
H2020 – ICT-13-2018-2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Grant No 824988 
 

 

 

 

 

September 2020 
 
 

D7.3 First prototype of the MUSKETEER 
client connectors 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   1 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Imprint  
 

 

Contractual Date of Delivery to the EC:  30 September 2020  

 

Author(s):  Davide Profeta (ENG), Susanna Bonura (ENG) 

Participant(s):  ENG, IBM, IDSA 

Reviewer(s): Giacomo Fecondo (FCA-ITEM), Chiara Napione (COMAU) 

 

Project:  Machine learning to augment shared knowledge in 

federated privacy-preserving scenarios (MUSKETEER) 

 

Work package:  WP7 

Dissemination level:  Public 

Version: 1.0 

 

Contact:  Susanna Bonura – susanna.bonura@eng.it   

Website:  www.MUSKETEER.eu  

 
 
 
 

 

 

Legal disclaimer 
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving 

Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020 

research and innovation programme under grant agreement No 824988. The sole 

responsibility for the content of this publication lies with the authors.  

Copyright 
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be 

made with reference to the publisher. 

  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   2 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Executive Summary 

The MUSKETEER Client Connector is the component required by a participant to join the 

MUSKETEER Platform. That software application supports the MUSKETEER platform 

participants in exchanging the machine learning models and at the same time it prevents the 

sharing of private data in line with the data sovereignty principles. 

This document provides a report that describes the architecture and the configuration of the 

first prototype of the MUSKETEER Client Connector. In addition to that, a guide to install the 

client connector and the main functionalities are described. Finally, a detailed description, 

presents the end-to-end test execution of a use case provided by COMAU that makes use of 

private datasets to implement one of the possible scenarios, of federated machine learning, 

enabled by the MUSKETEER Platform thanks to the Client Connector.  

The source code of the first prototype version of the MUSKETEER Client Connector is available 

at the following URLs released as open source under GNU AGPLv3 license: 

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend, for the back-end 

component and 

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-frontend, for the front-end 

component dedicated to the MUSKETEER project.   

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend


 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   3 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 

Document History 
 

Version Date Status Author Comment 

0.1 03 August 2020 Table of Contents Susanna Bonura First Draft 
0.2 07 August 2020 First round of 

contribution to sections 
Davide Profeta Update 

0.3  24 August 2020 Second round of 
contribution to sections 

Davide Profeta Update 

0.4 28 August 2020 Third round of 
contribution to sections 

Davide Profeta Update 

0.5 02 September 2020  For internal review Susanna Bonura Draft for 
review 

0.6  04 September 2020 Review inputs Chiara Napione Update 
0.7 07 September 2020 Review inputs Giacomo Fecondo Update 
0.8 09 September 2020 Updated version 

addressing comments 
received during the 
internal review process 

Davide Profeta Update 

0.9 10 September 2020 Finalization Susanna Bonura Update 
1.0  Clean and submission Gal Weiss Final 

 
 
  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   4 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Table of Contents 

LIST OF FIGURES ................................................................................................................ 6 

LIST OF TABLES ................................................................................................................. 7 

LIST OF ACRONYMS AND ABBREVIATIONS ......................................................................... 8 

1 INTRODUCTION ........................................................................................................ 9 

1.1 Purpose ................................................................................................................... 9 

1.2 Related Documents .................................................................................................. 9 

1.3 Document Structure ............................................................................................... 10 

2 MUSKETEER CLIENT CONNECTOR COMPONENTS .................................................... 11 

3 INSTALLATION GUIDE AND USER INTERACTIONS ..................................................... 14 

3.1 Installation ............................................................................................................. 15 

3.2 Configuration ......................................................................................................... 16 

3.3 User registration and login ..................................................................................... 19 

3.4 Tasks listing and browsing ...................................................................................... 20 

3.5 Data connection ..................................................................................................... 20 

3.6 Tasks creation ........................................................................................................ 21 

3.7 Tasks execution ...................................................................................................... 22 

3.8 Client Connector configuration settings .................................................................. 25 

4 END-TO-END TEST EXECUTION ................................................................................ 26 

4.1 Smart manufacturing use case: problem statement ................................................ 26 

4.2 Use case execution ................................................................................................. 27 

4.3 Results ................................................................................................................... 34 

5 CONCLUSION.......................................................................................................... 35 

6 REFERENCES ........................................................................................................... 36 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   5 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 

  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   6 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

List of Figures 

Figure 1 - MUSKETEER’s PERT diagram .................................................................................... 10 

Figure 2 – Client Connector Modes .......................................................................................... 12 

Figure 3 - Desktop Client Connector Architecture ................................................................... 13 

Figure 4 - Communication Configuration step ......................................................................... 16 

