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Executive Summary 

The client connector is the component required for a participant to join the MUSKETEER 

Platform. It is the software application supporting MUSKETEER platform participant in his data 

exchange, share and process, so to guarantee that he is sovereign of his data. 

The client-side connectors have to support the set of privacy operation modes (POMs) made 

available throughout the project according to the architecture defined in T3.1 and meet the 

requirements of the federated and privacy-preserving machine learning services designed in 

WP4. Moreover, the client component provides services for locally combining model updates 

into one consistent, up-to-date model instance. The client component serves as adaptor for 

the integration and industrial validation of the MUSKETEER platform in WP7. 

The client connector, running on a secure and private space, provides the interface (Client 

Connector External APIs) for receiving a set of instructions from a master controller of the 

MUSKETEER server, related to the transferring of the required datasets and/or models 

(according to the POM chosen) from/to the MUSKETEER core to the secure and private space 

for the training of an MUSKETEER ML model. 

Two different architectures of the client connector are presented. The Desktop Client 

Connector can be used when data is collected in a non-centralized way and there is no need 

to use a cluster to distribute the workload, both in terms of computing and big data storage. 

Anyway, the Desktop version could also leverage GPUs for the training process, enabling the 

processing of a large amount of data in terms of volume. Finally, the Desktop Client Connector 

can be easily deployed in any environment thanks to the use of Docker in order to containerize 

the Client Connector application.  The Cluster Client Connector is devised to meet big data 

processing and federated machine learning needs. From the user perspective, there are not 

many changes related to the user interface and the user experience because the frontend 

consistency is kept in both versions. Contrarywise, there are deep differences in the backend 

side of the architecture due to the distributed nature of the system. 

The client connector component is comprised of two local connectors. One is external, to 

allow users to share their (encrypted) data and/or to receive (encrypted) model updates 

generated on the server side, by exposing an endpoint to upload/download information 

and/or to retrieve trained models or (encrypted) model updates, depending on the POM. The 

second one is local and implements a set of interfaces to access and, if needed, pre-process 

data stored in local databases or file systems. 
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1 Introduction 

1.1 Purpose 

This document presents the final version of the MUSKETEER client connector architecture. It 

derives from technical requirements for MUSKETEER platform and from user needs of the two 

industrial scenarios considered within the project. The MUSKETEER client connector 

architecture is compliant with the general MUSKETEER platform architecture, presented in the 

deliverable D3.2 - Architecture design – final version.  

 

1.2 Related Documents 

This deliverable is the document describing the final version of main functionalities of the 

client connector. It contains the design of two types of Client Connector architectures (cluster-

based and desktop-based) to meet two different sets of user needs and requirements. 

This deliverable is related to the following documents (also see Figure 1): 

• D3.1 Architecture Design – Initial Version – detailing the first version of the 

MUSKETEER architecture. 

• D3.2 Architecture Design – Final Version – detailing the final version of the 

MUSKETEER architecture. 

• D2.1 Industrial and technical requirements – in so far as the platform architecture has 

to address functional and non-functional technical requirements described in that 

document. 

• D2.2 Legal requirements and implementation guidelines – in so far as the design of 

the platform architecture should follow the implementation guidelines arising in the 

context of the applicable legal and ethical framework. 

• D2.3 Key performance indicators selection and definition – in so far as the platform 

has to either provide the core capabilities that other functional components (e.g. the 

algorithmic library or the client connectors) require to meet their goals, or to meet 

specific goals itself. 

• D4.1 Investigative overview of targeted architecture and algorithms – in so far as the 

platform has to provide the core capabilities to support and enable the targeted 

architecture and algorithms. 

• D4.2 Pre-processing, normalization, data alignment and data value estimation 

algorithms (initial version) – in so far as the platform has to provide the core 

capabilities to support the deployment of the proposed algorithms. 
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• D5.1 Threat analysis for federated machine learning algorithms – in so far as the 

platform has to provide the core capabilities to support the deployment of the 

proposed algorithms. 

• D6.1 Assessment framework design and specification – in so far as the platform has 

to provide the core capabilities to support the application of the proposed framework 

and meet relevant key performance indicators (KPIs). 

• D7.1. - Client connectors’ architecture design (initial version) – the precursor to this 

document. 

 

 
Figure 1 - MUSKETEER’s PERT diagram 

 

1.3 Document Structure 

In the next section (Section 2), the general description of client connectors is presented 

according to the IDSA connector specifications. 

In Section 3, MUSKETEER platform technical requirements are recapped in order to cross 

check that the requirements involving end user software side, are met in the client connector 

architecture design. 

In Section 4, a summary of the MUSKETEER platform architecture is presented, so to have a 

comprehensive picture before detailing client connectors. 
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Section 5 presents the final version of the MUSKETEER client connector architecture, 

according two flavours: desktop based one and cluster based one, showing for each of them 

proposed APIs and workflows among components.  

Finally, Section 6 concludes the deliverable. It outlines the main findings of the deliverable and 

takes into account the chance for further analysis in conjunction with other work packages. 

 

2 Client Connector: a general description 

The client connector is the component required for a user who wants to join the MUSKETEER 

Platform. In general, connectors are the central technological building block of the 

International Data Spaces [1]. They are software components supporting participants in their 

data exchange, share and training of machine learning models. At the same time, connectors 

guarantee that the Data Owner is sovereign of his data. 

 
Figure 2 – Connector concept [1]  

Figure 2 shows the main elements composing a connector.  

• The deployment context of a connector records the connector’s location, as for 

example the data centre and coordinates, the type of its deployment (on-premises or 

cloud-based), and the name of the Participant. 

• The security profile indicates the capabilities of a connector to maintain a controlled, 

secure and trusted environment for exchanging, sharing and processing data, through 

remote integrity verification, application isolation, usage control support. 

• The catalogue represents the repository of the metadata of resources, constructed in 

accordance with the IDS Ontology, through which connectors provide or consume 

data.   

• Optionally, the catalogue, or individual sets of resource metadata (about functions and 

interfaces, pricing models, licenses, etc.), may be advertised via intermediary nodes, 
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such as the broker service provider, which is an intermediary that stores and manages 

information about the data sources available in the International Data Spaces, or in the 

app store.  

• Each host represents an individual communication capability of the connector, a server 

that exposes resources via endpoints (HTTPS URLs, MQTT topics, etc.) according to the 

communication protocol supported [1]. 

 
Figure 3 – Interaction among connectors according to IDSA RAM [1] 

According the IDSA Reference Architecture Model (RAM), in general, a set of applications 

(Apps) are deployed inside the connector, to facilitate data processing workflows.  

The Figure 3 shows interaction among connectors, one for each user participating to the 

federation, according to IDSA RAM, thus each participant should be able to run the Connector 

software in their own IT environment.  

Every connector participating in the IDS Platform must have a unique identifier and a valid 

certificate. In addition, it must check and verify the identity of other connectors and provide 

a valid certificate, so that each participant in the platform is able to verify the identity of any 

other participant.  The connector serving as the data source must be able to verify the 

receiving connector’s capabilities and security features as well as its identity.   

Communications among connectors can be encrypted and integrity protected. In addition, 

connectors must be able to ensure that IDS participants’ data is handled according to the 

usage policies specified: otherwise the data will not be exchanged.  
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Data providers and data consumers must be able to decide which level of security they intend 

to apply for their respective connectors by deploying connectors supporting the selected 

security profile.  

Participants must have the opportunity to describe, publish, maintain and manage different 

versions of metadata, which describe the syntax, serialization and semantics of data sources.  

Participant must be able to provide an interface for data and metadata access, to transmit 

metadata of its data sources to one or more brokers, and to browse and search metadata in 

the metadata repository, provided the participant has the right to access the metadata. 

To create and structure metadata, participant may use vocabularies, that can be already 

existing or created ad hoc by the operator. 

Vocabulary hubs are central servers that store vocabularies and enable collaboration, 

searching, selection, matching, updating, requests for changes, version management, 

deletion, duplicate identification, and unused vocabularies.  

