
H2020 – ICT-13-2018-2019

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Grant No 824988

September 21

D7.4 Final prototype of the MUSKETEER
client connectors

Ref. Ares(2021)5982476 - 01/10/2021

 D7.4 Final prototype of the MUSKETEER client connectors 1

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Imprint

Contractual Date of Delivery to the EC: 30 September 2021

Author(s): Davide Profeta (ENG), Susanna Bonura (ENG)

Participant(s): ENG, IBM, IDSA

Reviewer(s): Stefano Braghin (IBM), Stephanie Rossello (KUL)

Project: Machine learning to augment shared knowledge in

federated privacy-preserving scenarios (MUSKETEER)

Work package: WP7

Dissemination level: Public

Version: 1.0

Contact: Susanna Bonura – susanna.bonura@eng.it

Website: www.MUSKETEER.eu

Legal disclaimer
The project Machine Learning to Augment Shared Knowledge in Federated Privacy-Preserving

Scenarios (MUSKETEER) has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 824988. The sole

responsibility for the content of this publication lies with the authors.

Copyright
© MUSKETEER Consortium. Copies of this publication – also of extracts thereof – may only be

made with reference to the publisher.

 D7.4 Final prototype of the MUSKETEER client connectors 2

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Executive Summary

The MUSKETEER Client Connector is the component required by a participant to join the

MUSKETEER Platform. That software application supports the MUSKETEER platform

participants in exchanging the machine learning models and at the same time it prevents the

sharing of private data in line with the data sovereignty principles.

This document provides a report that describes the architecture, instructions to install,

configure and use the MUSKETEER Client Connector so to interact with the MUSKETEER Cloud

Platform and describes the application programming interfaces developed and tests executed

on such component.

The source code of the first prototype version of the MUSKETEER Client Connector is available

at the following URLs released as open source under GNU AGPLv3 license:

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend, for the back-end

component and

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-frontend, for the front-end

component dedicated to the MUSKETEER project.

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend

 D7.4 Final prototype of the MUSKETEER client connectors 3

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Document History

Version Date Status Author Comment

0.1 06 August 2021 Table of Contents Susanna Bonura First Draft
0.2 27 August 2021 First round of

contribution to Sections
Davide Profeta Update

0.3 31 August 2021 Second round of
contribution to Sections

Davide Profeta Update

0.4 10 September 2021 Third round of
contribution to Sections

Davide Profeta Update

0.5 12 September 2021 For internal review Susanna Bonura Draft for
review

0.6 13 September 2021 Review inputs Stefano Braghin Update
0.7 15 September 2021 Review inputs Stephanie Rossello Update
0.8 20 September 2021 Updated version

addressing comments
received during the
internal review process

Davide Profeta Update

0.9 21 September 2021 Finalization Susanna Bonura Update
1.0 30 September 2021 Clean and submission Gal Weiss Final

 D7.4 Final prototype of the MUSKETEER client connectors 4

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Table of Contents

LIST OF FIGURES .. 6

LIST OF TABLES ... 6

LIST OF ACRONYMS AND ABBREVIATIONS ... 7

1 INTRODUCTION .. 8

1.1 Purpose ... 8

1.2 Related Documents .. 8

1.3 Document Structure ... 9

2 MUSKETEER CLIENT CONNECTOR – FINAL RELEASE ... 10

2.1 Installation guide ... 13

2.1.1 Installation ... 13

2.1.2 Configuration ... 15

2.2 User registration and login ... 19

2.3 Tasks listing and browsing .. 20

2.4 Data connection ... 21

2.5 Tasks creation .. 23

2.6 Tasks detail .. 25

2.6.1 Execution ... 26

2.6.2 Logs .. 27

2.6.3 Result chart ... 28

2.6.4 Task deletion ... 30

2.7 Models... 31

2.8 Client Connector settings.. 33

2.8.1 Profile .. 33

2.8.2 Edit libraries configurations .. 34

3 MUSKETEER CLIENT CONNECTOR APIS .. 35

4 UNIT TESTING AND INTEGRATION TESTING ... 65

 D7.4 Final prototype of the MUSKETEER client connectors 5

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4.1 Unit Testing.. 65

4.2 Integration testing ... 68

5 CONCLUSION.. 75

6 REFERENCES ... 76

 D7.4 Final prototype of the MUSKETEER client connectors 6

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Figures

Figure 1 - MUSKETEER’s PERT diagram .. 9

Figure 2 – MUSKETEER Client Connector Architecture .. 10

Figure 3 – MUSKETEER Client Connector: HTTP CLOUD communication 12

Figure 4 - Communication Configuration step ... 16

Figure 5 - Machine Learning Library Configuration step .. 17

Figure 6 - User login page ... 19

Figure 7 - User registration page .. 20

Figure 8 - Main page ... 20

Figure 9 - Data connection page – datasets list ... 22

Figure 10 - Task creation page detail ... 23

List of Tables

Table 1 - Unit test results ... 68

Table 2 - Integration test results .. 74

 D7.4 Final prototype of the MUSKETEER client connectors 7

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

List of Acronyms and Abbreviations

Abbreviation Definition

API Application Programming Interface
CA Consortium Agreement
CC Client Connector
DP Differential Privacy

DC Data Connector
DV Data Value
FS Feature Selection
FSM Finite State Machine
GA Grant Agreement
IDR Intermediate Data Representation

IDS Industrial Data Space

LC Logistic Classifier

LGFS Linear Greedy Feature Selection
MK Master Key
ML Machine Learning
MLP Multi-Layer Perceptron

MN Master Node
OS Operating System
PERT Program evaluation and review technique
PK Public Key
POM Privacy Operation Mode
PP Privacy Preserving

PPML Privacy Preserving Machine Learning
RAM Reference Architecture Model

ROC Receiver Operating Characteristics
SQL Structured Query Language
TA Task Alignment

UI User Interface
WN Worker Node

 D7.4 Final prototype of the MUSKETEER client connectors 8

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

1 Introduction

1.1 Purpose

The purpose of this document is to provide a report which describes the main user interactions

with the final prototype of the MUSKETEER Client Connector (D7.4. – Final prototype of the

MUSKETEER client connectors).

The client connector is the component required by a participant to join the MUSKETEER

Platform. It is the software application supporting MUSKETEER platform participants in the

federated ML model exchange, share and process, so to guarantee the data sovereignty

principles.

The client-side connectors have to support the set of privacy operation modes made available

throughout the project according to the architecture defined in T3.1 and meet the

requirements of the federated and privacy-preserving machine learning services designed in

WP4 (for more details we refer to D4.1).

Moreover, the client component provides services for locally combining model updates into

one consistent, up-to-date model instance. The client component serves as adapter for the

integration and industrial validation of the MUSKETEER platform in WP7.

This version of the MUSKETEER Client Connector prototype together with this report are the

final results of the task T7.2 - Development of client connectors for industrial scenarios, which

aims to assemble and provide the privacy and security machine learning services developed

in WP4 and WP5 and providing the functionalities (in their final version) to communicate with

MUSKETEER Federated Machine Learning platform server designed and developed in WP3.