Figure 5 - Machine Learning Library Configuration step .......................................................... 17 

Figure 6 - User login page ......................................................................................................... 19 

Figure 7 - User registration page .............................................................................................. 19 

Figure 8 - Main page ................................................................................................................. 20 

Figure 9 - Data connection page .............................................................................................. 21 

Figure 10 - Task creation page detail ....................................................................................... 21 

Figure 11 - An open task card ................................................................................................... 23 

Figure 12 - Task worker modal ................................................................................................. 23 

Figure 13 - Task aggregator modal ........................................................................................... 24 

Figure 14 - A completed task card............................................................................................ 24 

Figure 15 - K-Means Clustering example result ....................................................................... 24 

Figure 16 - Main page to Edit Configurations page.................................................................. 25 

Figure 17 - Edit configurations page ........................................................................................ 25 

Figure 18 – Simulation of two different customers plants: in Palermo and Turin .................. 26 

Figure 19 - COMAU login to Musketeer platform .................................................................... 28 

Figure 20 - COMAU task browsing ........................................................................................... 28 

Figure 21 - COMAU task creation ............................................................................................. 29 

Figure 22 - COMAU model architecture inserting.................................................................... 29 

Figure 23 - COMAU task card: details button .......................................................................... 30 

Figure 24 - COMAU task recap ................................................................................................. 30 

Figure 25 - COMAU task card: aggregation button .................................................................. 30 

Figure 26 - COMAU task aggregation ....................................................................................... 31 

Figure 27 - ENGINEERING login to Musketeer platform .......................................................... 31 

Figure 28 - ENGINEERING task browsing.................................................................................. 32 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   7 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Figure 29 - ENGINEERING task join .......................................................................................... 32 

Figure 30 - COMAU task card: logs button ............................................................................... 33 

Figure 31 - COMAU task aggregator log ................................................................................... 33 

Figure 32 - COMAU task card: result button ............................................................................ 33 

Figure 33 - COMAU confusion matrix result ............................................................................ 34 

Figure 34 - Use case results comparison .................................................................................. 34 

 

List of Tables 

Table 1 - Data collection summary ........................................................................................... 27 

 

 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   8 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

List of Acronyms and Abbreviations 

Abbreviation Definition 

API Application Programming Interface 
CA Consortium Agreement 
CC Client Connector 
DP Differential Privacy 

DC Data Connector 
DV Data Value 
FS Feature Selection 
FSM Finite State Machine 
GA Grant Agreement 
IDR Intermediate Data Representation 

IDS Industrial Data Space 

LC Logistic Classifier 

LGFS Linear Greedy Feature Selection 
MK Master Key 
ML Machine Learning 
MLP Multi-Layer Perceptron 

MN Master Node 
OS Operating System 
PERT Program evaluation and review technique 
PK Public Key 
POM Privacy Operation Mode 

PP Privacy Preserving 
PPML Privacy Preserving Machine Learning  
RAM Reference Architecture Model 

ROC Receiver Operating Characteristics 
SQL Structured Query Language 
TA Task Alignment 

UI User Interface 
WN Worker Node 

 
  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   9 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

1 Introduction 

1.1 Purpose 

The purpose of this document is to provide a report which describes the main user interactions 

with the first prototype of the MUSKETEER Client Connector (D7.3. - First prototype of the 

MUSKETEER client connectors).  

The client connector is the component required by a participant to join the MUSKETEER 

Platform. It is the software application supporting MUSKETEER platform participants in the 

federated ML model exchange, share and process, so to guarantee the data sovereignty 

principles. 

The client-side connectors have to support the set of privacy operation modes made available 

throughout the project according to the architecture defined in T3.1 and meet the 

requirements of the federated and privacy-preserving machine learning services designed in 

WP4 (for more details we refer to D4.1). 

Moreover, the client component provides services for locally combining model updates into 

one consistent, up-to-date model instance. The client component serves as adapter for the 

integration and industrial validation of the MUSKETEER platform in WP7. 

The first version of the MUSKETEER Client Connector prototype together with this report are 

the first results of the task T7.2 - Development of client connectors for industrial scenarios, 

which aims to assemble and provide the privacy and security machine learning services 

developed in WP4 and WP5 and providing the main functionalities to communicate with 

MUSKETEER Federated Machine Learning platform server designed and developed in WP3. 

This report provides instructions to install, configure and use the MUSKETEER Client Connector 

so to interact with the MUSKETEER Cloud Platform. 

  

1.2 Related Documents 

As already mentioned, the deliverable D7.3. - First prototype of the MUSKETEER Client 

Connector, is the first of the task T7.2 - Development of client connectors for industrial 

scenarios.   

