.

Interoperability between components (cloud-based and remote) is through a messaging

system, based on the Publish / Subscribe Design Pattern [3]. This is backed by RabbitMQ [4].

Messages are published to RabbitMQ and routed to subscribed parties. RabbitMQ is

instantiated in the public cloud and is an internet addressable service, allowing remote clients

to connect. Remote clients require appropriate credentials which are obtained through the

registration process.

Using this messaging system, the initiation of all network connections is outbound only. This

means that no remote component (aggregator or participant system) accepts an incoming

connection with no network ports openly addressable to the internet.

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article

 D7.2 Client connectors’ architecture design – Final version 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 4 - MUSKETEER centralized server platform architecture

All access to platform services from remote components (provided by other work packages)

is through the Federated Machine Learning Framework (FMLF) package. This contains APIs to

simplify access to the platform and is installed at remote sites.

Users of these APIs must be authenticated, but first, the User Registration service allows users

to register with the platform. This service creates user accounts on the RabbitMQ instance.

These registration details allow users to subsequently authenticate with the platform,

providing access to the APIs and platform services. Access to individual APIs is also controlled

through an authorisation layer. Further details on the MUSKETEER cloud server architecture

are described in D3.2.

As already mentioned, the MUSKETEER platform is a client-server architecture, where the

client is intended as a software application that in general is installed on-premise and run at

every end user side. Such a software application is named client connector in the MUSKETEER

taxonomy.

On the other hand, the MUSKETEER server is the central part of the platform that

communicates with all the client connectors and acts as a coordinator for all the operations.

Users federated to MUSKETEER, interact with the client connector installed on their side and

that client will communicate with the server to perform several actions on the platform.

For the aims of the present document, only the technical requirements involved in the client

side will be reported. They will be mentioned in round brackets in section 5.1.

 D7.2 Client connectors’ architecture design – Final version 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The interactions between the MUSKETEER server and the client connector aim at supporting

two types of activities: the first one is operative and regards interactions to exchange

messages and pieces of information for the general operation of the platform (create a new

user, ‘log-in’ as a user, define a task, declare privacy preferences, describe data attributes,

feedback reporting, etc.); the second one regards the actual model training, that is the

interaction to exchange the messages and pieces of information during the training phase of

the ML algorithm. For both activities, the knowledge of the ‘task’ entity is crucial. It is detailed

in the next section.

4.1 MUSKETEER ML Task entity

A ML task may be as a problem statement that feeds from data and produces a trained

machine learning model as an outcome. Any MUSKETEER end user can create one or more

new tasks thereby obtaining a unique task identifier (task_id) from the platform and run them

even in parallel.

The definition step requires the specification of the task characteristics:

- General description: a high-level description of the task (the problem to be solved) is

necessary for a rapid identification of existing tasks by other users. In a first version of

MUSKETEER, this part can be reduced to a minimum, since the end users and their tasks

are already defined.

- Data: it is recommended to facilitate an initial dataset, i.e., some data illustrating the task

to be solved. Data comprises input feature vectors (x) (for non-supervised tasks) and pairs

of input feature vectors and target values (x, t) (for supervised tasks).

- Features description: a general description of the input features (like defining the fields in

a Table) is necessary to unify the data representation among users and finally being able

to combine all the contributed data during the learning stage. In the above-mentioned

general case where input data is represented as a vector, the meaning of every field in

such a vector must be explicitly described, for compatibility purposes.

- “Ad hoc” preprocessing algorithm (optional): in some cases, input data is not so easily

represented in terms of individual meaningful features and the feature vector may be the

result of applying some (possibly complex) preprocessing to a raw piece of information

(for instance an image, a text, a voice recording, etc.). In those cases, when the raw data

cannot be transmitted to the MUSKETEER server and processed in the same place, it is

necessary to share the preprocessing algorithm such that every end user preprocess its

own raw data to obtain a common representation into the feature vector x. For instance,

in the image case, some transformations may need to be applied to an image before

feeding it into a machine learning model, such as high pass filtering followed by an edge

detection, a specific feature extraction, etc.; in the case of texts, the preprocessing could

be a bag of words with TFIDF weighting, etc. The casuistic can be extremely large and

problem dependent, so it is important to guarantee that the preprocessing module always

 D7.2 Client connectors’ architecture design – Final version 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

produces an output vector with the expected content and format and it is recommended

that the “ad hoc” (non-standard) preprocessing algorithms be defined and implemented

by the end users defining a specific task, such that if can be shared with other users

contributing to the task as a “preprocessing object”.

- Target values: the problem to be solved is defined by the target values (in supervised

tasks). For instance, given the above described features, the target could be to estimate

the annual income in euros, or to estimate if that person is unemployed or not. The

definition and nature of the target must also be shared among all the participants in a task

such that they can contribute with new pairs (x, t) to the training process.

- Privacy requirements: it is important that the end user determines which are the privacy

restrictions that apply to his/her data, because those restrictions will determine the POMs

that can be used. It is more operative that the user declares the privacy restrictions that

apply to the data and then the platform offers the available POMs to solve the ML task.

The ‘data_privacy’ parameter can be chosen among several options, described in natural

language to facilitate the specification of the task to the end user, for example, one end

user may adhere to some of the following statements:

- my data is open and can be freely distributed;

- my data can be shared after anonymization;

- my data can be shared only with the MUSKETEER platform under some confidentiality

agreement with the platform;

- my data can be shared with other end users under some confidentiality agreement with

the end users;

- my raw data cannot leave my facilities (only the MUSKETEER client can see it and obtain

some operations on it: gradients, dot products, etc., but never reveal individual data

points.)

- my data can be used for a given task, but not for other tasks.

- Reward: this is the motivation for other users to join the task and offer their own data.

After completion of the task, the reward is shared among the participants. In the context

of this project the motivation by the end users is taken for granted, but it is important not

to forget its existence, specially to motivate the data value estimation procedures to be

developed in WP6.

The expected reward could be, for example, among other possible options are:

- monetary: a user wants to improve a ML model, he/she deploys a MUSKETEER task and

offers a monetary reward upon successful completion of the task. Other users owning data

of potential interest for the task can join the initiative. After training is completed, the

contribution of every participant will be (hopefully) determined by the data value

estimation modules, and the reward will be distributed according to the value of every

contribution. The initial user retains the trained model for its own use.