This report provides instructions to install, configure and use the MUSKETEER Client Connector

so to interact with the MUSKETEER Cloud Platform and describes the application programming

interfaces developed and tests executed on such component.

1.2 Related Documents

As already mentioned, the deliverable D7.4. – Final prototype of the MUSKETEER Client

Connector, is the second and final one of the task T7.2 - Development of client connectors for

industrial scenarios.

For the development of the MUSKETEER Client Connector presented in this document, several

deliverables were considered as input (see Figure 1) both directly and indirectly linked to the

WP7.

The input deliverables are:

 D7.4 Final prototype of the MUSKETEER client connectors 9

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

D2.1 - Industrial and technical requirements.

D3.2 - Architecture design – Final version.

D3.4 - Final prototype of the MUSKETEER platform

D4.3 - Pre-processing, normalization, data alignment and data value estimation algorithms –

Final version.

D4.5 - Machine learning algorithms over federated operation modes - final version.

D4.7 - Machine learning algorithms over semi honest operation modes - final version.

D7.2 - Client connectors architecture design – Final version.

D6.2 - Scalability of machine learning algorithms over ever POMs.

D6.4 - Data value extraction and monetization strategies.

Figure 1 - MUSKETEER’s PERT diagram

1.3 Document Structure

In Section 2, the general description of the MUSKTEER Client Connector components is

presented, together with the instructions to install and use the MUSKETEER Client Connector.

Section 3 presents the documentation of the Client Connector’s APIs.

In Section 4, the results of the integration testing activities that were performed during the

implementation phase are presented.

 D7.4 Final prototype of the MUSKETEER client connectors 10

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Finally, Section 5 concludes the deliverable. It outlines the main findings of the work done.

2 MUSKETEER Client Connector – Final Release

The final version of the Client Connect integrates new functionalities, provided by the updates

obtained from the development of machine learning libraries and communications libraries

that exchange data and information with the cloud. These features include those about the

User Interface, like the new session that shows trained models and the deletion of their own

tasks. The user can now also apply pre-processing algorithms when defining a task. The Data

Connector component has been extended and improved in order to allow the user to link the

Client Connector also with the PKL data.

A new implementation of the “Abstract Communication Interface” (D7.3 the first

implementation) has been developed to allow the user to communicate between node and

cloud, following IDSA guidelines [1]. Such new communication library is named HTTP CLOUD

MESSENGER (HCM).[3]

Figure 2 – MUSKETEER Client Connector Architecture

The HTTP CLOUD MESSENGER (HCM) allows a new kind of communication (HTTP protocol) by

using an existing component developed by ENG, the TRUE (TRUsted Engineering) CONNECTOR

(https://github.com/Engineering-Research-and-Development/true-connector). This ensures

to the user a communication to cloud according to IDSA specification [3].

The HCM[3] connector aims to enable MUSKETEER (through the HCM) to be part of the IDS

ecosystem providing the following main functionalities:

• Trusted data exchange through HTTP/HTTPS, web sockets and IDSCP.

https://github.com/Engineering-Research-and-Development/true-connector

 D7.4 Final prototype of the MUSKETEER client connectors 11

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Full support of the IDS Information Model for metadata
representation.

• Integration of the Access Control mechanisms supporting state-of-the-
art IDS Identity Providers services.

• Integration of the Usage Control mechanisms.

• Registering transactions to the IDS Clearing House.

• Full compliance with the IDS broker for registering itself and querying.

The Abstract Communication Interface component allows to import and use an

implementation of the communication library. In the MUSKETEER project there are two

Communication Messenger libraries: the pycloudmessenger library and the

HttpCloudMessenger library. Both available below:

pycloudmessenger: https://github.com/IBM/pycloudmessenger

HttpCloudMessenger: https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend/tree/master/httpcloudmessenger

After configuring and installing the communication messengers, the connector will be able to

communicate to a cloud according the chosen implementation.

The HTTP CLOUD MESSENGER introduces the possibility to start a new communication

according to IDSA specification [3] as shown in the flow below.

https://github.com/IBM/pycloudmessenger
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend/tree/master/httpcloudmessenger
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend/tree/master/httpcloudmessenger

 D7.4 Final prototype of the MUSKETEER client connectors 12

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 3 – MUSKETEER Client Connector: HTTP CLOUD communication

As we can see from the image above, the communication is not direct between HCM and the

cloud, but it goes through the True Connector components. Moreover, the Data App - P into

Consumer Connector receives the requests from HCM through REST API. Which makes the

request compliant to True Connector message, sending it to the Data App – F on the cloud

side. We can choose one of the protocols listed below to communicate to the cloud: REST API,

Web Socket or IDSCP.

Currently a version is available that allows to show a complete flow of the message that start

from CC and arrive to cloud responding to requests of IDSA [3]. Therefore, the Data App – F

provides appropriate responses to the requests coming from CC, like the request for login or

to get a tasks list.

 D7.4 Final prototype of the MUSKETEER client connectors 13

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The next Section will show all the final functionalities provided by Client Connector. It is useful

also as User Guide for the Musketeer User who wants to interact with the platform through

the user interface of the Client Connector. All the REST APIs provided by the CC back-end will

follow in Section 3.

2.1 Installation guide

In the MUSKETEER project, federated ML is extended to support different Privacy Operation

Modes (POMs), which control the amount and type of information that the data owners share

during the model training and validation process. In POMs 1-3 (which closely follow

conventional federated ML protocols), the model training is coordinated by a user initiator,

called aggregator who creates and publishes a task, while the data owners act as participants

by joining the task. Model training is typically performed iteratively throughout a number of

rounds which is either determined a priori, or dynamically, e.g. by considering a model

convergence criterion. In each round, the aggregator dispatches the current central version of

the model to all the participants. Then the participants compute updates to that model based

on their local data and send the updates back to the aggregator. Model updates can either be

in the form of gradients, or in the form of new versions of the model. Upon having received

the updates from all participants, the aggregator incorporates them (e.g. by taking an average

of all the updates) into the new version of the central model. After the training rounds have

completed, the aggregator holds the final version of the model, which can then be centrally

stored for later use and/or deployed by the participants in their local production

environments. The Client Connector supports and integrates the latest versions of the

MUSKETEER communication messenger library and the MUSKETEER Machine Learning Library

(MMLL); the user will then interact through a graphical interface exposed by the Client

Connector application, designed to have a user experience as guided and simple as possible

to interact with the internal and imported external components to create, execute and

monitor tasks in a federated ecosystem according to their needs (e.g. choosing algorithms that

apply a specific level of privacy) and on their own datasets, as well as obtain the trained

models and get metrics to evaluate the final model through representative charts.

The following Sections describe the steps to install and run the Client Connector according the

abovementioned approach.

2.1.1 Installation

As a requirement, it is necessary to have a Docker engine installed on the host machine to run

the Client Connector application.

The source code of the last version of the Client Connector is available at the following URLs

released as open source under GNU AGPLv3 license:

 D7.4 Final prototype of the MUSKETEER client connectors 14

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend, for the back-end

component and

• https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-frontend, for the front-end

component dedicated to the MUSKETEER project.