Alternatively, they can run a Connector on mobile or embedded devices. The operator of the 

Connector must be able to define the data workflow inside the Connector. Participants must 

be identifiable and manageable. Passwords and key storage must be protected. Every action, 

data access, data transmission, incident, etc. should be logged. Using this logging data, it 

should be possible to draw up statistical evaluations on data usage etc. Notifications about 

incidents should be sent automatically. 

The Connector receives data from an enterprise backend system, either through a push-

mechanism or a pull-mechanism. The data can be provided via an interface or pushed directly 

to other participants.  

Finally, according the IDSA RAM, other Connectors can subscribe to data sources or pull data 

from these sources. Data can be written into the backend system of other participants. 

 

3 MUSKETEER Technical Requirements 

This section shows the list of the technical requirements that were elicited starting from the 

business requirements coming from the description of the user stories in Smart Manufacturing 

and Health scenarios (for more detail please see the deliverable D2.1 - Industrial and Technical 

Requirements). 

The list of such technical requirements is shown in the following table. 

For each requirement, the ID is highlighted in green text if the current prototype described in 

D7.3 satisfies the requirement. A requirement may also be highlighted in orange text if the 
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current prototype partially satisfies the requirement. If a requirement is not currently satisfied 

by the D7.3 prototype, it is not highlighted. These requirements are still subject to ongoing 

development.  

 

ID Description 

TR001  The MUSKETEER platform shall ensure that access control over datasets is applied 

according to the data policies and the terms of relevant active valid data sharing 

contracts. 

TR002  The MUSKETEEER platform shall forbid unauthorised user access to the platform 

and the datasets. 

TR003  The MUSKETEEER platform ensures different authorisation levels for accessing 

datasets. 

TR005  

 

MUSKETEEER end user must have a unique identification that will be used in all the 

data exchange/communications. 

TR006  Registration into the MUSKETEER Platform with username a password. 

TR007  MUSKETEEER end user could create one or more new tasks. 

TR008  In MUSKETEER a task must be defined as a problem statement that feeds from data 

and produces a trained machine learning model. 

TR009  New tasks should obtain unique task identifier.  

TR010  In MUSKETEER a task should have a general description. 

TR011  The MUSKETEER Platform must, for each task, uniquely identify every input data 

from every end user. 

TR012  

 

Description of the input features. The meaning of every field must be explicitly 

described. 

TR013  

 

The MUSKETEER Platform must share a set of pre-processing algorithms such that 

every end user pre-processes its own raw data to obtain a common representation 

(e.g. high pass filtering, edge detection, bag of words with TFIDF weighting …). 

TR014  MUSKETEER pre-processing modules should always produce an output vector with 

the expected content and format. 

TR015  MUSKETEER must make any ad hoc pre-processing algorithms (defined and 

implemented by the end users) shared with other users contributing to the task. 
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TR016 In MUSKETEER, for each task, definition and nature of the problem to be solved, 

must be shared among all the participants in a task such that they can contribute 

with new data to the training process. 

TR017 MUSKETEER Privacy Operation Modes (POMs) must cover all kinds of privacy 

restrictions that end users would apply to his/her data. 

TR018 Privacy restriction should be described in natural language to facilitate the 

specification of the task to the end user. 

TR019 MUSKETEER Platform should envisage monetary rewards as well as collaborative 

results. 

TR020 Browsing for published active tasks by MUSKETEER end users. 

TR021 Creation and/or access to published active tasks by MUSKETEER end users. 

TR022 Running of the training procedure associated to a given MUSKETEER ML task. 

TR023 Monitoring of the progress of MUSKETEER ML tasks until completion. 

TR024 MUSKETEER must provide the outcome of a task (reward, trained model, etc.). 

TR025 MUSKETEER must allow data to be transferred and joined either in the server or in 

a given user. 

TR026 MUSKETEER must support the case where no raw data is transferred outside the 

client facilities (the ML model training must take place in the server by using the 

aggregated information from the clients). 

It is worth to noticing that the fulfilment of requirements that are not highlighted, highly 

depends on the design and implementation of the server-side and MMLL library.  They can 

only really be evaluated over time. As such, at this point in time, they cannot be considered 

complete. The requirements highlighted in orange, are deemed partially complete already, 

but a more thorough review over a longer period of time is also preferable. 

4 MUSKETEER Platform Architecture 

The MUSKETEER platform must provide the infrastructure and implement the services that 

are required (gathered in WP3) to enable the distributed machine learning capabilities 

developed in WP4 and WP5, along with interfaces supporting the use case integration in WP7. 

The final version of the MUSKETEER platform architecture is described in the deliverable D3.2.  

This architecture is based on micro-services and places a significant emphasis on open 

standards. Many of the underlying components used are open source. The use of open 
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standards and services avoids vendor lock-in to a significant extent, thereby enhancing the 

prospect of utilising alternative cloud providers or on-premise deployments in the future, if 

that is so desired. 

The MUSKETEER platform architecture is client-server (see Figure 4): the server component 

coordinates the secure transportation of information and models across the participants, the 

client components allow use case participants to share information (the kind of data to be 

exchanged will depend on the Privacy Operation Mode (POM)), retrieve model updates, 

incorporate those locally, and ultimately retrieve the trained machine learning models for the 

deployment in their local business processes. 

The server infrastructure is provided by IBM, using the IBM® Cloud™ platform. It will host 

micro-services for data management, machine learning and internal/external data exchange 

(i.e. IBM Cloud™ Messages for RabbitMQ, IBM® Db2® on Cloud, IBM® Cloud Object Storage, 

IBM Cloud™ Functions, IBM Cloud™ Kubernetes Service).  

For data management, different database persistence layers are envisioned to support 

different types of data, like Object Storage for large unstructured data (such as images), or 

Relational Database Management Systems for relational data (such as numerical sensor 

measurements and associated metadata).  

With regard to the machine learning capabilities, algorithms provided will be based on Python 

with deep learning frameworks such as TensorFlow [5], Caffe [6], PyTorch [7], Keras [19], to 

support efficient execution of model training on CPU and GPU processing.  

An external connector implements the features that allow users to upload/download 

information and/or to retrieve trained models or (encrypted) model updates, depending on 

the POM.  

Interoperability between components (cloud-based and remote) is through a messaging 

system, based on the Publish / Subscribe Design Pattern [3]. This is backed by RabbitMQ [4]. 

Messages are published to RabbitMQ and routed to subscribed parties. RabbitMQ is 

instantiated in the public cloud and is an internet addressable service, allowing remote clients 

to connect. Remote clients require appropriate credentials which are obtained through the 

registration process. 

Using this messaging system, the initiation of all network connections is outbound only. This 

means that no remote component (aggregator or participant system) accepts an incoming 

connection with no network ports openly addressable to the internet. 

 

https://developer.ibm.com/sso/bmregistration?lang=en_US&ca=dw-_-bluemix-_-cl-bluemixfoundry-_-article
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Figure 4 - MUSKETEER centralized server platform architecture 

 

All access to platform services from remote components (provided by other work packages) 

is through the Federated Machine Learning Framework (FMLF) package. This contains APIs to 

simplify access to the platform and is installed at remote sites. 

Users of these APIs must be authenticated, but first, the User Registration service allows users 

to register with the platform. This service creates user accounts on the RabbitMQ instance. 

These registration details allow users to subsequently authenticate with the platform, 

providing access to the APIs and platform services. Access to individual APIs is also controlled 

through an authorisation layer. Further details on the MUSKETEER cloud server architecture 

are described in D3.2. 

As already mentioned, the MUSKETEER platform is a client-server architecture, where the 

client is intended as a software application that in general is installed on-premise and run at 

every end user side. Such a software application is named client connector in the MUSKETEER 

taxonomy.  

On the other hand, the MUSKETEER server is the central part of the platform that 

communicates with all the client connectors and acts as a coordinator for all the operations. 