 D7.2 Client connectors’ architecture design – Final version 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

- collaborative results: all participants contribute with a portion of data to the task and the

resulting learned model is shared among all participants in the task (well, possibly only

among those identified as positively contributing to the task solution).

Hence, once in the platform, any end user will have mechanisms to:

- browse for published active tasks, and join one or more of them

- create his/her own task as explained above

- run the training procedure associated to a given ML task and follow the progress until

completion

- receive the outcome of a task (reward, trained model, etc.).

4.2 Client Connector entity

Before presenting the MUSKETEER Client Connector design, it is considered useful to recall

the conceptual architecture of the client connector entity, as presented by IDSA.

From a technical point of view, the client connector provides metadata as specified in the

connector self-description, e.g. technical interface description, authentication mechanism,

exposed data sources, and associated data usage policies. Thus, metadata is a fundamental

building block for the deployment and composition of several ML model definitions inside a

client connector: all operations are defined in terms of input and output parameters, bound

protocols, and endpoints. Preconditions and postconditions need to be made explicit, and

effects on the environment must be outlined.

Indeed, according the IDSA Reference Architecture Model (RAM), for each client connector, it

is possible to specify pre- or post-conditions that have to hold before (as the integrity check

of the environment) and after (as the data item is deleted after usage) decision-making. In

addition, it is possible to define on-conditions that have to hold during usage (e.g., only during

business hours). These conditions usually specify constraints and permissions that have to be

fulfilled before, during, and after using data [1].

The client connector must allow participant to share information (the kind of data to be

exchanged will depend on the POM), retrieve model updates, incorporate those locally, and

ultimately retrieve the trained machine learning models for the deployment in the local

business processes.

 D7.2 Client connectors’ architecture design – Final version 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 5 – Connector system layer architecture according to IDSA RAM [1]

The connector architecture, as described within the IDSA RAM, uses application container

management technology to ensure an isolated and secure environment for individual data

services.

The Figure 5 shows the connector system layer architecture presented in the IDSA RAM as

splitted in two phases: execution and configuration.

• Within the execution phase, we have six entities involved. The first one is the Application

Container Management component. It supports the deployment of an Execution Core

Container and selected Data Services. Thereby, Data Services are isolated from each other

by containers so to prevent unwanted interdependencies. Using Application Container

Management, it is possible to apply extended control of Data Services and containers.

The second element involved in the execution phase is the Execution Core Container,

which provides components for interfacing with Data Services and supporting

communication. More in detail, within an Execution Core Container, a Data Router handles

communication with Data Services to be invoked according to predefined configuration

parameters. In this regard, it is responsible for the way the data is sent (and received) to

(and from) the data bus by (and to) Data Services. Participants have the option to replace

the Data Router component by alternative implementations of various vendors. If a

connector in a limited or built-in platform consists of a single data service or a fixed

connection configuration (eg. On a sensor device), the data router can be replaced by hard-

coded software or the data service can be exposed directly. The Data Router invokes

relevant components for the enforcement of Usage Policies, as configured in the

connector or specified in the Usage Policy.

 D7.2 Client connectors’ architecture design – Final version 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

In addition, within an Execution Core Container, the Data Bus is present, to exchange data

with Data Services and Data Bus components of other Connectors and also to store data

within a Connector. In general, the Data Bus provides the method to exchange data among

Connectors. Like the Data Router, the Data Bus can be replaced by alternative

implementations in order to meet the requirements of the operator. Like the data router,

the data bus can be replaced by alternative implementations in order to meet the

operator's requirements. The third element involved in the execution phase is the App

Store Container (one for each Data Service), which is a certified container downloaded

from the App Store and provides a specific Data Service to the Connector.

The fourth element involved in the execution phase is the Custom Container, which

provides a self-developed Data Service. Custom containers usually require no certification.

The fifth element involved in the execution phase is the Data Service, which defines a

public API, which is invoked from a Data Router. A meta-description specifies this API and

is imported into the configuration model. Data Services can be implemented in any

programming language and target different runtime environments. The tasks to be

executed by Data Services may be different. Existing components can be reused to simplify

migration from other integration platforms. Finally, the Runtime of a Data Service is found

in the execution phase. It depends on the selected technology and programming language.

The Runtime and the Data Service represent the main part of a container. Different

containers may use different runtimes. What runtimes are available depends only on the

base operating system of the host computer. From the runtimes available, a service

architect may select the one deemed most suitable.

• With regard to the configuration phase, the connector architecture envisages five

elements:

1. the configuration manager, which represents the administrative part of a Connector

and it is in charge of managing and validating the Configuration Model, followed by

deployment of the Connector. Deployment is delegated to a collection of Execution

Configurators by the Configurator Management.

2. the configuration model, which is an extensible domain model to describe the

configuration of a connector. It consists of configuration aspects that are

interconnected and independent of technology.

3. the configurator management. Its main task is to load and manage an exchangeable set

of Execution Configurators. When a Connector is deployed, the Configurator

Management component delegates each task to a special Execution Configurator.

4. The execution configurators are interchangeable plug-ins that perform or translate

individual aspects of the configuration model into a specific technology. The procedure

for performing a configuration depends on the technology used. Common examples

 D7.2 Client connectors’ architecture design – Final version 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

could be the generation of configuration files or the use of a configuration API. By using

different execution configurators, new or alternative technologies can be adopted and

integrated into a connector. Therefore, every technology (operating system, application

container management, etc.) gets its own execution configurator.

5. The Validator, which is in charge of checking if the Configuration Model complies with

self-defined rules and with general rules specified by the International Data Spaces,

respectively. The violation of the rules can be considered as a warning or an error. If

such warnings or errors occur, the deployment may fail or be rejected.

Since the configuration phase and the execution phase are separated from each other, it is

possible to develop and subsequently operate these components independently of each

other.

According to the IDSA RAM, different implementations of the connector can use various types

of communication and encryption technologies, depending on the requirements indicated.

As already mentioned, when defining the scope of the MUSKETEER platform, it is important

to keep in mind the distinction between (i) the server-side platform, which enables the

creation and execution of data sharing and federated machine learning among geographically

distributed participants and (ii) the client connectors, in charge of starting and/or participating

to ML training processes.