Another implemented and released component as open source under the GNU AGPLv3

license, is the Back-End Data Application (BEDA). It’s sub-component fork of the TRUE

(TRUsted Engineering) Connector (https://github.com/Engineering-Research-and-

Development/true-connector) for the IDS (International Data Space) ecosystem implemented

by ENGINEERING; the BEDA is responsible for preparing and processing HTTP requests

originating from the communication library configured and installed in the Client Connector,

in order to:

1) Build a message that complies with the IDS standards.

2) Guarantee secure and reliable communication between a consumer

connector and a provider connector through the BEDA component and

the other two sub-components composing the TRUE Connector,

namely: Execution Core Container (ECC), and Usage-Control (UC),

already implemented by ENGINEERING and whose link is shown above.

The source code of BEDA, adapted to the MUSKETEER project, is available at the following link:

https://github.com/musketeer-eng-team/true-connector-basic_data_app.

Regarding the Client Connector, enriched with the components of the TRUE Connector, and a

communication library using HTTP invocations, a more detailed description is given in the final

paragraph of this Section. From here on it is explained how to install and configure the Client

Connector through its basic components in order to interact with the MUSKETEER platform.

As a first step create the Docker image of the backend components. From the project root

folder, run the following command through the terminal:

• docker build -f Dockerfile -t MYBUILDIMAGE

The same MYBUILDIMAGE name chosen must be inserted in the docker-compose.yml file.

Before running the docker-compose.yml the user must also configure the Docker volumes for

the backend component. In particular, it is necessary to specify:

• FS_PATH_DATA: a filesystem path directory where there are the

datasets that you want to bind to the Client Connector.

• FS_PATH_RESULTS: a filesystem path directory where to store all the

results file generated by the task you run and complete.

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend

 D7.4 Final prototype of the MUSKETEER client connectors 15

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

The docker-compose.yml contains both the backend image just created and the frontend

component. The frontend Docker image is located on a repository accessible through

authentication to our Docker registry. To log in, run the following command:

• docker login gitlab.alidalab.it:5000/musketeer/ngx-musketeer-client,

followed by USER and PASSWORD that have been provided.

Finally, run the following command to run and up the Desktop Client Connector:

• docker-compose pull && docker-compose up

Another open source component that will be downloaded, is the Docker image "doc-

ker.io/bitnami/mongodb:4.4", a Mongo database already pre-configured to contain the in-

formation related to the metadata of the datasets uploaded by the user through the Client

Connector. A NoSQL database was chosen in order to perform CRUD operations: create, read,

update, and delete documents; moreover, thanks to the Mongo documents, in contrast to the

SQL tables, we can insert new fields (new metadata information), if needed, to describe new

types of connections to the data resulting from the extension of the sub-component Data

Connector. The Data Connector (DC) is responsible to import and read by reference the user

data to the Client Connector.

The frontend Docker image will be automatically pulled from the register, if it is not present.

It may take some minutes to download all the required dependencies based on your internet

connection. Once it is done, the local server will be running at '127.0.0.1:5000', whilst you can

use the User Interface by opening a browser and writing the following URL: '127.0.0.1:4500'

(or 'localhost:4500').

2.1.2 Configuration

This Section describes the configuration steps once the Desktop Client Connector has been

started for the first time. These steps consist in the installation and configuration of the two

external components presented in the Client Connector architecture: the Communication

Messenger and Federated Machine Learning Python-based library.

Once you open the page on localhost:4500 from your browser for the first time, you will be

redirected to localhost:4500/configure, where it is possible to configure and install the first

Communication Messenger component as shown in Figure 4 below. As shown in the Figure,

the required information is the following:

• Git Url: a Git URL where the communication library is hosted.

• Module: the communication module main class, in the form

package.module.

 D7.4 Final prototype of the MUSKETEER client connectors 16

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Communications Configuration File: a Json file containing all the

information needed by the communication messenger library to

connect towards the core server.

Figure 4 - Communication Configuration step

In the MUSKETEER project, the communication messenger used is the pycloudmessenger

library developed by IBM and available at the following GIT repository:

https://github.com/IBM/pycloudmessenger. For this instance, the settings used are the

following:

• Git Url: git+https://github.com/IBM/pycloudmessenger.git@master

• Module: pycloudmessenger.ffl.fflapi

• Communications Configuration File: the Json file provided by IBM.

Once you have entered this information you can confirm clicking on the related button and

install the library. If the installation is successful you will proceed to the next step. If

something has gone wrong you will be notified with an error message.

The next step, as shown in Figure 4 below, concerns the configuration and installation of the

machine learning library. For the Machine Learning library configuration, the required

information is:

• Git Url: a Git URL where the machine learning library is hosted.

• Aggregator Classpath: the aggregator class module where are present

the main classes to instantiate the objects of the machine learning

algorithms related to the role of aggregator.

https://github.com/IBM/pycloudmessenger

 D7.4 Final prototype of the MUSKETEER client connectors 17

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Participant Classpath: the participant class module where are present

the main classes to instantiate the objects of the machine learning

algorithms related to the role of participant.

Figure 5 - Machine Learning Library Configuration step

• Aggregator Wrapper Classpath: the aggregator wrapper class module

used to wrap the communication messenger library related to the role

of aggregator.

• Participant Wrapper Classpath: the participant wrapper class module

used to wrap the communication messenger library related to the role

of participant.

• Catalogue File: it is a JSON file containing the meta-model of the

algorithms that are available in the machine learning library imported.

In Figure 6 is shown a meta-model example of a single algorithm, related

to an Artificial Neural Network algorithm.

 D7.4 Final prototype of the MUSKETEER client connectors 18

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 6 – Meta-model algorithm example

This catalogue file defines the available algorithms (specifying the POMs because not all the

algorithms can be implemented for all the POMs) collecting the meta-models and all the

required information. This is useful in the creation task step of the User Interface, where you

choose the algorithm. In fact, it allows you to select among the algorithms defined in this file.

As shown in the Json example of the meta-model, a set of algorithm information is described

including: the type of algorithm (between clustering, regression, classification), for which POM

it is appointed and a description of the algorithm parameters that can then be valorised by

the user during the task creation.

In the MUSKETEER project, the Machine Learning Library are developed by UC3M and TREE

and it is available at the following GIT private repository: https://github.com/Musketeer-

H2020/MMLL. The information to set at this last configuration step are the following:

• Git URL: git+https://github.com/Musketeer-H2020/MMLL.git

It’s needed to set also the GitHub personal access token (PAT) to

download the MML library.

• Aggregator Classpath: MMLL.nodes.MasterNode.MasterNode

• Participant Classpath: MMLL.nodes.WorkerNode.WorkerNode

• Aggregator Wrapper Classpath:

MMLL.comms.comms_pycloudmessenger.Comms_master

https://github.com/Musketeer-H2020/MMLL
https://github.com/Musketeer-H2020/MMLL

 D7.4 Final prototype of the MUSKETEER client connectors 19

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• Participant Wrapper Classpath:

MMLL.comms.comms_pycloudmessenger.Comms_worker

• Catalogue file: a JSON file containing the list of algorithms metadata as

described above in Figure 6.