Users federated to MUSKETEER, interact with the client connector installed on their side and 

that client will communicate with the server to perform several actions on the platform. 

For the aims of the present document, only the technical requirements involved in the client 

side will be reported. They will be mentioned in round brackets in section 5.1. 
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The interactions between the MUSKETEER server and the client connector aim at supporting 

two types of activities: the first one is operative and regards interactions to exchange 

messages and pieces of information for the general operation  of the platform (create a new 

user, ‘log-in’ as a user, define a task, declare privacy preferences, describe data attributes, 

feedback reporting, etc.); the second one regards the actual model training, that is the 

interaction to exchange the messages and pieces of information during the training phase of 

the ML algorithm. For both activities,  the knowledge of the ‘task’ entity is crucial. It is detailed 

in the next section. 

4.1 MUSKETEER ML Task entity  

A ML task may be as a problem statement that feeds from data and produces a trained 

machine learning model as an outcome. Any MUSKETEER end user can create one or more 

new tasks thereby obtaining a unique task identifier (task_id) from the platform and run them 

even in parallel.  

The definition step requires the specification of the task characteristics: 

- General description: a high-level description of the task (the problem to be solved) is 

necessary for a rapid identification of existing tasks by other users. In a first version of 

MUSKETEER, this part can be reduced to a minimum, since the end users and their tasks 

are already defined. 

- Data: it is recommended to facilitate an initial dataset, i.e., some data illustrating the task 

to be solved. Data comprises input feature vectors (x) (for non-supervised tasks) and pairs 

of input feature vectors and target values (x, t) (for supervised tasks).  

- Features description: a general description of the input features (like defining the fields in 

a Table) is necessary to unify the data representation among users and finally being able 

to combine all the contributed data during the learning stage. In the above-mentioned 

general case where input data is represented as a vector, the meaning of every field in 

such a vector must be explicitly described, for compatibility purposes.  

- “Ad hoc” preprocessing algorithm (optional): in some cases, input data is not so easily 

represented in terms of individual meaningful features and the feature vector may be the 

result of applying some (possibly complex) preprocessing to a raw piece of information 

(for instance an image, a text, a voice recording, etc.). In those cases, when the raw data 

cannot be transmitted to the MUSKETEER server and processed in the same place, it is 

necessary to share the preprocessing algorithm such that every end user preprocess its 

own raw data to obtain a common representation into the feature vector x. For instance, 

in the image case, some transformations may need to be applied to an image before 

feeding it into a machine learning model, such as high pass filtering followed by an edge 

detection, a specific feature extraction, etc.; in the case of texts, the preprocessing could 

be a bag of words with TFIDF weighting, etc. The casuistic can be extremely large and 

problem dependent, so it is important to guarantee that the preprocessing module always 
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produces an output vector with the expected content and format and it is recommended 

that the “ad hoc” (non-standard) preprocessing algorithms be defined and implemented 

by the end users defining a specific task, such that if can be shared with other users 

contributing to the task as a “preprocessing object”. 

- Target values: the problem to be solved is defined by the target values (in supervised 

tasks). For instance, given the above described features, the target could be to estimate 

the annual income in euros, or to estimate if that person is unemployed or not. The 

definition and nature of the target must also be shared among all the participants in a task 

such that they can contribute with new pairs (x, t) to the training process. 

- Privacy requirements: it is important that the end user determines which are the privacy 

restrictions that apply to his/her data, because those restrictions will determine the POMs 

that can be used. It is more operative that the user declares the privacy restrictions that 

apply to the data and then the platform offers the available POMs to solve the ML task. 

The ‘data_privacy’ parameter can be chosen among several options, described in natural 

language to facilitate the specification of the task to the end user, for example, one end 

user may adhere to some of the following statements:  

- my data is open and can be freely distributed; 

- my data can be shared after anonymization; 

- my data can be shared only with the MUSKETEER platform under some confidentiality 

agreement with the platform; 

- my data can be shared with other end users under some confidentiality agreement with 

the end users; 

- my raw data cannot leave my facilities (only the MUSKETEER client can see it and obtain 

some operations on it: gradients, dot products, etc., but never reveal individual data 

points.) 

- my data can be used for a given task, but not for other tasks. 

- Reward: this is the motivation for other users to join the task and offer their own data. 

After completion of the task, the reward is shared among the participants. In the context 

of this project the motivation by the end users is taken for granted, but it is important not 

to forget its existence, specially to motivate the data value estimation procedures to be 

developed in WP6.  

The expected reward could be, for example, among other possible options are:  

- monetary:  a user wants to improve a ML model, he/she deploys a MUSKETEER task and 

offers a monetary reward upon successful completion of the task. Other users owning data 

of potential interest for the task can join the initiative. After training is completed, the 

contribution of every participant will be (hopefully) determined by the data value 

estimation modules, and the reward will be distributed according to the value of every 

contribution. The initial user retains the trained model for its own use. 
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- collaborative results: all participants contribute with a portion of data to the task and the 

resulting learned model is shared among all participants in the task (well, possibly only 

among those identified as positively contributing to the task solution). 

Hence, once in the platform, any end user will have mechanisms to: 

- browse for published active tasks, and join one or more of them 

- create his/her own task as explained above 

- run the training procedure associated to a given ML task and follow the progress until 

completion 

- receive the outcome of a task (reward, trained model, etc.). 

4.2 Client Connector entity 

Before presenting the MUSKETEER Client Connector design, it is considered useful to recall 

the conceptual architecture of the client connector entity, as presented by IDSA. 

From a technical point of view, the client connector provides metadata as specified in the 

connector self-description, e.g. technical interface description, authentication mechanism, 

exposed data sources, and associated data usage policies. Thus, metadata is a fundamental 

building block for the deployment and composition of several ML model definitions inside a 

client connector: all operations are defined in terms of input and output parameters, bound 

protocols, and endpoints. Preconditions and postconditions need to be made explicit, and 

effects on the environment must be outlined.  

Indeed, according the IDSA Reference Architecture Model (RAM), for each client connector, it 

is possible to specify pre- or post-conditions that have to hold before (as the integrity check 

of the environment) and after (as the data item is deleted after usage) decision-making. In 

addition, it is possible to define on-conditions that have to hold during usage (e.g., only during 

business hours). These conditions usually specify constraints and permissions that have to be 

fulfilled before, during, and after using data [1]. 

The client connector must allow participant to share information (the kind of data to be 

exchanged will depend on the POM), retrieve model updates, incorporate those locally, and 

ultimately retrieve the trained machine learning models for the deployment in the local 

business processes. 
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Figure 5 – Connector system layer architecture according to IDSA RAM [1] 

The connector architecture, as described within the IDSA RAM, uses application container 

management technology to ensure an isolated and secure environment for individual data 

services.  

The Figure 5 shows the connector system layer architecture presented in the IDSA RAM as 

splitted in two phases: execution and configuration. 

• Within the execution phase, we have six entities involved. The first one is the Application 

Container Management component. It supports the deployment of an Execution Core 

Container and selected Data Services. Thereby, Data Services are isolated from each other 

by containers so to prevent unwanted interdependencies. Using Application Container 

Management, it is possible to apply extended control of Data Services and containers.   

The second element involved in the execution phase is the Execution Core Container, 

which provides components for interfacing with Data Services and supporting 

communication. More in detail, within an Execution Core Container, a Data Router handles 

communication with Data Services to be invoked according to predefined configuration 

parameters. In this regard, it is responsible for the way the data is sent (and received) to 

(and from) the data bus by (and to) Data Services. Participants have the option to replace 

the Data Router component by alternative implementations of various vendors. If a 

connector in a limited or built-in platform consists of a single data service or a fixed 

connection configuration (eg. On a sensor device), the data router can be replaced by hard-

coded software or the data service can be exposed directly. The Data Router invokes 

relevant components for the enforcement of Usage Policies, as configured in the 

connector or specified in the Usage Policy.  
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In addition, within an Execution Core Container, the Data Bus is present, to exchange data 

with Data Services and Data Bus components of other Connectors and also to store data 

within a Connector. In general, the Data Bus provides the method to exchange data among 

Connectors. Like the Data Router, the Data Bus can be replaced by alternative 

implementations in order to meet the requirements of the operator. Like the data router, 

the data bus can be replaced by alternative implementations in order to meet the 

operator's requirements. The third element involved in the execution phase is the App 

Store Container (one for each Data Service), which is a certified container downloaded 

from the App Store and provides a specific Data Service to the Connector.  