For the development of the MUSKETEER Client Connector presented in this document, several 

deliverables were considered as input (see Figure 1) both directly and indirectly linked to the 

WP7. 

The input deliverables are: 

D2.1 - Industrial and technical requirements. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   10 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

D3.2 - Architecture design – Final version.  

D3.3 - First prototype of the MUSKETEER platform. 

D4.4 - Pre-processing, normalization, data alignment and data value estimation algorithms  

D4.4 - Machine Learning Algorithms over Federated Operation Modes algorithms.  

D7.1 - Client connectors’ architecture design – Initial version.  

 
Figure 1 - MUSKETEER’s PERT diagram 

1.3 Document Structure 

In Section 2, the general description of the MUSKTEER Client Connector components is 

presented. 

In Section 3, the instructions to install and use the MUSKETEER Client Connector are 

presented. 

In Section 4, a summary of the MUSKETEER platform architecture is presented, so to have a 

comprehensive picture before detailing the Client Connector. 

Section 5 shows the results of the interactions by means of an end-to-end execution in the 

context of a smart manufacturing use case provided by COMAU. The problem that COMAU 

aimed at solving thanks to the MUSKETEER Platform, enabling secure data sharing and 

federated machine learning approach, consists in a predictive maintenance process applied to 

a belt and related motor.  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   11 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Finally, Section 6 concludes the deliverable. It outlines the main findings of the work done 

which will guide the future efforts in the design and development of the final version of the 

MUSKETEER Client Connector. 

2 MUSKETEER Client Connector components 

When defining the scope of the MUSKETEER platform, it is important to keep in mind the 

distinction between (i) the server-side platform, which enables the creation and execution of 

data sharing and federated machine learning among geographically distributed participants 

and (ii) the client connectors, in charge of starting and/or participating to ML training 

processes. 

On the server component, detailed information are available in the deliverable D3.2 - 

Architecture design – Final version.  In short, the server is the cloud platform which uses 

message queues for asynchronous exchange of information required for federated learning, 

such as the latest version of the central model computed by the aggregator, or model updates 

computed by the participants on their local data. The platform itself is agnostic to the 

semantics of this information (generally it will not even be aware whether or not the 

information is encrypted); it is parsed and interpreted in the context of the federated learning 

algorithm processes running on the aggregator and participants’ sides, respectively. 

Besides the exchange of information for the execution of the actual federated learning tasks, 

the server side also provides services to manage tasks throughout their lifecycle, such as: 

creating new tasks, browsing created tasks, aggregating tasks, joining tasks as a participant or 

deleting tasks. The meta-information that is required for task management is stored in a cloud 

database. 

Concerning the Client Connector, the first official version of the architecture is documented in 

D7.1. Since then, improvements and updates have been made to the design of the 

MUSKETEER Client Connector to meet the needs of the end-user partners. The final version of 

the Client Connector architecture design (D7.1, due at M24) will consider two types of client 

connectors to meet two different sets of user requirements and needs. Two types of Client 

Connector architecture have been designed: a Cluster mode, the first version of which has 

been described in D7.1, and a Desktop mode, whose first prototype is released along with this 

documentation as deliverable D7.3. The following figure shows the main differences between 

the desktop and cluster modes. 

The Cluster Client Connector supports the storage and the processing of Big Data, through 

horizontal scalability and workload distribution on multiple nodes of the cluster (more details 

may be found in D7.1).   



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   12 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

The Desktop Client Connector can be used when data is collected in a non-centralized way and 

there is no need to use a cluster to distribute the workload, both in terms of computing and 

big data storage. Anyway, the Desktop version could also leverage GPUs for the training 

process, enabling the processing of a large amount of data in terms of volume. Finally, the 

Desktop Client Connector can be easily deployed in any environment thanks to the use of 

Docker (https://www.docker.com/) in order to containerize the Client Connector application. 

Docker containers ensure us a lightweight, standalone and executable package of the software 

that includes everything needed to run the Desktop Client Connector: operating system, code, 

runtime, system tools, libraries and settings. In this way the whole Desktop Client Connector 

application can be easily deployed in a sandbox to run on the host operating system of the 

user. 

 
Figure 2 – Client Connector Modes 

The Desktop Client Connector architecture is shown in Figure 3. The application is mainly 

composed by 5 components that will be described in detail. There are also two external 

components that are loaded inside the Client Connector after the application is up and 

running: the communication messenger and the federated machine learning library. This 

solution produces a modular application with respect to those components, reusable in any 

context and independent from the central server and federated machine learning library used. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   13 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 3 - Desktop Client Connector Architecture 

At higher level, the Actor, through a User Interface component, that is a local web application, 

performs a set of functionalities that are described on Section 5. These functionalities range 

from the access to the target server platform, with which the Communication Messenger 

library communicates, to the binding of local data to the Client Connector, up to obtaining the 

results produced by the completed tasks. The User Interface is developed as a web application 

using Angular CLI version 8.3.8. This component represents the frontend part of the Client 

Connector, in accordance with the specifications described in D3.3. 