On the server component, detailed information are available in the deliverable D3.2 -

Architecture design – Final version. In short, the server is the cloud platform which uses

message queues for asynchronous exchange of information required for federated learning,

such as the latest version of the central model computed by the aggregator, or model updates

computed by the participants on their local data. The platform itself is agnostic to the

semantics of this information (generally it will not even be aware whether or not the

information is encrypted); it is parsed and interpreted in the context of the federated learning

algorithm processes running on the aggregator and participants’ sides, respectively.

Besides the exchange of information for the execution of the actual federated learning tasks,

the server side also provides services to manage tasks throughout their lifecycle, such as:

creating new tasks, browsing created tasks, aggregating tasks, joining tasks as a participant or

deleting tasks. The meta-information that is required for task management is stored in a cloud

database.

5 MUSKETEER Cluster Client Connector Architecture

Concerning the Client Connector, two types of architectures have been designed: a Cluster

mode, the first version of which has been described in D7.1, and a Desktop mode, whose first

 D7.2 Client connectors’ architecture design – Final version 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

prototype is released along with this documentation as deliverable D7.3. The following figure

shows the main differences between the desktop and cluster modes.

The Cluster Client Connector supports the storage and the processing of Big Data, through

horizontal scalability and workload distribution on multiple nodes of the cluster (more details

are provided in the next section).

The Desktop Client Connector can be used when data is collected in a non-centralized way and

there is no need to use a cluster to distribute the workload, both in terms of computing and

big data storage. Anyway, the Desktop version could also leverage GPUs for the training

process, enabling the processing of a large amount of data in terms of volume. Finally, the

Desktop Client Connector can be easily deployed in any environment thanks to the use of

Docker [8] in order to containerize the Client Connector application. Docker containers ensure

us a lightweight, standalone and executable package of the software that includes everything

needed to run the Desktop Client Connector: operating system, code, runtime, system tools,

libraries and settings. In this way the whole Desktop Client Connector application can be easily

deployed in a sandbox to run on the host operating system of the user.

Figure 6 - Client Connector Modes

5.1 MUSKETEER Cluster Client Connector

As mentioned in the previous paragraph, the MUSKETEER Cluster Client Connector is devised

to meet big data processing and federated machine learning needs. From the user

perspective, there are not many changes related to the user interface and the user experience

because the frontend consistency is kept by design. Contrarywise, there are deep differences

in the backend side of the architecture due to the distributed nature of the system.

The functional architecture of the MUSKETEER client connector is described in Figure 7.

 D7.2 Client connectors’ architecture design – Final version 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 7 – MUSKETEER Client Connector Architecture

The boundary between the MUSKETEER user and the Cluster Client Connector is represented

by the MUSKETEER Client Connector UI, which is a web application based on Angular [17] that

communicates with a core microservice called MUSKETEER Client Processor.

The MUSKETEER Client Processor has two main coordination functionalities: it manages the

in-cluster big data processing workloads (local jobs) that produce Machine Learning Models

and dispatches federated machine learning events with the MUSKETEER Server the Cluster

Client Connector is connected to. The MUSKETEER Client Processor exposes a RESTful API in

order to receive the requests from the UI and includes an external connector sub-component

that implements the MUSKETEER Server Communication Library. This component is

implemented using the Spring Boot Framework [9], a java-based set of libraries used to

implement lightweight and production-ready microservices in a fast and reliable manner.

 D7.2 Client connectors’ architecture design – Final version 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The Execution Engine is the backbone of all the distributed processing that occurs in the

Cluster Client Connector. In a nutshell, it handles the lifecycle of each local job, notifies their

status to the Client Processor and all the related information, and communicates to the

Orchestration Container Manager to request the allocation of the resources the job need to

be executed as expected. The Execution Engine adopted in the Cluster Client Connector is

Spring Cloud Dataflow [10], a microservice-based streaming and batch data processing

component which belongs to the Spring ecosystem and implemented in Java. Spring Cloud

Dataflow supports a lot of pre-built apps that allow matching a wide variety of scenarios and

that can be used to compose MUSKETEER’s local jobs without difficulties.

The Orchestration Container Manager allows by one side to instantiate every MUSKETEER

Cluster Client Connector component, by the other side to deploy the local job on-demand at

scale. The Container Manager is aware of the available resources, Memory, Volume, and CPUs

in the cluster and distributes them according to the workload generated by the local jobs.

Also, the Container Manager provides a sandboxed execution environment in the form of a

container in order to run the processes with a high level of isolation, in this way it reaches the

fault tolerance and reliability requirements a production system should have. Kubernetes has

been chosen as a container orchestrator [11]. It belongs to the Anthos product family by

Google and it is supported by a big community of developers worldwide.

To launch the local jobs, the container manager pulls the docker images registered in the ML

Algorithm Catalogue, a Spring Application, which is accessed and referenced by the execution

engine. The Catalogue contains all the metadata related to the model of the Algorithms and

components used to manage the local jobs.

The Container Manager can manage also the hosting of some persistence infrastructures such

as HDFS and Cassandra, which can be accessed via the internal connectors available, and

bundled into some application registered in a docker registry that can take part in the

composition of a local job. These applications should be in line with the Spring App

specifications and implemented using the guidelines of Spring Cloud Dataflow.

For internal communication, a reliable and high performing message broker is adopted, in the

specific case of the Cluster Client Connector, Apache Kafka is the solid pick. It is used by several

internal components such as the Client Processor, the Execution Engine, and the applications

that compose the local jobs in order to communicate by events.

The MUSKETEER Client Connector enables the user to interact with the MUSKETEER Server so

to take part to the Federated Machine Learning processes, according to the specifications

defined in the project. In order to be compliant with the IDSA RAM [1] shown so far, the client

connector will be released as a multi-container application that will support both on-premise

distributed environments as well as cloud providers.

 D7.2 Client connectors’ architecture design – Final version 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Containers allow to run an application and all of its dependencies in isolated processes. The

goal of containerization is to allow to easily package everything is needed to run software

reliably when moved from one environment to another. There are a number of benefits that

moving to containerization provides. Some of the main benefits companies can see include

increased portability, simple and fast deployment, enhanced productivity, possible lower cost,

improved scalability, improved security (TR002).