The fourth element involved in the execution phase is the Custom Container, which 

provides a self-developed Data Service. Custom containers usually require no certification. 

The fifth element involved in the execution phase is the Data Service, which defines a 

public API, which is invoked from a Data Router. A meta-description specifies this API and 

is imported into the configuration model. Data Services can be implemented in any 

programming language and target different runtime environments. The tasks to be 

executed by Data Services may be different. Existing components can be reused to simplify 

migration from other integration platforms. Finally, the Runtime of a Data Service is found 

in the execution phase. It depends on the selected technology and programming language. 

The Runtime and the Data Service represent the main part of a container. Different 

containers may use different runtimes. What runtimes are available depends only on the 

base operating system of the host computer. From the runtimes available, a service 

architect may select the one deemed most suitable. 

• With regard to the configuration phase, the connector architecture envisages five 

elements: 

1. the configuration manager, which represents the administrative part of a Connector 

and it is in charge of managing and validating the Configuration Model, followed by 

deployment of the Connector. Deployment is delegated to a collection of Execution 

Configurators by the Configurator Management.  

2. the configuration model, which is an extensible domain model to describe the 

configuration of a connector. It consists of configuration aspects that are 

interconnected and independent of technology. 

3. the configurator management. Its main task is to load and manage an exchangeable set 

of Execution Configurators. When a Connector is deployed, the Configurator 

Management component delegates each task to a special Execution Configurator. 

4. The execution configurators are interchangeable plug-ins that perform or translate 

individual aspects of the configuration model into a specific technology. The procedure 

for performing a configuration depends on the technology used. Common examples 
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could be the generation of configuration files or the use of a configuration API. By using 

different execution configurators, new or alternative technologies can be adopted and 

integrated into a connector. Therefore, every technology (operating system, application 

container management, etc.) gets its own execution configurator.  

5. The Validator, which is in charge of checking if the Configuration Model complies with 

self-defined rules and with general rules specified by the International Data Spaces, 

respectively. The violation of the rules can be considered as a warning or an error. If 

such warnings or errors occur, the deployment may fail or be rejected. 

Since the configuration phase and the execution phase are separated from each other, it is 

possible to develop and subsequently operate these components independently of each 

other. 

According to the IDSA RAM, different implementations of the connector can use various types 

of communication and encryption technologies, depending on the requirements indicated. 

As already mentioned, when defining the scope of the MUSKETEER platform, it is important 

to keep in mind the distinction between (i) the server-side platform, which enables the 

creation and execution of data sharing and federated machine learning among geographically 

distributed participants and (ii) the client connectors, in charge of starting and/or participating 

to ML training processes. 

On the server component, detailed information are available in the deliverable D3.2 - 

Architecture design – Final version.  In short, the server is the cloud platform which uses 

message queues for asynchronous exchange of information required for federated learning, 

such as the latest version of the central model computed by the aggregator, or model updates 

computed by the participants on their local data. The platform itself is agnostic to the 

semantics of this information (generally it will not even be aware whether or not the 

information is encrypted); it is parsed and interpreted in the context of the federated learning 

algorithm processes running on the aggregator and participants’ sides, respectively. 

Besides the exchange of information for the execution of the actual federated learning tasks, 

the server side also provides services to manage tasks throughout their lifecycle, such as: 

creating new tasks, browsing created tasks, aggregating tasks, joining tasks as a participant or 

deleting tasks. The meta-information that is required for task management is stored in a cloud 

database. 

5 MUSKETEER Cluster Client Connector Architecture 

Concerning the Client Connector, two types of architectures have been designed: a Cluster 

mode, the first version of which has been described in D7.1, and a Desktop mode, whose first 
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prototype is released along with this documentation as deliverable D7.3. The following figure 

shows the main differences between the desktop and cluster modes. 

The Cluster Client Connector supports the storage and the processing of Big Data, through 

horizontal scalability and workload distribution on multiple nodes of the cluster (more details 

are provided in the next section).   

The Desktop Client Connector can be used when data is collected in a non-centralized way and 

there is no need to use a cluster to distribute the workload, both in terms of computing and 

big data storage. Anyway, the Desktop version could also leverage GPUs for the training 

process, enabling the processing of a large amount of data in terms of volume. Finally, the 

Desktop Client Connector can be easily deployed in any environment thanks to the use of 

Docker [8] in order to containerize the Client Connector application. Docker containers ensure 

us a lightweight, standalone and executable package of the software that includes everything 

needed to run the Desktop Client Connector: operating system, code, runtime, system tools, 

libraries and settings. In this way the whole Desktop Client Connector application can be easily 

deployed in a sandbox to run on the host operating system of the user. 

 
Figure 6 - Client Connector Modes 

 

5.1 MUSKETEER Cluster Client Connector 

As mentioned in the previous paragraph, the MUSKETEER Cluster Client Connector is devised 

to meet big data processing and federated machine learning needs. From the user 

perspective, there are not many changes related to the user interface and the user experience 

because the frontend consistency is kept by design. Contrarywise, there are deep differences 

in the backend side of the architecture due to the distributed nature of the system. 

The functional architecture of the MUSKETEER client connector is described in Figure 7.  
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Figure 7 – MUSKETEER Client Connector Architecture 

The boundary between the MUSKETEER user and the Cluster Client Connector is represented 

by the MUSKETEER Client Connector UI, which is a web application based on Angular [17] that 

communicates with a core microservice called MUSKETEER Client Processor. 

The MUSKETEER Client Processor has two main coordination functionalities: it manages the 

in-cluster big data processing workloads (local jobs) that produce Machine Learning Models 

and dispatches federated machine learning events with the MUSKETEER Server the Cluster 

Client Connector is connected to. The MUSKETEER Client Processor exposes a RESTful API in 

order to receive the requests from the UI and includes an external connector sub-component 

that implements the MUSKETEER Server Communication Library. This component is 

implemented using the Spring Boot Framework [9], a java-based set of libraries used to 

implement lightweight and production-ready microservices in a fast and reliable manner. 



 

 

 

 D7.2 Client connectors’ architecture design – Final version   24 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

The Execution Engine is the backbone of all the distributed processing that occurs in the 

Cluster Client Connector. In a nutshell, it handles the lifecycle of each local job, notifies their 

status to the Client Processor and all the related information, and communicates to the 

Orchestration Container Manager to request the allocation of the resources the job need to 

be executed as expected. The Execution Engine adopted in the Cluster Client Connector is 

Spring Cloud Dataflow [10], a microservice-based streaming and batch data processing 

component which belongs to the Spring ecosystem and implemented in Java. Spring Cloud 

Dataflow supports a lot of pre-built apps that allow matching a wide variety of scenarios and 

that can be used to compose MUSKETEER’s local jobs without difficulties. 

The Orchestration Container Manager allows by one side to instantiate every MUSKETEER 

Cluster Client Connector component, by the other side to deploy the local job on-demand at 

scale. The Container Manager is aware of the available resources, Memory, Volume, and CPUs 

in the cluster and distributes them according to the workload generated by the local jobs. 

Also, the Container Manager provides a sandboxed execution environment in the form of a 

container in order to run the processes with a high level of isolation, in this way it reaches the 

fault tolerance and reliability requirements a production system should have. Kubernetes has 

been chosen as a container orchestrator [11]. It belongs to the Anthos product family by 

Google and it is supported by a big community of developers worldwide. 