This information will make it possible to correctly integrate the MUSKETEER Machine Learning

library and execute on-demand the tasks created by the user, i.e. execute a particular

algorithm according to a specific POM chosen and contained in the installed and configured

library.

As for the previous step, once you have filled all the information, confirm for the machine

learning library installation. Properly installed also this component, you will be redirected to

the login/registration page.

2.2 User registration and login

Once you have configured the Client Connector you will be redirected to the login page, as

shown in Figure 6 below.

Figure 6 - User login page

If the user is already registered to the target platform, the MUSKETEER platform, it is possible

to access with their own credentials. Otherwise, the user can click on the window behind the

login window to register a new user. To register a new user, it is necessary to insert the

following information, as shown in the Figure 7 below:

o Username.

o Organization name.

o Password.

o Confirm of the password.

 D7.4 Final prototype of the MUSKETEER client connectors 20

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 7 - User registration page

Enter the login credentials and you authenticate to the target MUSKETEER server accessing to

the main page. Under the hood is used the Communication Messenger library and the

configuration parameters that have been described in Section 4.

2.3 Tasks listing and browsing

The main page of the Client Connector is located on http/localhost:4500/tasks. The user, on

this page, can view and browse the tasks that are stored through the Musketeer platform.

The main page lookout is shown in the following Figure 8.

Figure 8 - Main page

As shown in the Figure, tasks can be filtered in several ways:

o by name.

o by status: created, pending, started, completed, failed.

 D7.4 Final prototype of the MUSKETEER client connectors 21

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

o by privacy operation mode (POM).

In addition, a client-side task pagination has been added in order to more easily browsing the

tasks and lighten the whole page.

Each task, at a high level, is represented by a name, the level of privacy adopted, its current

status, and its creation date. By clicking on the name of a task, it is possible to access the

details of that specific task, where it is also possible to participate or aggregate to the task

through a series of actions that are described in the following paragraphs.

From the main page it is then possible to access the other following Sections of the Client

Connector by clicking on the buttons in the top bar:

• Task creation (http://localhost:4500/tasks/create): by clicking on the

green button "create task" on the top right.

• Models (http://localhost:4500/models): display the models trained and

stored in the Musketeer platform as a result of completed tasks.

• Datasets (http://localhost:4500/datasets): to access the area where you

can manage your metadata datasets that you want to connect to the

Client Connector, and that will be processed by the machine learning

algorithms during a task execution.

• The user's area from where it is possible to change or update the

configuration of the installed libraries; change the user's password,

remove the user's account, or log-out of the platform.

2.4 Data connection

The Datasets page is accessible at the following URL: http://localhost:4500/datasets. The user

can connect dataset to the Client Connector through the provision of basic information

(metadata) to access a dataset from a particular data storage and format. The Client

Connector supports the binding of dataset in CSV and PKL format from the user's File System

to the Client Connector, being able to specify whether or not the dataset has a header in the

case of CSV format, and if it contains label information, in the case of PKL format data.

The following Figure 9 shows the data connection page. The list of all datasets connected by

the user in the Client Connector is shown here. For each dataset the following information are

shown: dataset label, format, size (in MB) and date of insertion. In addition, on the right of

each dataset, there is a button for editing the dataset, e.g. if you want to change its label; and

one for removing the metadata of the dataset. It is not the dataset that is physically removed

but only the references to connect to it via the Data Connector component.

http://localhost:4500/tasks/create
http://localhost:4500/datasets

 D7.4 Final prototype of the MUSKETEER client connectors 22

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 9 - Data connection page – datasets list

On the top side, clicking on the "Add Dataset" button opens a modal, as shown in Figure 10.

This modal requests a set of basic information: name (as label) of the dataset, the file dataset

name that is inside the dataset folder set by the user during the Client Connector installation

and configuration (see Section 2.1), and others information that may be specific to the dataset

format being imported, such as the header in the case of data in CSV format.

By clicking on the "Confirm" button the new dataset will be added in the list of datasets; if

something went wrong an error message will be displayed.

Figure 10 - Data connection page – add new dataset

 D7.4 Final prototype of the MUSKETEER client connectors 23

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

2.5 Tasks creation

From the main page you can access the tasks creation page (located on

"http://localhost:4500/tasks/create") by clicking on the "Create task" button. Figure 10 below

shows the details of all the information that can be set while creating a new task by the user.

Figure 10 - Task creation page detail

As shown in the previous Figure, starting from the top, the user can set the following

information:

o Name (required): a task name.

o Description (optional): a task description.

o Privacy (required): a select box to choose the level of privacy

(POM) the user wants to apply. Each POM is described by a

description and a set of characteristics in comparison with the

other POMs.

o Topology (required): the topology of the task (RING or STAR),

o Algorithm (required): a select box to choose an algorithm,

according to the POM selected, that the user wants to apply for

its task. Once an algorithm has been selected, the properties of

the algorithm that can be set by the user will be shown. The

information on the algorithms and the parameters of each

algorithm were loaded during the configuration phase of the

Client Connector as explained in Section 2.1.2.

o Quorum (required): minimum number of participants required

to start the task.

http://localhost:4500/tasks/create

 D7.4 Final prototype of the MUSKETEER client connectors 24

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

o Pre-processing (optional): the user can insert a set of pre-

processing algorithms, included in the imported MMLL library,

to be placed in the pipeline; the following Figure 11 shows the

insertion, via drag-and-drop, of two pre-processing algorithms

which, as explained in D4.3, transform the categorical data of

the dataset into numerical data, and therefore perform a data

normalisation before the data processing. By clicking on the gear

in the pre-processing algorithm "normalization", it is possible to

set the specific parameters of the pre-processing algorithm in

question.

Figure 11 - Task creation page – Pre-processing step

In order to apply the pre-processing algorithms, and the dataset verification checks, it is

necessary to also insert a data description file as specified in the D4.3. document. Other

information concerning the structure of the datasets are:

o Data description file (required): a file containing all the

information describing the input dataset required for the

execution of the task and therefore for the training of the

resulting machine learning model.

o Features (required): number of the input dataset features.

o Labels (required): number of the input dataset labels.

Finally, the user can specify by checkbox, whether he wants to abort the entire task when a

user participates with data that does not comply with those specified in the data description

file, or to kick the individual user out, and continue the execution of the task with the

remaining participants.

After filling in all the required information you can create the new task by clicking on the

"Create" button. The new task just created will now be present in the list of tasks, where you

can look again all the parameters that have been set during the task creation. As the creator

 D7.4 Final prototype of the MUSKETEER client connectors 25

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

of the task you can run it as an aggregator; waiting for new participants in the task until the

chosen quorum is reached.

2.6 Tasks detail

From the home page of the Client Connector, as already discussed in Section 2.2, it is possible

to view the complete list of tasks. Clicking on a particular task opens the task detail page; an

example is shown in Figure 12 below.

Figure 12 - Task detail

The task detail page, as shown in the Figure above, contains all the information that was put

during the creation of the task; users can therefore consult the selected task in detail, and

decide whether or not to participate on it. The detail page of a task contains basic information

about the task, including the description, the type of algorithm, the status and the quorum of

participants to be reached for the task to start; information about the structure of the dataset;

the pre-processing algorithms, which are executed in the pipeline before the algorithm starts;

and finally, information about the algorithm parameters chosen by the task creator.