For the correct usage of the access control mechanism the design of an effective user

management process is envisaged (TR001, TR003) so that each client connector will be

univocally identified (TR005). In MUSKETEER platform, a potential approach will be to include

two main subprocesses: a) the registration and subsequently user creation (TR006), and b) the

user authentication (login) that enables the access to the platform as a whole. In MUSKETEER

platform, the users appear under the concept of organisations. The registration process is

handled by a component and includes the following steps:

a) The organisation manager submits the organisation signup form.

b) The MUSKETEER administrator receives the request, checks and approves it.

c) The organisation manager creates the invitations for the organisation members. Each

member receives the invitation link via email accompanied with an invitation token.

d) Each organisation member fills-in the member signup form providing also the invitation

token and, upon successful registration, access is granted to the MUSKETEER platform.

The client connector architecture implements an intuitive user interface through which the

user will be able to perform the canonical operations of the MUSKETERR platform, such as

browsing published active tasks (TR020), joining one or more of them, creating her own task

(TR007, TR021), running the training procedure associated to a given ML task (TR022) and

following the progress until completion (TR023), receiving the outcome of a task (reward,

trained model, etc) (TR019, TR024).

The user interface will allow end users to straightforwardly define a task (TR008, TR010,

TR012) that will be univocally determined (TR009, TR011)

The communication with the MUSKETEER server will occur through the MUSKETEER Client

Processor module that implements the external connector exploiting the MUSKETEER-Client

python APIs provided by IBM1.

1 https://github.com/IBM/Musketeer-Client

https://github.com/IBM/Musketeer-Client

 D7.2 Client connectors’ architecture design – Final version 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Since the client processor is shipped as a docker image, it will run in a sandboxed execution

context and will securely communicate through the external connector with the server, so

that the compliancy with the IDSA RAM [1] will be preserved in all the parts of the Client

Connector.

In order to run the algorithms in a safe and isolated environment, the execution engine

provides all the capabilities to manage the lifecycle of the running jobs locally. Such an

execution engine has to support the deployment, execution, monitoring and orchestration of

algorithms as micro-service both in streaming and batch mode.

The chosen ML algorithm micro-services are retrieved from the ML algorithm catalogue and

are instantiated according to the resources available on the machines in which the Client

Connector runs.

The ML algorithm catalogue gathers all the machine learning models created in the project to

cover a variety of privacy-preserving scenarios and ensure security and robustness against

external and internal threats (TR017, TR018).

More in detail, the library will contain a complete set of algorithms for data pre-processing,

normalization and alignment of horizontal and vertical distributed datasets (TR013, TR014,

TR015); models for data value estimation; supervised learning algorithms to solve regression

and classification tasks (Linear models like Logistic regression or ElasticNet, Kernel Methods

such as semiparametric SVMs, Tree Based Algorithms such as Random Forest and Deep Neural

Networks such as MLPs or CNNs); unsupervised learning to perform clustering or topic

modelling (methods like K-means or LDA). Such pre-processing and training algorithms will

run under different POMs (TR016, TR025, TR026) in which the platform can operate.

It is worth mentioning that in order to cover the largest possible number of industrial

scenarios, MUSKETEER has to support several POMs. The main features to compare these

POMs are the following ones:

• Privacy level: This is possibly the most obvious requirement in any IDP where data is

to be shared.

• Computational local overload: Some problems require standard computational means,

while in other cases, special computational resources might be needed: a Spark cluster

or GPU units, for instance.

• Central Storage requirements: This requirement is mainly to be fulfilled by the central

platform; it is needed if the users’ data is collected and stored in a single place (a cloud

service, for instance).

• Communication requirements: Depending on the volume of the datasets and the type

of machine learning algorithm, large communication resources may be needed.

 D7.2 Client connectors’ architecture design – Final version 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Data Utility Accountability: It is important to correctly evaluate the

relevance/contribution of the provided data for the resulting final machine learning

model.

Each ML algorithm micro-service will be packed as Docker image. A Docker image is an artifact

used to execute some software in a Docker container. An image is essentially built from the

instructions for a complete and executable version of an application, which relies on the host

OS kernel. When the Docker user runs an image, it becomes one or multiple instances of that

container.

Docker is an open source OS-level virtualization software platform primarily designed for Linux

and Windows. Docker uses resource isolation features of the OS kernel, such as c-groups in

Linux, to run multiple independent containers on the same OS. A container that moves from

one Docker environment to another with the same OS will work without changes, because the

image includes all of the dependencies needed to execute the code [8].

A container differs from a virtual machine (VM), which encapsulates an entire OS with the

executable code atop an abstraction layer from the physical hardware resources.

Within the end user’s virtual machines dedicated to run the client connector, resources are

supervised by the Orchestration Container Manager which is the component that provisions

the runtime environments for each ML algorithm.

As Orchestration Container Manager, Kubernetes was chosen. It is an open-source system for

automating deployment, scaling, and management of containerized applications. It groups

containers that make up an application into logical units for easy management and discovery

[11].

It is worth noticing that there’s a perfect match with the concept of Custom Container and/or

App Store Container in the IDSA’s RAM and, as an internal communication mechanism, a

message broker will be used so that the Client Connector can coordinate properly the

workflows and the dataflows.

Such a message broker may be based on Kafka, which allow to publish and subscribe to

streams of records, similar to a message queue or enterprise messaging system, store streams

of records in a fault-tolerant durable way and process streams of records as they occur.

Kafka is generally used for two broad classes of applications: (i) building real-time streaming

data pipelines that reliably get data between systems or applications; (ii) building real-time

streaming applications that transform or react to the streams of data [12].

The ML algorithm micro-services, as mentioned before, must be wrapped so that they include

an internal connector to obtain the training sets supporting multifarious sources as well as an

 D7.2 Client connectors’ architecture design – Final version 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

external connector that sends the trained model, once the job is finished, to the MUSKETEER

server.

More in detail, in order to make client connector able to use data which is stored in different

storages, it has to be made available a set of internal connectors to user’s data sets, like:

• HIVE connector, to read data from or write data to Hive data sources. The Apache Hive

data warehouse software facilitates reading, writing, and managing large datasets

residing in distributed storage using SQL. Structure can be projected onto data already

in storage [13].