To launch the local jobs, the container manager pulls the docker images registered in the ML 

Algorithm Catalogue, a Spring Application, which is accessed and referenced by the execution 

engine. The Catalogue contains all the metadata related to the model of the Algorithms and 

components used to manage the local jobs. 

The Container Manager can manage also the hosting of some persistence infrastructures such 

as HDFS and Cassandra, which can be accessed via the internal connectors available, and 

bundled into some application registered in a docker registry that can take part in the 

composition of a local job. These applications should be in line with the Spring App 

specifications and implemented using the guidelines of Spring Cloud Dataflow. 

For internal communication, a reliable and high performing message broker is adopted, in the 

specific case of the Cluster Client Connector, Apache Kafka is the solid pick. It is used by several 

internal components such as the Client Processor, the Execution Engine, and the applications 

that compose the local jobs in order to communicate by events. 

The MUSKETEER Client Connector enables the user to interact with the MUSKETEER Server so 

to take part to the Federated Machine Learning processes, according to the specifications 

defined in the project. In order to be compliant with the IDSA RAM [1] shown so far, the client 

connector will be released as a multi-container application that will support both on-premise 

distributed environments as well as cloud providers. 
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Containers allow to run an application and all of its dependencies in isolated processes. The 

goal of containerization is to allow to easily package everything is needed to run software 

reliably when moved from one environment to another. There are a number of benefits that 

moving to containerization provides. Some of the main benefits companies can see include 

increased portability, simple and fast deployment, enhanced productivity, possible lower cost, 

improved scalability, improved security (TR002). 

For the correct usage of the access control mechanism the design of an effective user 

management process is envisaged (TR001, TR003) so that each client connector will be 

univocally identified (TR005). In MUSKETEER platform, a potential approach will be to include 

two main subprocesses: a) the registration and subsequently user creation (TR006), and b) the 

user authentication (login) that enables the access to the platform as a whole. In MUSKETEER 

platform, the users appear under the concept of organisations. The registration process is 

handled by a component and includes the following steps:  

a) The organisation manager submits the organisation signup form. 

b) The MUSKETEER administrator receives the request, checks and approves it. 

c) The organisation manager creates the invitations for the organisation members. Each 

member receives the invitation link via email accompanied with an invitation token. 

d) Each organisation member fills-in the member signup form providing also the invitation 

token and, upon successful registration, access is granted to the MUSKETEER platform. 

The client connector architecture implements an intuitive user interface through which the 

user will be able to perform the canonical operations of the MUSKETERR platform, such as 

browsing published active tasks (TR020), joining one or more of them, creating her own task 

(TR007, TR021), running the training procedure associated to a given ML task (TR022) and 

following the progress until completion (TR023), receiving the outcome of a task (reward, 

trained model, etc) (TR019, TR024).  

The user interface will allow end users to straightforwardly define a task (TR008, TR010, 

TR012) that will be univocally determined (TR009, TR011) 

The communication with the MUSKETEER server will occur through the MUSKETEER Client 

Processor module that implements the external connector exploiting the MUSKETEER-Client 

python APIs provided by IBM1.  

 

 

 

1 https://github.com/IBM/Musketeer-Client 

https://github.com/IBM/Musketeer-Client
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Since the client processor is shipped as a docker image, it will run in a sandboxed execution 

context and will securely communicate through the external connector with the server, so 

that the compliancy with the IDSA RAM [1] will be preserved in all the parts of the Client 

Connector. 

In order to run the algorithms in a safe and isolated environment, the execution engine 

provides all the capabilities to manage the lifecycle of the running jobs locally. Such an 

execution engine has to support the deployment, execution, monitoring and orchestration of 

algorithms as micro-service both in streaming and batch mode. 

The chosen ML algorithm micro-services are retrieved from the ML algorithm catalogue and 

are instantiated according to the resources available on the machines in which the Client 

Connector runs. 

The ML algorithm catalogue gathers all the machine learning models created in the project to 

cover a variety of privacy-preserving scenarios and ensure security and robustness against 

external and internal threats (TR017, TR018). 

More in detail, the library will contain a complete set of algorithms for data pre-processing, 

normalization and alignment of horizontal and vertical distributed datasets (TR013, TR014, 

TR015); models for data value estimation; supervised learning algorithms to solve regression 

and classification tasks (Linear models like Logistic regression or ElasticNet, Kernel Methods 

such as semiparametric SVMs, Tree Based Algorithms such as Random Forest and Deep Neural 

Networks such as MLPs or CNNs); unsupervised learning to perform clustering or topic 

modelling (methods like K-means or LDA). Such pre-processing and training algorithms will 

run under different POMs (TR016, TR025, TR026) in which the platform can operate. 

It is worth mentioning that in order to cover the largest possible number of industrial 

scenarios, MUSKETEER has to support several POMs. The main features to compare these 

POMs are the following ones: 

• Privacy level: This is possibly the most obvious requirement in any IDP where data is 

to be shared. 

• Computational local overload: Some problems require standard computational means, 

while in other cases, special computational resources might be needed: a Spark cluster 

or GPU units, for instance. 

• Central Storage requirements: This requirement is mainly to be fulfilled by the central 

platform; it is needed if the users’ data is collected and stored in a single place (a cloud 

service, for instance).  

• Communication requirements: Depending on the volume of the datasets and the type 

of machine learning algorithm, large communication resources may be needed. 
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• Data Utility Accountability: It is important to correctly evaluate the 

relevance/contribution of the provided data for the resulting final machine learning 

model. 

Each ML algorithm micro-service will be packed as Docker image. A Docker image is an artifact 

used to execute some software in a Docker container. An image is essentially built from the 

instructions for a complete and executable version of an application, which relies on the host 

OS kernel. When the Docker user runs an image, it becomes one or multiple instances of that 

container. 

Docker is an open source OS-level virtualization software platform primarily designed for Linux 

and Windows. Docker uses resource isolation features of the OS kernel, such as c-groups in 

Linux, to run multiple independent containers on the same OS.  A container that moves from 

one Docker environment to another with the same OS will work without changes, because the 

image includes all of the dependencies needed to execute the code [8]. 

A container differs from a virtual machine (VM), which encapsulates an entire OS with the 

executable code atop an abstraction layer from the physical hardware resources. 

Within the end user’s virtual machines dedicated to run the client connector, resources are 

supervised by the Orchestration Container Manager which is the component that provisions 

the runtime environments for each ML algorithm.  

As Orchestration Container Manager, Kubernetes was chosen. It is an open-source system for 

automating deployment, scaling, and management of containerized applications. It groups 

containers that make up an application into logical units for easy management and discovery 

[11]. 

It is worth noticing that there’s a perfect match with the concept of Custom Container and/or 

App Store Container in the IDSA’s RAM and, as an internal communication mechanism, a 

message broker will be used so that the Client Connector can coordinate properly the 

workflows and the dataflows. 

Such a message broker may be based on Kafka, which allow to publish and subscribe to 

streams of records, similar to a message queue or enterprise messaging system, store streams 

of records in a fault-tolerant durable way and process streams of records as they occur. 

Kafka is generally used for two broad classes of applications: (i) building real-time streaming 

data pipelines that reliably get data between systems or applications; (ii) building real-time 

streaming applications that transform or react to the streams of data [12]. 

The ML algorithm micro-services, as mentioned before, must be wrapped so that they include 

an internal connector to obtain the training sets supporting multifarious sources as well as an 
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external connector that sends the trained model, once the job is finished, to the MUSKETEER 

server.   

More in detail, in order to make client connector able to use data which is stored in different 

storages, it has to be made available a set of internal connectors to user’s data sets, like: 

• HIVE connector, to read data from or write data to Hive data sources.  The Apache Hive 

data warehouse software facilitates reading, writing, and managing large datasets 

residing in distributed storage using SQL. Structure can be projected onto data already 

in storage [13]. 