In the top right-hand corner of the detail page, there are buttons to interact with the task. In

the case shown above, since the user is the creator of the task, the following buttons are

displayed, starting from the left:

• the button to aggregate to the task, shown only if the logged-in user is

the creator of the task, otherwise the button to participate a task is

shown;

• the button to access your task logs; it’s not clickable if the task has not

yet started;

 D7.4 Final prototype of the MUSKETEER client connectors 26

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

• the button to display a result chart image, created at the end of task

completion, showing metrics to evaluate the final model trained during

the task execution;

• the button to delete the task, only by the task creator.

In the following paragraphs, the mentioned actions on tasks are described in more detail.

2.6.1 Execution

As discussed in the Section introduction, the task creator is the only one who can act as an

aggregator. Another user, on the other hand, may participate in a task that has been created

or is waiting to reach a quorum, as shown in Figure 13 below.

Figure 13 - Task detail – participant user

The aggregator collects the weights of the models received from each participant and

aggregates them to obtain an aggregated machine learning model.

A participant can join and execute the task as participant by clicking on the green button as

shown in the Figure above. As shown in the next Figure 14, it opens a modal where the user

can drag-and-drop their dataset and start the task. Only the training dataset is required to

execute a task as a participant.

 D7.4 Final prototype of the MUSKETEER client connectors 27

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 14 - Task worker modal

The following Figure 15 shows the task aggregator modal clicking on the aggregate button.

For the aggregator the validation and test datasets are required. When at least one participant

has joined a task, it switches to 'PENDING' status, waiting to reach the chosen quorum and

then switching to 'STARTED' status. During or after starting a task as a participant or

aggregator, the user can monitor its execution by reading the logs managed by the Client

Connector; while, on test data, at the end of the task execution, a resulting chart will be

generated depending on the algorithm type. These features will be discussed in more detail

in the next paragraphs.

Figure 15 - Task aggregator modal

2.6.2 Logs

When a user is participating to a task as an aggregator or participant, it is possible to monitor

the progress in the task by viewing the logs produced by the script responsible for running the

algorithm defined in the task.

From the detail of a task, clicking on the "logs" button displays the logs in a modal as shown

in Figure 16 below. The inside of the modal containing the text with the logs is automatically

updated if there are new logs; this is achieved by using a Server-Sent Events (SSE) technology

enabling the client to receive automatic updates from the Client Connector back-end via an

HTTP connection.

 D7.4 Final prototype of the MUSKETEER client connectors 28

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 16 - Task logs

2.6.3 Result chart

Once the task has reached at least one participant, it switches from "CREATED" status to

"PENDING" status; once the chosen quorum of the task has been reached, it switches to

"STARTED" status, indicating that the task is successfully started on both the aggregator and

participant sides. If something goes wrong, the task will switch to "FAILED" status, and you

can analyse the logs of the individual users (as shown in the previous paragraph) in order to

understand the reason for the error.

The following Figure 17 shows the detail of a completed example task.

Figure 17 - A completed task card

A orange button appears for completed tasks, as shown in the previously Figure, that opens a

modal showing the resulting chart as shown in Figure 18.

 D7.4 Final prototype of the MUSKETEER client connectors 29

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 18 – Clustering Algorithm – 2D Scatterplot result

A different chart is produced depending on the type of task algorithm chosen:

• clustering: if the algorithm is clustering type, a scatterplot of the

clustered data from the resulting model is produced on the two

principal components of the test dataset, applying a Principal

Component Analysis (PCA) algorithm, in order to visualise the clusters

in a 2D space;

• classification: a confusion matrix is generated on the test data as shown

in the Figure 19 below;

 D7.4 Final prototype of the MUSKETEER client connectors 30

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 19 - Classification Algorithm – Confusion matrix result

• regression: using the test data, the coefficient of determination (R2) and

root mean squared error (RMSE) metrics are evaluated, as shown in the

Figure 20 below.

Figure 20 - Regression Algorithm – R2 and RMSE result

2.6.4 Task deletion

The button for deleting a task can only be used if you are the creator of that task. A task can

be deleted from the MUSKETEER platform even if it has been completed or failed; once

deleted, it will no longer be present in the list of tasks stored in the platform.

Figure 21 below shows the deletion action of a completed example task.

 D7.4 Final prototype of the MUSKETEER client connectors 31

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 21 – Task deletion

2.7 Models

The "Models" Section, at the URL "http://localhost:4500/models", contains the list of models

trained and uploaded to the MUSKETEER platform. Figure 22 below shows the page in object,

as well as the list of models, with the name of their completed tasks.

Figure 22 – List of trained models

Models can be filtered by name; it is also possible, using the buttons on the right of each

model, to request the following actions through the configured communication library:

• Model lineage: request for the model lineage, an example is shown in

the following Figure 23;

• Model download: request for the model download, choosing the type

of format in which to save the model: PKL, ONNX and PMML.

• Model deletion: request for the model deletion.

http://localhost:4500/models

 D7.4 Final prototype of the MUSKETEER client connectors 32

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Further details are given in D3.4, as the communication library used towards the MUSKETEER

platform has been implemented by IBM

Figure 23 – Model lineage example

Figure 24 below shows the modal displayed for a model download request. Before confirming,

it is necessary to choose the data format in which to save the model downloaded from the

MUSKETEER platform. If you do not have the permissions to download a given model, or the

specified data format is not available, an appropriate error message will be shown to the user;

vice versa, a message will be shown that the model has been successfully stored in the data

volume specified during the configuration of the Client Connector (as explained in Section 2.1).

Figure 24 – Download request of a model

In the same way, when requesting the deletion of a model, as shown in Figure 25, an error

message will be displayed if you do not have deletion permissions, otherwise the model will

be correctly deleted from the MUSKETEER platform.

 D7.4 Final prototype of the MUSKETEER client connectors 33

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Figure 25 – Deletion request of a model

2.8 Client Connector settings

This paragraph describes the settings provided by the Client Connector, which can be accessed

by moving the cursor to the top right of the user name, as shown in the following Figure 26.

Figure 26 – Client Connector settings

The user can then access the profile area, modify or update their imported library

configurations, or log-out from the Client Connector.

2.8.1 Profile

The profile area page, shown in Figure 27, located at the URL

"http://localhost:4500/settings/profile", integrates two other functionalities of the imported

communication library in order to:

- change the user's password by providing a new one;

 D7.4 Final prototype of the MUSKETEER client connectors 34

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

- remove the user's account from the platform, following final

confirmation by the user.

Figure 27 – Profile area page

2.8.2 Edit libraries configurations

The Client Connector configurations, once set as explained in Section 2.1, can be updated by

going to the URL: "http://localhost:4500/settings/edit-configurations" or by clicking on the

"Edit Configurations" area from the user settings.