The core Client Back-End component acts as a RESTful Web Service that handles all user 

requests, ranging from local operations (e.g. to connect user data to the Client Connector) to 

server operations (e.g. tasks and users management); these operations need to use a 

Communication Messenger library to communicate toward a target external server. 

The Data Connector component connects user data, which may come from different sources 

or storage layers, to the Client Connector. In addition to connecting data from different 

sources, the component can manage and support different kinds of data: in fact, a user can 

load a CSV tabular data from the File System, images files, binary data, a table from a database 

and so on.  

The Abstract Communication Interface component allows to import and use an 

implementation of the communication library. In the MUSKETEER project the Communication 

Messenger library used is the pycloudmessenger library developed by IBM, and it is available 

at the following URL: https://github.com/IBM/pycloudmessenger. After the 

pycloudmessenger library is configured and installed (see Section 4), the Client Connector can 

use the APIs to communicate toward the MUSKETEER core platform. As a result, this 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   14 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

component integrates all the user and task management parts: the listing task functionality, 

login and registration step, task creation and so on. This component is also connected and 

used by the Execution component, since during the training process the weights are sent and 

received to and from the central server (Musketeer Core Platform) using the Communication 

Messenger (pycloudmessenger) API.   

On the other hand, the execution of tasks as a participant or aggregator is handled by the 

Execution macro-component. This component instantiates and runs a federated machine 

learning algorithm according to an interface that has been defined in WP4 by UC3M and TREE; 

which algorithm to be used and with which parameters are defined in the task definition and 

stored in the central server during the task execution. As well as the Communication 

Messenger library, the Federated Machine Learning library is an external library imported into 

the Client Connector. The imports of these libraries can be fully performed through User 

Interface in an initial configuration step after the first start of the Desktop Client Connector 

application. 

3 Installation guide and user interactions 

In the MUSKETEER project, federated ML is extended to support different Privacy Operation 

Modes (POMs), which control the amount and type of information that the data owners share 

during the model training and validation process. In POMs 1-3 (which closely follow 

conventional federated ML protocols), the model training is coordinated by a user initiator, 

called aggregator who creates and publishes a task, while the data owners act as participants 

by joining the task. Model training is typically performed iteratively throughout a number of 

rounds which is either determined a priori, or dynamically, e.g. by considering a model 

convergence criterion. In each round, the aggregator dispatches the current central version of 

the model to all the participants. Then the participants compute updates to that model based 

on their local data and send the updates back to the aggregator. Model updates can either be 

in the form of gradients, or in the form of new versions of the model. Upon having received 

the updates from all participants, the aggregator incorporates them (e.g. by taking an average 

of all the updates) into the new version of the central model. After the training rounds have 

completed, the aggregator holds the final version of the model, which can then be centrally 

stored for later use and/or deployed by the participants in their local production 

environments. These following sections describe the steps to install and run the Desktop Client 

Connector according the abovementioned approach. 

 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   15 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

3.1 Installation 

As a requirement, it is necessary to have a Docker engine installed on the host machine to run 

the Desktop Client Connector application.  

The source code of the first prototype version of the Desktop Client Connector is available at 

the following URLs released as open source under GNU AGPLv3 license: 

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend, for the back-end 

component and 

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-frontend, for the front-end 

component dedicated to the MUSKETEER project.  

As a first step create the Docker image of the backend components. From the project root 

folder, run the following command through the terminal:  

• docker build -f Dockerfile -t MYBUILDIMAGE 

The same MYBUILDIMAGE name chosen must be inserted in the docker-compose.yml file.  

Before running the docker-compose.yml the user must also configure the Docker volumes for 

the backend component. In particular, it is necessary to specify: 

• FS_PATH_DATA: a filesystem path directory where there are the 

datasets that you want to bind to the Client Connector. 

• FS_PATH_LOGS: a filesystem path directory where to store all the logs 

file generated by the task you run. 

• FS_PATH_RESULTS: a filesystem path directory where to store all the 

results file generated by the task you run and complete. 

The docker-compose.yml contains both the backend image just created and the frontend 

component. The frontend Docker image is located on a repository accessible through 

authentication to our Docker registry. To log in, run the following command: 

• docker login gitlab.alidalab.it:5000/musketeer/ngx-musketeer-client, 

followed by USER and PASSWORD that have been provided. 

Finally, run the following command to run and up the Desktop Client Connector: 

• docker-compose pull && docker-compose up 

The frontend Docker image will be automatically pulled from the register, if it is not present. 