• Cassandra connector to read data from or write data to Cassandra data sources, and 

enable the ingestion of temporal data in real time and maintain these records with a 

long retention period. The Apache Cassandra database is the right choice when 

scalability and high availability are needed without compromising performance. Linear 

scalability and proven fault-tolerance on commodity hardware or cloud infrastructure 

make it suitable for mission-critical data. Cassandra's support for replicating across 

multiple datacenters is best-in-class, providing lower latency for your users and the 

peace of mind of knowing that you can survive regional outages [14]. 

• Redis to read data from or write data to REDIS data sources. Redis is an open source, 

in-memory data structure store, used as a database, cache and message broker. It 

supports data structures such as strings, hashes, lists, sets, sorted sets with range 

queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and streams 

[15]. 

• HDFS to read data from or write data to HDFS systems. It is a distributed file system 

designed to run on commodity hardware. It has many similarities with existing 

distributed file systems. However, the differences from other distributed file systems 

are significant. HDFS is highly fault-tolerant and is designed to be deployed on low-cost 

hardware. HDFS provides high throughput access to application data and is suitable for 

applications that have large data sets. HDFS relaxes a few POSIX requirements to 

enable streaming access to file system data. HDFS was originally built as infrastructure 

for the Apache Nutch web search engine project. HDFS is now an Apache Hadoop 

subproject [16]. 

Each ML algorithm will also send status update messages to the server using the MUSKETEER-

Client python libraries. 

5.1.1 Cluster Client Connector: Proposed APIs 

In this section the messages for each individual service/API are described. This is not intended as 

a definitive API guide, but rather a synthesis of functionality required to build a full end-end API.  
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In the following tables the interfaces of the MUSKETEER Cluster Client Connector are defined. 

 

MUSKETEER Client Processor: Create task 

Technical interface ID MCP_CT 

Endpoint name Create Task 

Endpoint description Used by the UI to create a new Task 

Component MUSKETEER Client Processor 

Endpoint URL /create_task 

HTTP method POST 

Request parameters Task name, Task definition 

Request body User defined task entity attributes 

Response body Task entity 

 

 

 

 

MUSKETEER Client Processor: Get tasks 

Technical interface ID MCP_GTs 

Endpoint name Get Tasks 

Endpoint description Get the list of the available tasks 

Component MUSKETEER Client Processor 

Endpoint URL /get_tasks 

HTTP method GET 

Request parameters None 

Request body None 

Response body Collection of task entities 
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MUSKETEER Client Processor: Get task info 

Technical interface ID MCP_GTI 

Endpoint name Task Info 

Endpoint description Provides the details of the tasks 

Component MUSKETEER Client Processor 

Endpoint URL /task_info 

HTTP method GET 

Request parameters None 

Request body None 

Response body Collection of task info entities 

 

 

 

 

MUSKETEER Client Processor: Get joined tasks 

Technical interface ID MCP_GJT 

Endpoint name Get joined tasks 

Endpoint description Provides a list of the tasks user has joined to 

Component MUSKETEER Client Processor 

Endpoint URL /get_joined_tasks 

HTTP method GET 

Request parameters User ID 

Request body None 

Response body Collection of task entities 
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MUSKETEER Client Processor: Aggregate 

Technical interface ID MCP_Ag 

Endpoint name Aggregate 

Endpoint description Starts the FMM aggregation of a certain task 

Component MUSKETEER Client Processor 

Endpoint URL /aggregate 

HTTP method POST 

Request parameters None 

Request body Task entity, dataset 

Response body Success json 

 

 

MUSKETEER Client Processor: Get result task image 

Technical interface ID MCP_GRTI 

Endpoint name Get result task image 

Endpoint description Provides a metrics evaluation chart resulting from a task 

execution 

Component MUSKETEER Client Processor 

Endpoint URL /results/image/<task> 

HTTP method GET 

Request parameters Task name 

Request body None 

Response body Image representing the metrics evaluation chart of the task 

selected [B64 IMAGE] 
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MUSKETEER Client Processor: Participate 

Technical interface ID MCP_Pa 

Endpoint name Participate 

Endpoint description Forwards the request for participation related to a task 

Component MUSKETEER Client Processor 

Endpoint URL /participate 

HTTP method POST 

Request parameters None 

Request body Task entity, datasets 

Response body Success json 

 

 

ML Algorithm Catalogue: Get algorithms 

Technical interface ID MLAC_GAs 

Endpoint name Get algorithms 

Endpoint description Provides a list of all the registered algorithms 

Component ML Algorithm Catalogue 

Endpoint URL /algorithms 

HTTP method GET 

Request parameters None 

Request body None 

Response body A collection of algorithm entities 
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ML Algorithm Catalogue: Get algorithm 

Technical interface ID MLAC_GA 

Endpoint name Get algorithm 

Endpoint description Provides an algorithm by ID 

Component ML Algorithm Catalogue 

Endpoint URL /algorithms/<id> 

HTTP method GET 

Request parameters Id 

Request body None 

Response body Algorithm entity 

 

 

ML Algorithm Catalogue: Create algorithm 

Technical interface ID MLAC_CA 

Endpoint name Create algorithm 

Endpoint description Registers a new algorithm to the catalogue 

Component ML Algorithm Catalogue 

Endpoint URL /algorithms 

HTTP method POST 

Request parameters None 

Request body User defined algorithm entity attributes 

Response body Algorithm entity [JSON] 

 

5.1.2 Cluster Client Connector: Workflows 

The pictures below, show the interactions that occur among the components of the 

MUSKETEER Cluster Client Connector during the execution of the main scenarios of “list 

tasks”, “create a task”, “join a task” and “aggregate”. 
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Concerning the tasks listing, once the MUSKETEER user lands on the main screen of the Client 

Connector UI, the list tasks event is triggered and the client connector performs a request to 

the processor, that forwards the same request to the MUSKETEER Server using the 

communication library, in order to retrieve the list of the tasks (Figure 8). 

 
Figure 8 – ‘List tasks” sequence diagram 

 

The second important workflow, concerns the creation of a new task (Figure 9). The user is 

able to configure the new task picking a set of choices related to the algorithm she wants to 

use, the POM level among the available ones and metadata. The client processor retrieves all 

the algorithms and POMs from the ML Algorithm Catalogue in order to allow the user to build 

her new task. Once algorithm and POM are selected and all the forms are filled, the user 

uploads a json file descriptor that contains the description of the data used by the algorithm. 

At the end of the activity, the user clicks on the create task button, all the information are sent 

to the processor which communicates with the Musketeer Server submitting the new request. 

The other key scenario is about the participation to a task (Figure 10). The user selects a task 

she wants to participate to, and the Client Processor forward the request to the Musketeer 

Server. Once the participation is approved, the user fills a form with the reference to the 

dataset and then starts the participation. The Client Processor triggers an initialization event 

on the Execution Engine which pulls the involved algorithm from the Machine Learning 

Algorithm Catalogue and asks to the Orchestration Container Manager to deploy the local job. 
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Figure 9 - “create a task” sequence diagram 

 

A new Local Job gets instantiated and it interacts with the Storage in order to get access to 

the data the user has previously selected, then, it processes the data according to the 

algorithm. Once done, the Local Job produces a Machine Learning model which is sent to 

persistence, the local job notifies the Client Processor and then terminates. At that point, the 

Client Processor sends the model and the related metadata to the Musketeer Server in order 

to deliver the contribution of the federated model. If the user is also an aggregator, in the 

same way as the Desktop Client Connector, an aggregation process has to be started. The 

responsible component for this activity is the Client Processor that runs the aggregation 

algorithm in a dedicated process. The Processor keeps listening on the model contributions 

coming from the participants and, iteratively, sum them all. At the end of the loop, the Client 

Processor sends the final aggregator model to the MUSKETEER server and generates an 

evaluation metrics chart for assessment purposes.



 

 
Figure 10 – “Task participation” sequence diagram 
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5.2 MUSKETEER Desktop Client Connector 

The Desktop Client Connector architecture is shown in Figure 11. The application is mainly 

composed by 5 components that will be described in detail. There are also two external 

components that are loaded inside the Client Connector after the application is up and 

running: the communication messenger and the federated machine learning (MMLL) library. 