Figure 28 – Edit libraries configurations page

The edit configurations page is presented as shown in Figure 28. From this page it is possible

to modify the two libraries already imported, the one for communication to the target server

and the one for federated machine learning, separately. Thus, the user can always update the

libraries already set or change them to include new ones.

http://localhost:4500/settings/edit-configurations

 D7.4 Final prototype of the MUSKETEER client connectors 35

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

3 Musketeer Client Connector APIs

In this Section are documented all the exposed RESTful API by the Client Connector Back-End

component. The documentation includes the category of the resource, the method (e.g.

whether GET or POST), the endpoint, a description of the resource; and then more detailed

information such as the required parameters, an example or schema of the request body and

the response.

MUSKETEER Client Connector RESTful API

API Reference ID #1

Category CATALOGUE

Method GET

Endpoint /cc/catalogue/algorithms

Resource description

Get the list of algorithms metadata provided during the Client Connector configuration

steps.

Parameters

Request body example/schema

Response example/schema

{

 "algorithms": [

 {

 "id": 1,

 "POM": 1,

 "type": "clustering",

 "name": "Kmeans",

 "label": "Kmeans",

 "description": "Kmeans clustering algorithm.",

 "properties": [

 D7.4 Final prototype of the MUSKETEER client connectors 36

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 {

 "name": "Nmaxiter",

 "label": "Max number of iterations.",

 "defaultValue": 2,

 "type": "number",

 "description": "Max number of epochs."

 },

 {

 "name": "NC",

 "label": "Number of centroids",

 "defaultValue": 2,

 "type": "number",

 "description": "Number of centroids"

 },

 {

 "name": "tolerance",

 "label": "Convergence threshold to stop training.",

 "defaultValue": 0.001,

 "type": "number",

 "description": "Convergence threshold to stop training."

 }

]

 }

]

}

MUSKETEER Client Connector RESTful API

API Reference ID #2

Category CATALOGUE

Method GET

 D7.4 Final prototype of the MUSKETEER client connectors 37

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Endpoint /cc/catalogue/poms

Resource description

Get the list of privacy operation modes (POMs) provided towards the MUSKETEER project.

Parameters

Request body example/schema

Response example/schema

{

 "poms": [

 {

 "name": "Aramis",

 "privacy": 1,

 "description": "Data cannot leave the facilities of each data owner, and the predictive models are

transferred without encryption. At every client a gradient update is computed using a Federated Learning

scheme.",

 "label": "POM1",

 "specs": {

 "privacy": 3,

 "overload": 3,

 "client": true,

 "server": false,

 "storage": 1,

 "communication": 3,

 "accountability": 3

 }

 },

 {

 "name": "Athos",

 "privacy": 2,

 D7.4 Final prototype of the MUSKETEER client connectors 38

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "description": "The server can operate in the encrypted domain without having access to the unencrypted

model. This schema is designed for use cases where the same data owner has data allocated in different

locations, data cannot be moved for legal/architectural reasons, and the predictive model will be private.",

 "label": "POM2",

 "specs": {

 "privacy": 4,

 "overload": 3,

 "client": true,

 "server": false,

 "storage": 1,

 "communication": 4,

 "accountability": 2

 }

 }

]

}

MUSKETEER Client Connector RESTful API

API Reference ID #3

Category CLIENT CONNECTOR - CONFIGURATION

Method GET

Endpoint /cc/configurations/step

Resource description

Get a number indicating the configuration status of the Client Connector: 1 - to install the

communication and FML algorithms library; 2 - to install the FML algorithm library; -1 -

Client Connector fully configured with the libraries installed.

Parameters

Request body example/schema

 D7.4 Final prototype of the MUSKETEER client connectors 39

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Response example/schema

{

 "step": -1

}

MUSKETEER Client Connector RESTful API

API Reference ID #4

Category CLIENT CONNECTOR - CONFIGURATION

Method POST

Endpoint /cc/configurations/comm

Resource description

Add the communication library configuration to integrate into the Client Connector.

Required information: - comms_git_url: Git URL where to download the comms package -

comms_git_token: Git Token to access private repository - comms_module: module name

to import - comms_config: JSON configuration for the comms instance used.

Parameters

Request body example/schema

{

 "comms_git_url": "str",

 "comms_git_token": "str"

 "comms_module": "str",

 "comms_config": {}

}

Response example/schema

{

 "success": true

}

 D7.4 Final prototype of the MUSKETEER client connectors 40

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Connector RESTful API

API Reference ID #5

Category CLIENT CONNECTOR - CONFIGURATION

Method POST

Endpoint /cc/configurations/comm

Resource description

Add the federated machine learning library configuration to integrate into the Client

Connector. Required information: - mmll_git_url: Git URL where to download the

Federated Machine Learning package - mmll_masternode_classpath -

mmll_workernode_classpath - mmll_comms_wrapper_classpath - mmll_algorithms: JSON

file containing the algorithms specifications and details.

Parameters

Request body example/schema

{

 "mmll_git_url": "str",

 "mmll_masternode_classpath": "str",

 "mmll_workernode_classpath": "str",

 "mmll_comms_wrapper_classpath": "str",

 "mmll_algorithms": {}

}

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #6

Category CLIENT CONNECTOR - CONFIGURATION

 D7.4 Final prototype of the MUSKETEER client connectors 41

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Method GET

Endpoint /cc/configurations/comm

Resource description

Get the communication library configuration.

Parameters

Request body example/schema

Response example/schema

{

 "comms_git_url": "str",

 "comms_git_token": "str"

 "comms_module": "str",

 "comms_config": {}

}

MUSKETEER Client Connector RESTful API

API Reference ID #7

Category CLIENT CONNECTOR - CONFIGURATION

Method GET

Endpoint /cc/configurations/mmll

Resource description

Get the Musketeer Machine Learning library configuration.

Parameters

Request body example/schema

Response example/schema

 D7.4 Final prototype of the MUSKETEER client connectors 42

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

{

 "mmll_git_url": "str",

 "mmll_masternode_classpath": "str",

 "mmll_workernode_classpath": "str",

 "mmll_comms_wrapper_classpath": "str",

 "mmll_algorithms": {}

}

MUSKETEER Client Connector RESTful API

API Reference ID #8

Category CLIENT CONNECTOR - CONFIGURATION

Method GET

Endpoint /cc/results/image?task

Resource description

Get a chart image resulting from the execution and completion of a Federated Machine

Learning task.

Parameters

Query parameters:

1) task: the name of the completed task for which the result chart

image has to be retrieved.

Request body example/schema

Response example/schema

 D7.4 Final prototype of the MUSKETEER client connectors 43

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Connector RESTful API

API Reference ID #9

Category CLIENT CONNECTOR - CONFIGURATION

Method GET

Endpoint /cc/results/stream/logs?task&mode

Resource description

Get the logs, as an EventStream, related to a specified task the user is

participating/aggregating to.

Parameters

Query parameters:

1) task: name of the task.

2) mode (participant/aggregator): specifies whether the user is

accessing a task logs as aggregator or participant.