It may take some minutes to download all the required dependencies based on your internet 

connection. Once it is done, the local server will be running at '127.0.0.1:5000', whilst you can 

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend


 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   16 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

use the User Interface by opening a browser and writing the following URL: '127.0.0.1:4500' 

(or 'localhost:4500'). 

3.2 Configuration 

This section describes the configuration steps once the Desktop Client Connector has been 

started for the first time. These steps consist in the installation and configuration of the two 

external components presented in the Client Connector architecture (see Section 2): the 

Communication Messenger and Federated Machine Learning Python-based library. 

Once you open the page on localhost:4500 from your browser for the first time, you will be 

redirected to localhost:4500/configure, where it is possible to configure and install the first 

Communication Messenger component as shown in Figure 4 below. As shown in the figure, 

the required information is the following: 

• Git Url: a Git URL where the communication library is hosted. 

• Module: the communication module main class, in the form 

package.module. 

• Communications Configuration File: a Json file containing all the 

information needed by the communication messenger library to 

connect towards the core server. 

 
Figure 4 - Communication Configuration step 

In the MUSKETEER project, the communication messenger used is the pycloudmessenger 

library developed by IBM and available at the following GIT repository: 

https://github.com/IBM/pycloudmessenger. For this instance, the settings used are the 

following: 

https://github.com/IBM/pycloudmessenger


 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   17 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

• Git Url: git+https://github.com/IBM/pycloudmessenger.git@master 

• Module: pycloudmessenger.ffl.fflapi 

• Communications Configuration File: the Json file provided by IBM. 

Once you have entered this information you can confirm clicking on the related button and 

install the library. If the installation is successful you will proceed to the next step. If 

something has gone wrong you will be notified with an error message.  

The next step, as shown in Figure 4 below, concerns the configuration and installation of the 

machine learning library. For the Machine Learning library configuration, the required 

information is: 

• Git Url: a Git URL where the machine learning library is hosted.  

• Aggregator Classpath: the aggregator class module where are present 

the main classes to instantiate the objects of the machine learning 

algorithms related to the role of aggregator. 

• Participant Classpath: the participant class module where are present 

the main classes to instantiate the objects of the machine learning 

algorithms related to the role of participant. 

 
Figure 5 - Machine Learning Library Configuration step 

• Aggregator Wrapper Classpath: the aggregator wrapper class module 

used to wrap the communication messenger library related to the role 

of aggregator.   



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   18 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

• Participant Wrapper Classpath: the participant wrapper class module 

used to wrap the communication messenger library related to the role 

of participant.   

• Catalogue File: it is a Json file containing the meta-model of the 

algorithms that are available in the machine learning library imported. 

In Figure 5 is shown a meta-model example of a single algorithm, related 

to an Artificial Neural Network algorithm.   

 

This catalogue file defines the available algorithms (specifying the POMs because not all the 

algorithms can be implemented for all the POMs) collecting the meta-models and all the 

required information. This is useful in the creation task step of the User Interface, where you 

choose the algorithm. In fact, it allows you to select among the algorithms defined in this file. 

As shown in the Json example of the meta-model, a set of algorithm information is described 

including: the type of algorithm (between clustering, regression, classification), for which POM 

it is appointed and a description of the algorithm parameters that can then be valorised by 

the user during the task creation. 

As for the previous step, once you have filled all the information, confirm for the machine 

learning library installation. Properly installed also this component, you will be redirected to 

the login/registration page.    



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   19 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

3.3 User registration and login 

Once you have configured the Desktop Client Connector you will be redirected to the login 

page, as shown in Figure 6 below. 

 
Figure 6 - User login page 

If the user is already registered to the target platform, the MUSKETEER platform, it is possible 

to access with their own credentials. Otherwise, the user can click on the window behind the 

login window to register a new user. To register a new user, it is necessary to insert the 

following information, as shown in the Figure 7 below: 

o Username. 

o Organization name. 

o Password. 

o Confirm of the password. 

 
Figure 7 - User registration page 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   20 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Enter the login credentials and you authenticate to the target MUSKETEER server accessing to 

the main page. Under the hood is used the Communication Messenger library and the 

configuration parameters that have been described in Section 4. 

3.4 Tasks listing and browsing 

From the main page (located on http://localhost:4500/tasks) it is possible to visualize and 

browse the tasks that are stored through the Musketeer platform. The tasks are listed as 

showed in the following Figure 8. 

 
Figure 8 - Main page 

Tasks can be filtered in several ways: 

o by name. 

o by status: created, started, completed, failed. 

o by privacy level (POM). 

In addition, a client-side task pagination has been added in order to more easily browsing the 

tasks and lighten the whole page. 