This solution produces a modular application with respect to those components, reusable in 

any context and independent from the central server and federated machine learning library 

used. 

 
Figure 11 - Desktop Client Connector Architecture 

At higher level, the Actor, through a User Interface component, that is a local web application, 

performs a set of functionalities that are described on Section 5. These functionalities range 

from the access to the target server platform, with which the Communication Messenger 

library communicates, to the binding of local data to the Client Connector, up to obtaining the 

results produced by the completed tasks. The User Interface is developed as a web application 

using Angular CLI version 8.3.8 [17]. This component represents the frontend part of the Client 

Connector, in accordance with the specifications described in D3.2. 

The core Client Back-End component acts as a RESTful Web Service that handles all user 

requests, ranging from local operations (e.g. to connect user data to the Client Connector) to 

server operations (e.g. tasks and users management); these operations need to use a 

Communication Messenger library to communicate toward a target external server. In 

particular, Flask, a lightweight WSGI (web server gateway interface) web application 

framework, has been used [18]. WSGI is basically a protocol defined so that Python application 
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can communicate with a web-server and thus be used as web application outside of CGI 

(common gateway interface). 

The Data Connector component connects user data, which may come from different sources 

or storage layers, to the Client Connector. In addition to connecting data from different 

sources, the component can manage and support different kinds of data: in fact, a user can 

load a CSV tabular data from the File System, images files, binary data, a table from a database 

and so on. Depending on the source from which the datasets are retrieved, and their data 

format, different libraries may be used. For example, the current version of the Desktop Client 

Connector retrieves datasets in CSV format through the Pandas library 

(https://pandas.pydata.org). Pandas is an open-source library, which allows you to read and 

process structured data providing high-performance. 

The Abstract Communication Interface component allows to import and use an 

implementation of the communication library. In the MUSKETEER project the Communication 

Messenger library used is the pycloudmessenger library developed by IBM, and it is available 

at the following URL: https://github.com/IBM/pycloudmessenger. After the 

pycloudmessenger library is configured and installed, the Client Connector can use the APIs to 

communicate toward the MUSKETEER core platform. As a result, this component integrates 

all the user and task management parts: the listing task functionality, login and registration 

step, task creation and so on. This component is also connected and used by the Execution 

component, since during the training process the weights are sent and received to and from 

the central server (Musketeer Core Platform) using the Communication Messenger 

(pycloudmessenger) API.   

On the other hand, the execution of tasks as a participant or aggregator is handled by the 

Execution macro-component. This component instantiates and runs a federated machine 

learning algorithm according to an interface that has been defined in WP4 by UC3M and TREE; 

which algorithm to be used and with which parameters are defined in the task definition and 

stored in the central server during the task execution. As well as the Communication 

Messenger library, the Federated Machine Learning library is an external library imported into 

the Client Connector. The imports of these libraries can be fully performed through User 

Interface in an initial configuration step after the first start of the Desktop Client Connector 

application. 
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5.2.1 Desktop Client Connector: Proposed APIs 

In this section the messages for each individual service/API are described. This is not intended as 

a definitive API guide, but rather a synthesis of functionality required to build a full end-end API.  

In the following tables the interfaces of the MUSKETEER Desktop Client Connector are defined. 

 

Client Back-End: Get algorithms 

Technical interface ID CBE_GAs 

Endpoint name Get algorithms 

Endpoint description Provides a list of all the registered algorithms 

Component Client Back-End 

Endpoint URL /cc/catalogue/algorithms 

HTTP method GET 

Request parameters None 

Request body None 

Response body A collection of algorithms 

 

 

Client Back-End: Get POMs 

Technical interface ID CBE_GPs 

Endpoint name Get POMs 

Endpoint description Provides a POMs metamodel 

Component Client Back-End 

Endpoint URL /cc/catalogue/poms 

HTTP method GET 

Request parameters None 

Request body None 

Response body A POMs (Privacy Operation Modes) metamodel 
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Client Back-End: Get step configuration 

Technical interface ID CBE_GSC 

Endpoint name Get step configuration 

Endpoint description Provides a number pointing the configuration step to complete  

(-1 if all configuration steps have been completed) 

Component Client Back-End 

Endpoint URL /cc/configurations/step 

HTTP method GET 

Request parameters None 

Request body None 

Response body The configuration step to complete [JSON]  

 

 

 

Client Back-End: Set communication configuration 

Technical interface ID CBE_SCC 

Endpoint name Set comm configuration 

Endpoint description It configures and downloads the messenger communication 

library 

Component Client Back-End 

Endpoint URL /cc/configurations/comm 

HTTP method POST 

Request parameters None 

Request body The information to download and set the messenger 

communication library for the MUSKETEER server 

Response body Success JSON 
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Client Back-End: Get communication configuration 

Technical interface ID CBE_GCC 

Endpoint name Get comm configuration 

Endpoint description Provides the communication library configuration stored into the 

Client Connector 

Component Client Back-End 

Endpoint URL /cc/configurations/comm 

HTTP method GET 

Request parameters None 

Request body None 

Response body The communication library configuration [JSON] 

 

 

 

Client Back-End: Set Machine Learning library configuration 

Technical interface ID CBE_SMLLC 

Endpoint name Set MMLL configuration 

Endpoint description It configures and downloads the Machine Learning library 

Component Client Back-End 

Endpoint URL /cc/configurations/mmll 

HTTP method POST 

Request parameters None 

Request body The information to download and set the Machine Learning 

library 

Response body Success JSON 

 

 

 



 

 

 

 D7.2 Client connectors’ architecture design – Final version   42 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Client Back-End: Get Machine Learning library configuration 

Technical interface ID CBE_GMLLC 

Endpoint name Get MMLL configuration 

Endpoint description Provides the Machine Learning library configuration stored into 

the Client Connector 

Component Client Back-End 

Endpoint URL /cc/configurations/mmll 

HTTP method GET 

Request parameters None 

Request body None 

Response body The Machine Learning library configuration [JSON] 

 

 

 

Client Back-End: Get datasets 

Technical interface ID CBE_GD 

Endpoint name /cc/datasets 

Endpoint description Provides metamodels of the datasets connected to the Client 

Connector 

Component Client Back-End 

Endpoint URL /cc/datasets 

HTTP method GET 

Request parameters None 

Request body None 

Response body Metamodels of the datasets connected to the Client Connector 

[JSON] 
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Client Back-End: Get result task image 

Technical interface ID CBE_GRTI 

Endpoint name Get result task image 

Endpoint description Provides a metrics evaluation chart resulting from a task 

execution 

Component Client Back-End 

Endpoint URL /cc/results/image/<task> 

HTTP method GET 

Request parameters Task name 

Request body None 

Response body The metrics evaluation chart of the task selected [B64 IMAGE] 

 

 

 

Client Back-End: Get task logs stream 

Technical interface ID CBE_GTLS 

Endpoint name Get task logs stream  

Endpoint description Provides the logs produced by a task you have run as a participant 

or aggregator 

Component Client Back-End 

Endpoint URL /cc/results/stream/logs/<task&mode> 

HTTP method GET 

Request parameters Task name and execution mode (participant/aggregator) 

Request body None 

Response body The logs produced by a task execution [JSON] 
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Client Back-End: Add dataset 

Technical interface ID CBE_AD 

Endpoint name Add dataset 

Endpoint description It stores a dataset metamodel containing the information 

needed by the Data Connector component to retrieve that 

dataset 

Component Client Back-End 

Endpoint URL /cc/datasets 

HTTP method POST 

Request parameters None 

Request body Information about the source and type of dataset, and other 

metadata 

Response body Success JSON 

 

 

 