• Cassandra connector to read data from or write data to Cassandra data sources, and

enable the ingestion of temporal data in real time and maintain these records with a

long retention period. The Apache Cassandra database is the right choice when

scalability and high availability are needed without compromising performance. Linear

scalability and proven fault-tolerance on commodity hardware or cloud infrastructure

make it suitable for mission-critical data. Cassandra's support for replicating across

multiple datacenters is best-in-class, providing lower latency for your users and the

peace of mind of knowing that you can survive regional outages [14].

• Redis to read data from or write data to REDIS data sources. Redis is an open source,

in-memory data structure store, used as a database, cache and message broker. It

supports data structures such as strings, hashes, lists, sets, sorted sets with range

queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and streams

[15].

• HDFS to read data from or write data to HDFS systems. It is a distributed file system

designed to run on commodity hardware. It has many similarities with existing

distributed file systems. However, the differences from other distributed file systems

are significant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost

hardware. HDFS provides high throughput access to application data and is suitable for

applications that have large data sets. HDFS relaxes a few POSIX requirements to

enable streaming access to file system data. HDFS was originally built as infrastructure

for the Apache Nutch web search engine project. HDFS is now an Apache Hadoop

subproject [16].

Each ML algorithm will also send status update messages to the server using the MUSKETEER-

Client python libraries.

5.1.1 Cluster Client Connector: Proposed APIs

In this section the messages for each individual service/API are described. This is not intended as

a definitive API guide, but rather a synthesis of functionality required to build a full end-end API.

 D7.2 Client connectors’ architecture design – Final version 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

In the following tables the interfaces of the MUSKETEER Cluster Client Connector are defined.

MUSKETEER Client Processor: Create task

Technical interface ID MCP_CT

Endpoint name Create Task

Endpoint description Used by the UI to create a new Task

Component MUSKETEER Client Processor

Endpoint URL /create_task

HTTP method POST

Request parameters Task name, Task definition

Request body User defined task entity attributes

Response body Task entity

MUSKETEER Client Processor: Get tasks

Technical interface ID MCP_GTs

Endpoint name Get Tasks

Endpoint description Get the list of the available tasks

Component MUSKETEER Client Processor

Endpoint URL /get_tasks

HTTP method GET

Request parameters None

Request body None

Response body Collection of task entities

 D7.2 Client connectors’ architecture design – Final version 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Processor: Get task info

Technical interface ID MCP_GTI

Endpoint name Task Info

Endpoint description Provides the details of the tasks

Component MUSKETEER Client Processor

Endpoint URL /task_info

HTTP method GET

Request parameters None

Request body None

Response body Collection of task info entities

MUSKETEER Client Processor: Get joined tasks

Technical interface ID MCP_GJT

Endpoint name Get joined tasks

Endpoint description Provides a list of the tasks user has joined to

Component MUSKETEER Client Processor

Endpoint URL /get_joined_tasks

HTTP method GET

Request parameters User ID

Request body None

Response body Collection of task entities

 D7.2 Client connectors’ architecture design – Final version 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Processor: Aggregate

Technical interface ID MCP_Ag

Endpoint name Aggregate

Endpoint description Starts the FMM aggregation of a certain task

Component MUSKETEER Client Processor

Endpoint URL /aggregate

HTTP method POST

Request parameters None

Request body Task entity, dataset

Response body Success json

MUSKETEER Client Processor: Get result task image

Technical interface ID MCP_GRTI

Endpoint name Get result task image

Endpoint description Provides a metrics evaluation chart resulting from a task

execution

Component MUSKETEER Client Processor

Endpoint URL /results/image/<task>

HTTP method GET

Request parameters Task name

Request body None

Response body Image representing the metrics evaluation chart of the task

selected [B64 IMAGE]

 D7.2 Client connectors’ architecture design – Final version 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Processor: Participate

Technical interface ID MCP_Pa

Endpoint name Participate

Endpoint description Forwards the request for participation related to a task

Component MUSKETEER Client Processor

Endpoint URL /participate

HTTP method POST

Request parameters None

Request body Task entity, datasets

Response body Success json

ML Algorithm Catalogue: Get algorithms

Technical interface ID MLAC_GAs

Endpoint name Get algorithms

Endpoint description Provides a list of all the registered algorithms

Component ML Algorithm Catalogue

Endpoint URL /algorithms

HTTP method GET

Request parameters None

Request body None

Response body A collection of algorithm entities

 D7.2 Client connectors’ architecture design – Final version 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

ML Algorithm Catalogue: Get algorithm

Technical interface ID MLAC_GA

Endpoint name Get algorithm

Endpoint description Provides an algorithm by ID

Component ML Algorithm Catalogue

Endpoint URL /algorithms/<id>

HTTP method GET

Request parameters Id

Request body None

Response body Algorithm entity

ML Algorithm Catalogue: Create algorithm

Technical interface ID MLAC_CA

Endpoint name Create algorithm

Endpoint description Registers a new algorithm to the catalogue

Component ML Algorithm Catalogue

Endpoint URL /algorithms

HTTP method POST

Request parameters None

Request body User defined algorithm entity attributes

Response body Algorithm entity [JSON]

5.1.2 Cluster Client Connector: Workflows

The pictures below, show the interactions that occur among the components of the

MUSKETEER Cluster Client Connector during the execution of the main scenarios of “list

tasks”, “create a task”, “join a task” and “aggregate”.

 D7.2 Client connectors’ architecture design – Final version 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Concerning the tasks listing, once the MUSKETEER user lands on the main screen of the Client

Connector UI, the list tasks event is triggered and the client connector performs a request to

the processor, that forwards the same request to the MUSKETEER Server using the

communication library, in order to retrieve the list of the tasks (Figure 8).

Figure 8 – ‘List tasks” sequence diagram

The second important workflow, concerns the creation of a new task (Figure 9). The user is

able to configure the new task picking a set of choices related to the algorithm she wants to

use, the POM level among the available ones and metadata. The client processor retrieves all

the algorithms and POMs from the ML Algorithm Catalogue in order to allow the user to build

her new task. Once algorithm and POM are selected and all the forms are filled, the user

uploads a json file descriptor that contains the description of the data used by the algorithm.

At the end of the activity, the user clicks on the create task button, all the information are sent

to the processor which communicates with the Musketeer Server submitting the new request.

The other key scenario is about the participation to a task (Figure 10). The user selects a task

she wants to participate to, and the Client Processor forward the request to the Musketeer

Server. Once the participation is approved, the user fills a form with the reference to the

dataset and then starts the participation. The Client Processor triggers an initialization event

on the Execution Engine which pulls the involved algorithm from the Machine Learning

Algorithm Catalogue and asks to the Orchestration Container Manager to deploy the local job.