3.5 Data connection 

From the main page, clicking on "Datasets" in the top right bar you will be redirected to the 

data connection page (http://localhost:4500/worker/datasets), where the user can connect 

new datasets to the Client Connector, and check the ones already inserted. The first prototype 

of the Desktop Client Connector supports the binding of datasets in CSV format from the user's 

File System to the Client Connector, being able to specify whether or not the dataset has a 

header. 

http://localhost:4500/tasks
http://localhost:4500/worker/datasets


 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   21 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

The following Figure 9 shows the data connection page. On the left side of the page the already 

inserted datasets are shown with the following information: name of the dataset, path, size 

of the dataset and date of insertion.  

On the other side a form for the binding of a new dataset that have to contain: name (as label) 

of the dataset, relative path in the form "input_data/FILENAME.csv" that is inside the dataset 

folder set by the user during the Client Connector installation (see Section 3), and a checkbox 

to indicate whether or not the dataset contains a header. 

 
Figure 9 - Data connection page 

By clicking on the "Confirm" button the new dataset will be added and shown in the list of 

datasets; if something went wrong an error message will be displayed.   

3.6 Tasks creation 

From the main page you can access the tasks creation page (located on 

"http://localhost:4500/tasks/create") by clicking on the "Create task" button. Figure 10 below 

shows the details of all the information that can be set while creating a new task by the user. 

 
Figure 10 - Task creation page detail 

http://localhost:4500/tasks/create


 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   22 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

As shown in the previous figure, starting from the top, the user can set the following 

information: 

o Name (required): a task name. 

o Description (optional): a task description. 

o Privacy (required): a select box to choose the level of privacy 

(POM) the user wants to apply. Each POM is described by a 

description and a set of characteristics in comparison with the 

other POMs.   

o Algorithm (required): a select box to choose an algorithm, 

according to the POM selected, that the user wants to apply for 

its task. Once an algorithm has been selected, the properties of 

the algorithm that can be set by the user will be shown.   

o Quorum (required): minimum number of participants required 

to start the task. 

Regarding the description of the input dataset, for the first Desktop Client Connector release 

that supports CSV datasets for the training, the information needed are: 

o Data description file (optional): a file containing all the 

information describing the input dataset required for the 

execution of the task and therefore for the training of the 

resulting machine learning model.  

o Features (required): number of the input dataset features. 

o Labels (required): number of the input dataset labels. 

After filling in all the required information you can create the new task by clicking on the 

"Create" button. The new task just created will now be present in the list of tasks, where you 

can look again all the parameters that have been set during the task creation. 

3.7 Tasks execution 

A task can be executed from the main page by selecting one of the available tasks.  

The task creator can execute the task itself either as a participant, having a dataset available 

for the training or as an aggregator. The aggregator collects the weights of the models 

received from each participant and aggregates them to obtain an aggregated machine 

learning model. 

Figure 11 below shows the possible actions of an "open" task, i.e. not yet executed. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   23 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 11 - An open task card 

The task card displays basic information such as task name, privacy level (POM), and minimum 

number of participants required (quorum). On the right side of the card there are the following 

buttons (from the left to the right):  

o Detail button: display on a modal all the task information. 

o Logs button: display on a modal a stream log of the task 

execution. 

o Join button: execute the task as participant. As shown in the next 

Figure 12, it opens a modal where the user can drag-and-drop 

their dataset and start the task. Only the training dataset is 

required to execute a task as a participant. 

 
Figure 12 - Task worker modal 

o Aggregate button: execute the task as aggregator. The following 

Figure 13 shows the task aggregator modal clicking on the 

aggregate button. For the aggregator only validation and test 

datasets are required. On the test data, at the end of the task 

execution, a resulting chart will be generated depending on the 

algorithm type. For clustering algorithms, for example, a 2D 

scatter-plot of the first two PCA components, coloured per 

cluster, is generated. 

o Delete button: delete your own tasks. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   24 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 13 - Task aggregator modal 

  

Once the quorum of participants is reached, the task will change from "open" (or created) 

status to "running" status. Once completed, the task appears as shown in Figure 14. 

 
Figure 14 - A completed task card 

A new yellow button appears for completed tasks, as shown in the previously figure, that 

opens a modal showing the resulting chart as shown in Figure 15. 

 
Figure 15 - K-Means Clustering example result 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   25 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

3.8 Client Connector configuration settings 

The Client Connector configurations, once set as explained in Section 4, can be updated by 

going to: "http://localhost:4500/settings/edit-configurations" or from the main page as 

shown in Figure 16 below. 

 
Figure 16 - Main page to Edit Configurations page  

The edit configurations page is presented as shown in Figure 17. From this page it is possible 

to modify the two libraries already imported, the one for communication to the target server 

and the one for federated machine learning, separately. Thus, you can always update the 

libraries already set or change them to include new ones. 