Client Back-End: User login 

Technical interface ID CBE_ULI 

Endpoint name Login user 

Endpoint description Provides authentication to the MUSKETEER server through the 

communication messenger library configured into the Client 

Connector; creates a local session into the Client Connector 

Component Client Back-End 

Endpoint URL /cc/comms/login 

HTTP method POST 

Request parameters None 

Request body User credentials: username and password 

Response body Success JSON 
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Client Back-End: User logout 

Technical interface ID CBE_ULO 

Endpoint name Logout user 

Endpoint description Terminate the local authentication session 

Component Client Back-End 

Endpoint URL /cc/comms/logout 

HTTP method POST 

Request parameters None 

Request body None 

Response body Success JSON 

 

 

 

Client Back-End: User registration 

Technical interface ID CBE_UR 

Endpoint name Register user 

Endpoint description Provides registration to the MUSKETEER server through the 

communication messenger library configured into the Client 

Connector 

Component Client Back-End 

Endpoint URL /cc/comms/registration 

HTTP method POST 

Request parameters None 

Request body User credentials: username, password and organization name 

Response body Success JSON 
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Client Back-End: Get tasks 

Technical interface ID CBE_GTs 

Endpoint name Get tasks 

Endpoint description Get the list of all the available tasks registered in the MUSKETEER 

server 

Component Client Back-End 

Endpoint URL /cc/comms/tasks  

HTTP method GET 

Request parameters None 

Request body None 

Response body The list of the available tasks registered to the Musketeer server 

[JSON] 

 

 

 

Client Back-End: Get tasks joined 

Technical interface ID CBE_GTJ 

Endpoint name Get user assignments 

Endpoint description /cc/comms/tasks/assigned 

Component Client Back-End 

Endpoint URL Get the list of all the tasks the user is participating to 

HTTP method GET 

Request parameters None 

Request body None 

Response body The list of all the tasks the user is participating in [JSON] 

 

 

 



 

 

 

 D7.2 Client connectors’ architecture design – Final version   47 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Client Back-End: Aggregate task 

Technical interface ID CBE_AT 

Endpoint name Aggregate task 

Endpoint description /cc/fml/aggregate 

Component Client Back-End 

Endpoint URL Start a task as aggregator (only the task creator can run a task as 

aggregator) 

HTTP method POST 

Request parameters None 

Request body The task name and metamodels of the datasets to process during 

the aggregation 

Response body Success JSON 

 

 

 

Client Back-End: Participate task 

Technical interface ID CBE_PT 

Endpoint name Participate task 

Endpoint description Start a task as participant 

Component Client Back-End 

Endpoint URL /cc/fml/participate 

HTTP method POST 

Request parameters None 

Request body The task name and metamodels of the datasets to process during 

the task execution 

Response body  Success JSON 
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5.2.2 Desktop Client Connector: Workflows 

This section presents the main interaction workflows between the MUSKETEER user and the 

Desktop Client Connector. To show how the components of the Desktop Client Connector 

work together, sequence diagrams have been used. The following Figure 12 shows the 

sequence diagram related to the "list tasks" event performed by the user when accesses to 

the main page of the Desktop Client Connector. When the user triggers the “list tasks” event 

it starts a request from the Client Connector UI (user interface) to the Client Back-End.  

This component will then invoke the logical Communication Interface component. This 

component makes use of the communication library imported during the configuration steps 

of the Desktop Client Connector to request and retrieve the list of tasks registered to the 

MUSKETEER platform. 

 
Figure 12 - Desktop Client Connector Sequence Diagram – Listing tasks 

The second main event concerns the participation of a task by a MUSKETEER user. The related 

sequence diagram is shown in Figure 13. The user, from the UI, selecting the properly task she 

wants to join, can drag-and-drop the training dataset, and optionally also the validation and 

test datasets. The start of a task triggers a request to the Client Back-End which is responsible 

for handling the event.  

The Client Back-End notifies the MUSKETEER Server that the user is going to participate to the 

selected task via the Communication Interface component. Once the participation has been 

validated by the MUSKETEER server, the Execution Component is delegated to start the task 

by instantiating an asynchronous process (local job). Once the local job has been successfully 

started, a confirmation ack is given back to the Client Connector, confirming the task job has 

been executed. The local job has all the information related to the task: algorithm type and 

POM to run, and the datasets to process. The datasets will be read through the Data Connector 

component, and then the chosen algorithm is instantiated and started. The algorithm is part 
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of the MMLL library that has been installed and configured during the configuration steps of 

the Desktop Client Connector. In general, the algorithm performs N iterations for training 

(chosen when creating the task) and at each iteration sends and receives the model updated 

weights from the aggregator. Once the N iterations are completed, the local job ends its 

execution. 

 
Figure 13 - Desktop Client Connector Sequence Diagram – Task participation 

The last sequence diagram describes the creation and aggregation of a task (Figure 14). The 

MUSKETEER user enters the task creation page and triggers the "list algorithms" event to the 

Back-End Client. The back end manages the request by reading the algorithm catalogue and 

returning the list to the Client Connector UI. The catalogue of algorithms is a file containing 

the metamodel of the algorithms defined in the Machine Learning library, and which was 

loaded with it during the Desktop Client Connector configuration steps. The user can now 

configure and create her own task. Configuring a task involves the definition of several fields: 

task name, task description, choice of algorithm and POM to be applied, dataset information 

to be processed, and quorum (minimum number of participants before starting the task). The 

task creation request is forwarded to the Communication Interface component, which will 

communicate to the MUSKETEER server using its communication library. Once the 

MUSKETEER server has received the response acknowledgment, back to the UI, the user will 

be notified that the task has been correctly created. 
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At a deferred time, the user who created the task can start it as an aggregator, selecting at 

most a validation dataset and a test dataset. The aggregator mainly handles the aggregation 

of the model weights received from the participating nodes, and at the end returns an 

aggregated model. The aggregator workflow, similarly to the participant’s workflow, is in 

charge of the Execution Component that instantiates a local job. As aggregation result, a 

metrics evaluation chart is created so that the user can assess the goodness of the model. 

 
Figure 14 - Desktop Client Connector Sequence Diagram – Task aggregation 
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6 Conclusion  

The purpose of this deliverable entitled D7.2 - Client connectors’ architecture design – Final 

version, was to deliver the design specifications of the client connectors in MUSKETEER. This 

deliverable provides an update to the D7.1 content. 

It is built directly on top of the first version of list of technical requirements presented in D2.1 

and the knowledge extracted from deliverable D3.1 on the MUSKETEER general architecture, 

in order to deliver the details of the design of the client side of the integrated MUSKETEER 

platform. 

It describes two different architecture of the client connector to meet two sets of user needs 

and requirements, while sharing the same user interactions: the desktop client connector and 

the cluster client connector. 

The Desktop Client Connector can be used when data is collected in a non-centralized way and 

there is no need to use a cluster to distribute the workload, both in terms of computing and 

big data storage. Anyway, the Desktop version could also leverage GPUs for the training 

process, enabling the processing of a large amount of data in terms of volume. Finally, the 

Desktop Client Connector can be easily deployed in any environment thanks to the use of 

Docker in order to containerize the Client Connector application.  

The Cluster Client Connector is devised to meet big data processing and federated machine 

learning needs. From the user perspective, there are not many changes related to the user 

interface and the user experience because the frontend consistency is kept by design. 

Contrarywise, there are deep differences in the backend side of the architecture due to the 

distributed nature of the system. 

It is worth noticing that the architectural design was done always having in mind the IDSA 

reference architecture. The alignment with the Industrial Data Platform standards brought 

forward by the Industry Data Space (IDS) Association guarantees that the MUSKETEER project 

outcomes will be interoperable with any other asset building on the IDSA standards. However, 

it is difficult at this stage to talk about actual compliance with IDSA standards. 

However, as the project development activities evolve, this initial design of the described 

services composing the client connectors will receive the necessary updates and optimisations 

in order to encapsulate all the project’s advancements, as well as the new technical 

requirements that will be extracted from the feedback that will be collected from the 

platform’s evaluation.  
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