Request body example/schema

Response example/schema

{

 D7.4 Final prototype of the MUSKETEER client connectors 44

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "line": "Task initializing..\nData description: \n{\"features\": 11}\nAggregator: creating worker node

object\nWorkerNode Anonymous: Loading comms\nWorkerNode Anonymous: Loading Data

Connector\nWorkerNode Anonymous: Initiated\nParticipant: loading Training Data\nWorkerNode: Received

input/target_data_description\nPOM1_KMeans_Worker Anonymous: READY and waiting

instructions\nPOM1_KMeans_Worker Anonymous: Received CHECK_DATA from

Master\nPOM1_KMeans_Worker Anonymous: Checking data\nPOM1_KMeans_Worker Anonymous: Sent

ACK_CHECK_DATA to master\nPOM1_KMeans_Worker Anonymous: Received SEND_PREPROCESSOR from

Master\nPOM1_KMeans_Worker Anonymous: Receiving preprocessor\nPOM1_KMeans_Worker

Anonymous: Shape of original dataset: (200, 11)\nPOM1_KMeans_Worker Anonymous: Training set

transformed using preprocessor data2num\nPOM1_KMeans_Worker Anonymous: Shape of transformed

dataset: (200, 26)\nPOM1_KMeans_Worker Anonymous: Final preprocessor

stored\nPOM1_KMeans_Worker Anonymous: Sent ACK_SEND_PREPROCESSOR to

master\nPOM1_KMeans_Worker Anonymous: Received SEND_MEANS from

Master\nPOM1_KMeans_Worker Anonymous: Obtaining means\nPOM1_KMeans_Worker Anonymous:

Sent COMPUTE_MEANS to master\nPOM1_KMeans_Worker Anonymous: Received SEND_STDS from

Master\nPOM1_KMeans_Worker Anonymous: Obtaining stds\nPOM1_KMeans_Worker Anonymous: Sent

COMPUTE_STDS to master\nPOM1_KMeans_Worker Anonymous: Received SEND_PREPROCESSOR from

Master\nPOM1_KMeans_Worker Anonymous: Receiving preprocessor\nPOM1_KMeans_Worker

Anonymous: Training set transformed using preprocessor\nPOM1_KMeans_Worker Anonymous: Final

preprocessor stored\nPOM1_KMeans_Worker Anonymous: Sent ACK_SEND_PREPROCESSOR to

master\nPOM1_KMeans_Worker Anonymous: Received SEND_CENTROIDS from

Master\nPOM1_KMeans_Worker Anonymous: Initializing centroids\nPOM1_KMeans_Worker Anonymous:

Sent INIT_CENTROIDS to master\nPOM1_KMeans_Worker Anonymous: Received

COMPUTE_LOCAL_CENTROIDS from Master\nPOM1_KMeans_Worker Anonymous: Updating centroids\n"

}

MUSKETEER Client Connector RESTful API

API Reference ID #10

Category CLIENT CONNECTOR - CONFIGURATION

Method GET

Endpoint /cc/datasets

Resource description

Get the list of datasets metadata the user has registered into the Client Connector.

Parameters

Request body example/schema

 D7.4 Final prototype of the MUSKETEER client connectors 45

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Response example/schema

[

 {

 "_id": "606eb290c03c776522229783",

 "name": "mnist_test_1",

 "added": "2021-04-08T07:36:48.907000",

 "format": "csv",

 "module": "CsvConnector",

 "path": "input_data/mnist_test_1.csv",

 "dimension": 9251376,

 "header": false

 },

 {

 "_id": "606eb2a8c03c776522229784",

 "name": "mnist_test_2",

 "added": "2021-04-08T07:37:12.821000",

 "format": "csv",

 "module": "CsvConnector",

 "path": "input_data/mnist_test_2.csv",

 "dimension": 9418067,

 "header": false

 },

 {

 "_id": "60fe760f0469f12319531e9f",

 "name": "mnist pkl",

 "added": "2021-07-26T08:45:03.951000",

 "format": "pkl",

 "module": "PklConnector",

 "path": "input_data/mnist_demonstrator_data.pkl",

 D7.4 Final prototype of the MUSKETEER client connectors 46

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "dimension": 31760256,

 "label": true

 }

]

MUSKETEER Client Connector RESTful API

API Reference ID #11

Category CLIENT CONNECTOR - CONFIGURATION

Method POST

Endpoint /cc/datasets

Resource description

Register a new dataset metadata into the Client Connector specifying the required

information, depending on the type of storage (e.g. local), and the data format (e.g. CSV or

PKL) used.

Parameters

Request body example/schema

{

 "type": "FileSystem",

 "spec": {

 "name": "name of the dataset",

 "path": "mnist_test_1.csv",

 "format": "csv",

 "header": false

 }

}

Response example/schema

{

 "success": true

 D7.4 Final prototype of the MUSKETEER client connectors 47

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

}

MUSKETEER Client Connector RESTful API

API Reference ID #12

Category CLIENT CONNECTOR - CONFIGURATION

Method DELETE

Endpoint /cc/datasets/<_id>

Resource description

Delete a specified dataset metadata through its unique identifier assigned to it.

Parameters

Path parameters:

1) _id: the dataset unique identifier.

Request body example/schema

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #13

Category CLIENT CONNECTOR - CONFIGURATION

Method PUT

Endpoint /cc/datasets/<_id>

Resource description

 D7.4 Final prototype of the MUSKETEER client connectors 48

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Modify/Update a specified dataset metadata through its unique identifier assigned to it,

and inserting the information to update.

Parameters

Path parameters:

1) _id: the dataset unique identifier.

Request body example/schema

{

 "name": "modified dataset name"

}

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #14

Category CLIENT CONNECTOR - COMMUNICATION

Method POST

Endpoint /cc/comms/login

Resource description

Access to the target platform using the configured communication messenger library.

Parameters

Request body example/schema

{

 "user": "username",

 "password": "password"

}

 D7.4 Final prototype of the MUSKETEER client connectors 49

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #15

Category CLIENT CONNECTOR - COMMUNICATION

Method POST

Endpoint /cc/comms/logout

Resource description

Logout from the target platform.

Parameters

Request body example/schema

{}

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #16

Category CLIENT CONNECTOR - COMMUNICATION

Method POST

Endpoint /cc/comms/registration

Resource description

 D7.4 Final prototype of the MUSKETEER client connectors 50

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Register an account to the target platform using the configured communication messenger

library; information to set are the following: username, password and organization name.

Parameters

Request body example/schema

{

 "user": "username",

 "password": "password",

 "org": "organization name"

}

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #17

Category CLIENT CONNECTOR - COMMUNICATION

Method PATCH

Endpoint /cc/comms/change_password

Resource description

Change the password access credential (of the logged-in user) to the target platform using

the configured communication messenger library.

Parameters

Request body example/schema

{

 "new_password": "password"

}

 D7.4 Final prototype of the MUSKETEER client connectors 51

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #18

Category CLIENT CONNECTOR - COMMUNICATION

Method DELETE

Endpoint /cc/comms/deregister

Resource description

Deregister the logged-in user from the target platform using the configured communication

messenger library.

Parameters

Request body example/schema

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #19

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/tasks

 D7.4 Final prototype of the MUSKETEER client connectors 52

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Resource description

Get the list of the tasks stored in the target platform using the configured communication

messenger library. The information retrieved includes: task name, status, task topology,

date of creation and update of the task, and a "definition" field that contains the description

of the task and all the information needed to execute a specific algorithm, of a given POM,

using the Federated Machine Learning library configured in the Client Connector.