 
Figure 17 - Edit configurations page 

http://localhost:4500/settings/edit-configurations


 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   26 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

4 End-to-end test execution 

In this section we present an execution instance to verify the client connectors features 

implemented by means of a use case of data sharing and federated learning in the smart 

manufacturing domain.  

4.1 Smart manufacturing use case: problem statement 

COMAU is an automation provider and its robots are installed in dozens of plants, in 

automotive context but not only. This implies that COMAU customers are competitors to each 

other and so in the majority of the cases, they don’t want to share their data.  

The problem that COMAU can solve thanks to the MUSKETEER platform, enabling secure data 

sharing and federated machine learning approach, consists in the belt tensioning maintenance 

planning. The joints of the robot contain a belt that naturally loses its elasticity over time 

changing its tensioning. Actually, in order to prevent failures caused by a wrong tension, 

operators have to regularly check the belt status dismantling the entire robot axes. These 

operations require a lot of time, effort and eventually a production stop. Moreover, these are 

expensive and maybe useless if the belt status is still good. MUSKETEER platform enables the 

privacy preserving data sharing among COMAU and its customers and so the possibility to use 

that data to build a classification model based on federated machine learning to understand 

when the belts require maintenance.  

To test the platform and in particular the client connector, two identical testbeds called 

RobotBox have been built. For this validation we have imagined that the data coming from 

the first RobotBox, from now on called gray RobotBox, were located in COMAU headquarter 

in Turin while the data coming from the second one, the white RobotBox, were in 

ENGINEERING facility in Palermo. This simulated two different customers plants (Figure 18). 

 
Figure 18 – Simulation of two different customers plants: in Palermo and Turin 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   27 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Going into the details of the testbed we underline that it replicates an axis of COMAU robot 

and is composed of a motor, a belt, a gearbox reducer and 5 kilos bulk. In order to collect data 

at different belt tensioning levels, we had to distance the motor and gearbox each other. To 

do this we have installed a slicer to move the motor and a dial gauge to measure the distance 

between the two. We have decided to study 3 different belt tensioning levels. Let’s see now 

which data we have used to create the dataset. The RobotBox always performs the same 

movement, called cycle. After each 24 seconds of cycle, we have collected robot data of motor 

position and absorbed current. From these two signals we have calculated 141 features at 

each cycle. For example, some of them are the mean of the current, the maximum value, 

minimum, the rms, the skewness, the integral and many others. The features have been 

chosen with the help of the robotics department, who better know how the belt tensioning 

influences the two signals. 

For each level, we have performed around 6000 cycles for a total of 18000 samples for each 

RobotBox considering the 3 different belt tension levels obtained setting the distance 

between motor and gearbox as in Table 1 summarizes. For this scenario, we have chosen to 

train a classification model, in particular an artificial neural network. 

 
Table 1 - Data collection summary 

Distance between motor 
and gearbox 

Belt tensioning levels – 
labels 

Samples for 
RobotBox white 

Samples for 

RobotBox gray 

Distance 1 Label 0 5980 5988 

Distance 2 Label 1 5975 5993 

Distance 3 Label 2 5981 5990 

 

 

4.2 Use case execution 

COMAU, as robot manufacturer, has played the role of the aggregator of the federated 

machine learning task and for this use case also the role of the first participant. ENGINEERING 

instead has played the role of the second participant. First of all, COMAU installed and 

configured the Desktop Client Connector by importing IBM communication and UC3M and 

TREE machine learning libraries as described in Section 3.2. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   28 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

COMAU, from Turin, logged in to the Musketeer login through the login page of the Client 

Connector as shown in the following Figure 18. 

 
Figure 19 - COMAU login to Musketeer platform 

Once entered in the platform, you can view and browse the created tasks. Figure 20 shows 

the possible filtering options for searching for a specific one: filtering by name, status and 

privacy level (POM). In addition, three buttons are highlighted in the image where you can 

change the sorting of the tasks by date: from the most recent created to the least recent, and 

vice versa; a button to update the task list and the button to create a new task. 

 
Figure 20 - COMAU task browsing 

So COMAU, created the task choosing the POM1 (privacy operation mode 1) where data 

cannot leave the facilities of each data owner and the predictive models are transferred 

without encryption, and the artificial neural network algorithm developed by UC3M and TREE 

as algorithm. As shown in Figure 21 on the task creation page, the algorithm chosen from 

COMAU was the artificial neural network.  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   29 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 21 - COMAU task creation 

After several parameters tunings tests the following ones have been set. The maximum 

number of iterations was set to 300, the learning rate to 0.00015. For the model architecture, 

that is essentially the shape of the neural network, a 3 layers neural network with 48, 16 and 

3 units was chosen. The neural network architecture, defined as a Json, was inserted by 

importing a Json file from the COMAU desktop file system as shown in Figure 22. 