 D7.2 Client connectors’ architecture design – Final version 35

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 9 - “create a task” sequence diagram

A new Local Job gets instantiated and it interacts with the Storage in order to get access to

the data the user has previously selected, then, it processes the data according to the

algorithm. Once done, the Local Job produces a Machine Learning model which is sent to

persistence, the local job notifies the Client Processor and then terminates. At that point, the

Client Processor sends the model and the related metadata to the Musketeer Server in order

to deliver the contribution of the federated model. If the user is also an aggregator, in the

same way as the Desktop Client Connector, an aggregation process has to be started. The

responsible component for this activity is the Client Processor that runs the aggregation

algorithm in a dedicated process. The Processor keeps listening on the model contributions

coming from the participants and, iteratively, sum them all. At the end of the loop, the Client

Processor sends the final aggregator model to the MUSKETEER server and generates an

evaluation metrics chart for assessment purposes.

Figure 10 – “Task participation” sequence diagram

 D7.2 Client connectors’ architecture design – Final version 37

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.2 MUSKETEER Desktop Client Connector

The Desktop Client Connector architecture is shown in Figure 11. The application is mainly

composed by 5 components that will be described in detail. There are also two external

components that are loaded inside the Client Connector after the application is up and

running: the communication messenger and the federated machine learning (MMLL) library.

This solution produces a modular application with respect to those components, reusable in

any context and independent from the central server and federated machine learning library

used.

Figure 11 - Desktop Client Connector Architecture

At higher level, the Actor, through a User Interface component, that is a local web application,

performs a set of functionalities that are described on Section 5. These functionalities range

from the access to the target server platform, with which the Communication Messenger

library communicates, to the binding of local data to the Client Connector, up to obtaining the

results produced by the completed tasks. The User Interface is developed as a web application

using Angular CLI version 8.3.8 [17]. This component represents the frontend part of the Client

Connector, in accordance with the specifications described in D3.2.

The core Client Back-End component acts as a RESTful Web Service that handles all user

requests, ranging from local operations (e.g. to connect user data to the Client Connector) to

server operations (e.g. tasks and users management); these operations need to use a

Communication Messenger library to communicate toward a target external server. In

particular, Flask, a lightweight WSGI (web server gateway interface) web application

framework, has been used [18]. WSGI is basically a protocol defined so that Python application

 D7.2 Client connectors’ architecture design – Final version 38

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

can communicate with a web-server and thus be used as web application outside of CGI

(common gateway interface).

The Data Connector component connects user data, which may come from different sources

or storage layers, to the Client Connector. In addition to connecting data from different

sources, the component can manage and support different kinds of data: in fact, a user can

load a CSV tabular data from the File System, images files, binary data, a table from a database

and so on. Depending on the source from which the datasets are retrieved, and their data

format, different libraries may be used. For example, the current version of the Desktop Client

Connector retrieves datasets in CSV format through the Pandas library

(https://pandas.pydata.org). Pandas is an open-source library, which allows you to read and

process structured data providing high-performance.

The Abstract Communication Interface component allows to import and use an

implementation of the communication library. In the MUSKETEER project the Communication

Messenger library used is the pycloudmessenger library developed by IBM, and it is available

at the following URL: https://github.com/IBM/pycloudmessenger. After the

pycloudmessenger library is configured and installed, the Client Connector can use the APIs to

communicate toward the MUSKETEER core platform. As a result, this component integrates

all the user and task management parts: the listing task functionality, login and registration

step, task creation and so on. This component is also connected and used by the Execution

component, since during the training process the weights are sent and received to and from

the central server (Musketeer Core Platform) using the Communication Messenger

(pycloudmessenger) API.

On the other hand, the execution of tasks as a participant or aggregator is handled by the

Execution macro-component. This component instantiates and runs a federated machine

learning algorithm according to an interface that has been defined in WP4 by UC3M and TREE;

which algorithm to be used and with which parameters are defined in the task definition and

stored in the central server during the task execution. As well as the Communication

Messenger library, the Federated Machine Learning library is an external library imported into

the Client Connector. The imports of these libraries can be fully performed through User

Interface in an initial configuration step after the first start of the Desktop Client Connector

application.

 D7.2 Client connectors’ architecture design – Final version 39

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.2.1 Desktop Client Connector: Proposed APIs

In this section the messages for each individual service/API are described. This is not intended as

a definitive API guide, but rather a synthesis of functionality required to build a full end-end API.

In the following tables the interfaces of the MUSKETEER Desktop Client Connector are defined.

Client Back-End: Get algorithms

Technical interface ID CBE_GAs

Endpoint name Get algorithms

Endpoint description Provides a list of all the registered algorithms

Component Client Back-End

Endpoint URL /cc/catalogue/algorithms

HTTP method GET

Request parameters None

Request body None

Response body A collection of algorithms

Client Back-End: Get POMs

Technical interface ID CBE_GPs

Endpoint name Get POMs

Endpoint description Provides a POMs metamodel

Component Client Back-End

Endpoint URL /cc/catalogue/poms

HTTP method GET

Request parameters None

Request body None

Response body A POMs (Privacy Operation Modes) metamodel

 D7.2 Client connectors’ architecture design – Final version 40

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Get step configuration

Technical interface ID CBE_GSC

Endpoint name Get step configuration

Endpoint description Provides a number pointing the configuration step to complete

(-1 if all configuration steps have been completed)

Component Client Back-End

Endpoint URL /cc/configurations/step

HTTP method GET

Request parameters None

Request body None

Response body The configuration step to complete [JSON]

Client Back-End: Set communication configuration

Technical interface ID CBE_SCC

Endpoint name Set comm configuration

Endpoint description It configures and downloads the messenger communication

library

Component Client Back-End

Endpoint URL /cc/configurations/comm

HTTP method POST

Request parameters None

Request body The information to download and set the messenger

communication library for the MUSKETEER server

Response body Success JSON

 D7.2 Client connectors’ architecture design – Final version 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Get communication configuration

Technical interface ID CBE_GCC

Endpoint name Get comm configuration

Endpoint description Provides the communication library configuration stored into the

Client Connector

Component Client Back-End

Endpoint URL /cc/configurations/comm

HTTP method GET

Request parameters None

Request body None

Response body The communication library configuration [JSON]

Client Back-End: Set Machine Learning library configuration

Technical interface ID CBE_SMLLC

Endpoint name Set MMLL configuration

Endpoint description It configures and downloads the Machine Learning library

Component Client Back-End

Endpoint URL /cc/configurations/mmll

HTTP method POST

Request parameters None

Request body The information to download and set the Machine Learning

library

Response body Success JSON

 D7.2 Client connectors’ architecture design – Final version 42

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Get Machine Learning library configuration

Technical interface ID CBE_GMLLC

Endpoint name Get MMLL configuration

Endpoint description Provides the Machine Learning library configuration stored into

the Client Connector

Component Client Back-End

Endpoint URL /cc/configurations/mmll

HTTP method GET

Request parameters None

Request body None

Response body The Machine Learning library configuration [JSON]

Client Back-End: Get datasets

Technical interface ID CBE_GD

Endpoint name /cc/datasets

Endpoint description Provides metamodels of the datasets connected to the Client

Connector

Component Client Back-End

Endpoint URL /cc/datasets

HTTP method GET

Request parameters None

Request body None

Response body Metamodels of the datasets connected to the Client Connector

[JSON]

 D7.2 Client connectors’ architecture design – Final version 43

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Get result task image

Technical interface ID CBE_GRTI

Endpoint name Get result task image

Endpoint description Provides a metrics evaluation chart resulting from a task

execution

Component Client Back-End

Endpoint URL /cc/results/image/<task>

HTTP method GET

Request parameters Task name

Request body None

Response body The metrics evaluation chart of the task selected [B64 IMAGE]

Client Back-End: Get task logs stream

Technical interface ID CBE_GTLS

Endpoint name Get task logs stream

Endpoint description Provides the logs produced by a task you have run as a participant

or aggregator

Component Client Back-End

Endpoint URL /cc/results/stream/logs/<task&mode>

HTTP method GET

Request parameters Task name and execution mode (participant/aggregator)

Request body None

Response body The logs produced by a task execution [JSON]

 D7.2 Client connectors’ architecture design – Final version 44

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Add dataset

Technical interface ID CBE_AD

Endpoint name Add dataset

Endpoint description It stores a dataset metamodel containing the information

needed by the Data Connector component to retrieve that

dataset

Component Client Back-End

Endpoint URL /cc/datasets

HTTP method POST

Request parameters None

Request body Information about the source and type of dataset, and other

metadata

Response body Success JSON

Client Back-End: User login

Technical interface ID CBE_ULI

Endpoint name Login user

Endpoint description Provides authentication to the MUSKETEER server through the

communication messenger library configured into the Client

Connector; creates a local session into the Client Connector

Component Client Back-End

Endpoint URL /cc/comms/login

HTTP method POST

Request parameters None

Request body User credentials: username and password

Response body Success JSON

 D7.2 Client connectors’ architecture design – Final version 45

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: User logout

Technical interface ID CBE_ULO

Endpoint name Logout user

Endpoint description Terminate the local authentication session

Component Client Back-End

Endpoint URL /cc/comms/logout

HTTP method POST

Request parameters None

Request body None

Response body Success JSON

Client Back-End: User registration

Technical interface ID CBE_UR

Endpoint name Register user

Endpoint description Provides registration to the MUSKETEER server through the

communication messenger library configured into the Client

Connector

Component Client Back-End

Endpoint URL /cc/comms/registration

HTTP method POST

Request parameters None

Request body User credentials: username, password and organization name

Response body Success JSON

 D7.2 Client connectors’ architecture design – Final version 46

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Get tasks

Technical interface ID CBE_GTs

Endpoint name Get tasks

Endpoint description Get the list of all the available tasks registered in the MUSKETEER

server

Component Client Back-End

Endpoint URL /cc/comms/tasks

HTTP method GET

Request parameters None

Request body None

Response body The list of the available tasks registered to the Musketeer server

[JSON]

Client Back-End: Get tasks joined

Technical interface ID CBE_GTJ

Endpoint name Get user assignments

Endpoint description /cc/comms/tasks/assigned

Component Client Back-End

Endpoint URL Get the list of all the tasks the user is participating to

HTTP method GET

Request parameters None

Request body None

Response body The list of all the tasks the user is participating in [JSON]

 D7.2 Client connectors’ architecture design – Final version 47

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Client Back-End: Aggregate task

Technical interface ID CBE_AT

Endpoint name Aggregate task

Endpoint description /cc/fml/aggregate

Component Client Back-End

Endpoint URL Start a task as aggregator (only the task creator can run a task as

aggregator)

HTTP method POST

Request parameters None

Request body The task name and metamodels of the datasets to process during

the aggregation

Response body Success JSON

Client Back-End: Participate task

Technical interface ID CBE_PT

Endpoint name Participate task

Endpoint description Start a task as participant

Component Client Back-End

Endpoint URL /cc/fml/participate

HTTP method POST

Request parameters None

Request body The task name and metamodels of the datasets to process during

the task execution

Response body Success JSON

 D7.2 Client connectors’ architecture design – Final version 48

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

5.2.2 Desktop Client Connector: Workflows

This section presents the main interaction workflows between the MUSKETEER user and the

Desktop Client Connector. To show how the components of the Desktop Client Connector

work together, sequence diagrams have been used. The following Figure 12 shows the

sequence diagram related to the "list tasks" event performed by the user when accesses to

the main page of the Desktop Client Connector. When the user triggers the “list tasks” event

it starts a request from the Client Connector UI (user interface) to the Client Back-End.

This component will then invoke the logical Communication Interface component. This

component makes use of the communication library imported during the configuration steps

of the Desktop Client Connector to request and retrieve the list of tasks registered to the

MUSKETEER platform.

Figure 12 - Desktop Client Connector Sequence Diagram – Listing tasks

The second main event concerns the participation of a task by a MUSKETEER user. The related

sequence diagram is shown in Figure 13. The user, from the UI, selecting the properly task she

wants to join, can drag-and-drop the training dataset, and optionally also the validation and

test datasets. The start of a task triggers a request to the Client Back-End which is responsible

for handling the event.