 
Figure 22 - COMAU model architecture inserting 

Once created the task it will be displayed among the available tasks. From the task card, you 

can also view a recap of all parameters set by clicking on the “Details” button as shown in 

Figure 23. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   30 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 23 - COMAU task card: details button 

The recap of the task is then displayed in a modal, as shown in Figure 24. 

 
Figure 24 - COMAU task recap 

After the task creation, COMAU aggregated it by clicking on the “Aggregate” button of the 

related task as shown in Figure 25. 

 
Figure 25 - COMAU task card: aggregation button 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   31 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Then in a modal, as shown in Figure 26, COMAU drag-and-dropped their validation and test 

data and started the task as an aggregator; in the same way COMAU also joined the task as 

participant using the gray RobotBox data for the training process.  

 
Figure 26 - COMAU task aggregation 

Then ENGINEERING also logged into the platform, as shown in Figure 27. 

 
Figure 27 - ENGINEERING login to Musketeer platform 

Entered the platform, ENGINEERING searched the task created by COMAU through the 

filtering options and joined it as it is shown in Figure 28. 

 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   32 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 28 - ENGINEERING task browsing 

Finally, ENGINEERING started the task as participant with the training data of the white 

RobotBox that was already bonded to the Client Connector. 

 
Figure 29 - ENGINEERING task join 

The quorum is then reached, and the task can turn to the “running” status. It is then possible 

from COMAU to visualize the logs of the task execution, showing the progress of the task until 

its completion, as shown in the following figure. 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   33 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

 
Figure 30 - COMAU task card: logs button 

The logs of the use case task execution are showed in the next Figure 31. 

 
Figure 31 - COMAU task aggregator log 

Finally, once the task is completed, it is then got a confusion matrix chart applied to the test 

data, showing the accuracy achieved by the model for each label. The confusion matrix chart 

is available by clicking on the “Result” button of the completed task by COMAU, as shown in 

below. 

 
Figure 32 - COMAU task card: result button 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   34 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

Among the various tests performed, the best result given by the resulting confusion matrix is 

shown in Figure 33. 

 
Figure 33 - COMAU confusion matrix result 

4.3 Results 

 

 
Figure 34 - Use case results comparison 

The results were very promising and in particular if compared with the results of a non-

federated approach. As in Figure 34 on the right, the overall accuracy reached training the 

model with both RobotBox is 89% and the related confusion matrix has a very populated 

diagonal. On the other hand, in Figure 34 on the left, the accuracy of a model trained only with 

the data of the grey RobotBox or only with the data of white RobotBox is less, respectively 

86% and 81%. 

 



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   35 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

5 Conclusion  

The purpose of this document D7.3 – First prototype of the MUSKETEER Client connectors, is 

to explain the key components and the main user interactions with the Client Connector to 

exploit the MUSKETEER Platform functionalities. 

The instructions for setting up the client connector are provided together with detailed walk-

throughs of the demonstration on data from the Smart Manufacturing use case provided by 

COMAU. 

The source code of the first prototype version of the MUSKETEER Client Connector is released 

as open source under GNU AGPLv3 license [1][2]. 

However, as the project development activities evolve, this initial version of the described 

services composing the client connector will receive the necessary updates and optimisations 

in order to encapsulate all the project’s advancements, as well as the new technical 

requirements that will be extracted from the feedback that will be collected from the 

platform’s evaluation.  

Furthermore, a part of the effort within the task T7.2 will be dedicated to the development of 

the CC in Cluster mode, the requirements of which are desired in all those cases where the 

storage and the processing of Big Data have to be supported, through horizontal scalability 

and workload distribution on multiple nodes of the cluster. 

Hence, the forthcoming versions of this deliverable will incorporate all the updates that are 

necessary to be introduced.  



 

 

 

 D7.3 First prototype of the MUSKETEER client connectors   36 

Machine Learning to Augment Shared Knowledge in 

Federated Privacy-Preserving Scenarios (MUSKETEER) 

6 References 

 

[1] https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend 

[2] https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-frontend  

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Document Structure

	2 MUSKETEER Client Connector components
	3 Installation guide and user interactions
	3.1 Installation
	3.2 Configuration
	3.3 User registration and login
	3.4 Tasks listing and browsing
	3.5 Data connection
	3.6 Tasks creation
	3.7 Tasks execution
	3.8 Client Connector configuration settings

	4 End-to-end test execution
	4.1 Smart manufacturing use case: problem statement
	4.2 Use case execution
	4.3 Results

	5 Conclusion
	6 References