The Client Back-End notifies the MUSKETEER Server that the user is going to participate to the

selected task via the Communication Interface component. Once the participation has been

validated by the MUSKETEER server, the Execution Component is delegated to start the task

by instantiating an asynchronous process (local job). Once the local job has been successfully

started, a confirmation ack is given back to the Client Connector, confirming the task job has

been executed. The local job has all the information related to the task: algorithm type and

POM to run, and the datasets to process. The datasets will be read through the Data Connector

component, and then the chosen algorithm is instantiated and started. The algorithm is part

 D7.2 Client connectors’ architecture design – Final version 49

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

of the MMLL library that has been installed and configured during the configuration steps of

the Desktop Client Connector. In general, the algorithm performs N iterations for training

(chosen when creating the task) and at each iteration sends and receives the model updated

weights from the aggregator. Once the N iterations are completed, the local job ends its

execution.

Figure 13 - Desktop Client Connector Sequence Diagram – Task participation

The last sequence diagram describes the creation and aggregation of a task (Figure 14). The

MUSKETEER user enters the task creation page and triggers the "list algorithms" event to the

Back-End Client. The back end manages the request by reading the algorithm catalogue and

returning the list to the Client Connector UI. The catalogue of algorithms is a file containing

the metamodel of the algorithms defined in the Machine Learning library, and which was

loaded with it during the Desktop Client Connector configuration steps. The user can now

configure and create her own task. Configuring a task involves the definition of several fields:

task name, task description, choice of algorithm and POM to be applied, dataset information

to be processed, and quorum (minimum number of participants before starting the task). The

task creation request is forwarded to the Communication Interface component, which will

communicate to the MUSKETEER server using its communication library. Once the

MUSKETEER server has received the response acknowledgment, back to the UI, the user will

be notified that the task has been correctly created.

 D7.2 Client connectors’ architecture design – Final version 50

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

At a deferred time, the user who created the task can start it as an aggregator, selecting at

most a validation dataset and a test dataset. The aggregator mainly handles the aggregation

of the model weights received from the participating nodes, and at the end returns an

aggregated model. The aggregator workflow, similarly to the participant’s workflow, is in

charge of the Execution Component that instantiates a local job. As aggregation result, a

metrics evaluation chart is created so that the user can assess the goodness of the model.

Figure 14 - Desktop Client Connector Sequence Diagram – Task aggregation

 D7.2 Client connectors’ architecture design – Final version 51

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6 Conclusion

The purpose of this deliverable entitled D7.2 - Client connectors’ architecture design – Final

version, was to deliver the design specifications of the client connectors in MUSKETEER. This

deliverable provides an update to the D7.1 content.

It is built directly on top of the first version of list of technical requirements presented in D2.1

and the knowledge extracted from deliverable D3.1 on the MUSKETEER general architecture,

in order to deliver the details of the design of the client side of the integrated MUSKETEER

platform.

It describes two different architecture of the client connector to meet two sets of user needs

and requirements, while sharing the same user interactions: the desktop client connector and

the cluster client connector.

The Desktop Client Connector can be used when data is collected in a non-centralized way and

there is no need to use a cluster to distribute the workload, both in terms of computing and

big data storage. Anyway, the Desktop version could also leverage GPUs for the training

process, enabling the processing of a large amount of data in terms of volume. Finally, the

Desktop Client Connector can be easily deployed in any environment thanks to the use of

Docker in order to containerize the Client Connector application.

The Cluster Client Connector is devised to meet big data processing and federated machine

learning needs. From the user perspective, there are not many changes related to the user

interface and the user experience because the frontend consistency is kept by design.

Contrarywise, there are deep differences in the backend side of the architecture due to the

distributed nature of the system.

It is worth noticing that the architectural design was done always having in mind the IDSA

reference architecture. The alignment with the Industrial Data Platform standards brought

forward by the Industry Data Space (IDS) Association guarantees that the MUSKETEER project

outcomes will be interoperable with any other asset building on the IDSA standards. However,

it is difficult at this stage to talk about actual compliance with IDSA standards.

However, as the project development activities evolve, this initial design of the described

services composing the client connectors will receive the necessary updates and optimisations

in order to encapsulate all the project’s advancements, as well as the new technical

requirements that will be extracted from the feedback that will be collected from the

platform’s evaluation.

 D7.2 Client connectors’ architecture design – Final version 52

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

7 References

[1] Reference Architecture Model. Version 3.0. April 2019. IDSA.
https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-
Architecture-Model-3.0.pdf

[2] S. Newman (2015). Building Microservices – Designing Fined-Grained Systems, O’ Reilly.
[3] S. Tarkoma (2012). Publish/Subscribe Systems: Design and Principles, John Wiley & Sons,

Ltd.
[4] https://www.rabbitmq.com/
[5] https://www.tensorflow.org/
[6] http://caffe.berkeleyvision.org/
[7] https://pytorch.org/
[8] https://www.docker.com/
[9] https://spring.io/projects/spring-boot
[10] https://spring.io/projects/spring-cloud-dataflow
[11] https://kubernetes.io/
[12] https://kafka.apache.org/
[13] https://hive.apache.org/
[14] http://cassandra.apache.org/
[15] https://redis.io/
[16] https://hadoop.apache.org/hdfs/
[17] https://cli.angular.io/
[18] https://flask.palletsprojects.com
[19] https://keras.io/

https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf
https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf
https://www.rabbitmq.com/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://pytorch.org/
https://www.docker.com/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-cloud-dataflow
https://kubernetes.io/
https://kafka.apache.org/
https://hive.apache.org/
http://cassandra.apache.org/
https://redis.io/
https://hadoop.apache.org/hdfs/
https://cli.angular.io/
https://flask.palletsprojects.com/

	List of Figures
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Document Structure

	2 Client Connector: a general description
	3 MUSKETEER Technical Requirements
	4 MUSKETEER Platform Architecture
	4.1 MUSKETEER ML Task entity
	4.2 Client Connector entity

	5 MUSKETEER Cluster Client Connector Architecture
	5.1 MUSKETEER Cluster Client Connector
	5.1.1 Cluster Client Connector: Proposed APIs
	5.1.2 Cluster Client Connector: Workflows

	5.2 MUSKETEER Desktop Client Connector
	5.2.1 Desktop Client Connector: Proposed APIs
	5.2.2 Desktop Client Connector: Workflows

	6 Conclusion
	7 References