Parameters

Request body example/schema

Response example/schema

[

 {

 "task_name": "taskExample",

 "status": "COMPLETE",

 "queue": null,

 "topology": "STAR",

 "definition": "{\"NC\": 3, \"Nmaxiter\": 5, \"POM\": \"1\", \"algorithm_name\": \"Kmeans\",

\"algorithm_type\": \"clustering\", \"data_description\": {\"features\": 11}, \"input_data_description\":

{\"py/b64\":

\"H4sIAKRBL2EC/52SP2vDMBDFv4o3LVmydktLQwulgcY0QwnmHF1kkdMfLlKoG/zda9lkUahDM+n0JP14905n

8f4qHor5fFYIbX0MVWg9Hnvp6yxS2VdiB0H05xbMsC0ZtEWZpBNQHG+Lz+ePVZKWi7f1Smy7WfEnYK1/MHttU

Opokng0QJQKAlY4DVpGrp4cOc5oypFEm0TF0Ka1JtgdBrx3IfTmpw2Sq2vk9v4WS9BUEVoVmgxCzqrBSOM43L

DRAPuqRLyC/MPJIgQdoswD9wTtPg5B71mjlTR0axDs6K6dxm4QWFuV4u8Hdb+9R8arr2T096j5yFjzrWltUKsm5

DFftAbhlPdix692AbyMgG7b/QK7ERZoDwMAAA==\"}, \"owner\": \"test5\", \"preprocessing\":

[{\"description\": \"It used to transform categorical data to numeric data before training\", \"id\": 1001,

\"label\": \"Data to Numeric\", \"name\": \"data2num_transform_workers\", \"properties\": null, \"type\":

\"preprocessing\"}, {\"description\": \"Data normalization; data are transformed to numeric data if needed\",

\"id\": 10002, \"label\": \"Normalization\", \"name\": \"normalizer_fit_transform_workers\", \"properties\":

[{\"description\": \"Type of normalization of the numerical inputs\", \"label\": \"Type\", \"name\":

\"transform_num\", \"options\": [\"global_min_max\", \"global_mean_std\"], \"type\": \"combo\",

\"value\": \"global_mean_std\"}, {\"description\": \"Indicates to which type of features we have to apply the

normalization: 'num' = only numerical, 'all' = numerical + binary\", \"label\": \"Which variables\", \"name\":

\"which_variables\", \"options\": [\"all\", \"num\"], \"type\": \"combo\", \"value\": \"all\"}], \"type\":

 D7.4 Final prototype of the MUSKETEER client connectors 53

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

\"preprocessing\"}], \"quorum\": 1, \"task_description\": \"A FML clustering description.\", \"tolerance\":

0.001}",

 "added": "2021-09-01T09:02:30.218370Z",

 "updated": "2021-09-01T09:09:59.472765Z"

 }

]

MUSKETEER Client Connector RESTful API

API Reference ID #20

Category CLIENT CONNECTOR - COMMUNICATION

Method POST

Endpoint /cc/comms/tasks

Resource description

Create a new task by inserting the name of the task and all required fields to describe a task

towards the configured communication messenger and federated machine learning

libraries.

Parameters

Request body example/schema

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #21

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

 D7.4 Final prototype of the MUSKETEER client connectors 54

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Endpoint /cc/comms/tasks/<task_name>

Resource description

Get the task information of a specified task using the configured communication messenger

library; in addition to the task specification, another information, useful for the graphical

interface, is included so that action icons are shown or not depending on the logged in user.

For instance, only the task creator can aggregate or delete his own task.

Parameters

Path parameters:

1) task_name: name of the task.

Request body example/schema

Response example/schema

{

 "task_name": "taskExample",

 "status": "COMPLETE",

 "topology": "STAR",

 "definition": "{\"NC\": 3, \"Nmaxiter\": 5, \"POM\": \"1\", \"algorithm_name\": \"Kmeans\",

\"algorithm_type\": \"clustering\", \"data_description\": {\"features\": 11}, \"input_data_description\":

{\"py/b64\":

\"H4sIAKRBL2EC/52SP2vDMBDFv4o3LVmydktLQwulgcY0QwnmHF1kkdMfLlKoG/zda9lkUahDM+n0JP14905n

8f4qHor5fFYIbX0MVWg9Hnvp6yxS2VdiB0H05xbMsC0ZtEWZpBNQHG+Lz+ePVZKWi7f1Smy7WfEnYK1/MHttU

Opokng0QJQKAlY4DVpGrp4cOc5oypFEm0TF0Ka1JtgdBrx3IfTmpw2Sq2vk9v4WS9BUEVoVmgxCzqrBSOM43L

DRAPuqRLyC/MPJIgQdoswD9wTtPg5B71mjlTR0axDs6K6dxm4QWFuV4u8Hdb+9R8arr2T096j5yFjzrWltUKsm5

DFftAbhlPdix692AbyMgG7b/QK7ERZoDwMAAA==\"}, \"owner\": \"test5\", \"preprocessing\":

[{\"description\": \"It used to trans-form categorical data to numeric data before training\", \"id\": 1001,

\"label\": \"Data to Numer-ic\", \"name\": \"data2num_transform_workers\", \"properties\": null, \"type\":

\"preprocessing\"}, {\"description\": \"Data normalization; data are transformed to numeric data if needed\",

\"id\": 10002, \"label\": \"Normalization\", \"name\": \"normalizer_fit_transform_workers\", \"properties\":

[{\"description\": \"Type of normalization of the numerical inputs\", \"label\": \"Type\", \"name\":

\"transform_num\", \"options\": [\"global_min_max\", \"global_mean_std\"], \"type\": \"combo\",

\"value\": \"global_mean_std\"}, {\"description\": \"Indicates to which type of features we have to apply the

normalization: 'num' = only numerical, 'all' = numerical + binary\", \"label\": \"Which variables\", \"name\":

\"which_variables\", \"options\": [\"all\", \"num\"], \"type\": \"combo\", \"value\": \"all\"}], \"type\":

\"preprocessing\"}], \"quorum\": 1, \"task_description\": \"A FML clus-tering description.\", \"tolerance\":

0.001}",

 D7.4 Final prototype of the MUSKETEER client connectors 55

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "added": "2021-09-01T09:02:30.218370Z",

 "updated": "2021-09-01T09:09:59.472765Z",

 "actions": {

 "aggregate": -1,

 "participate": -1,

 "result": 1,

 "logs": 1,

 "delete": 1

 }

}

MUSKETEER Client Connector RESTful API

API Reference ID #22

Category CLIENT CONNECTOR - COMMUNICATION

Method DELETE

Endpoint /cc/comms/tasks/<task_name>

Resource description

Delete a specified task in the target platform using the configured communication

messenger library.

Parameters

Path parameters:

1) task_name: name of the task.

Request body example/schema

Response example/schema

{

 "success": true

}

 D7.4 Final prototype of the MUSKETEER client connectors 56

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Connector RESTful API

API Reference ID #23

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/tasks/created

Resource description

Get the list of the tasks created by the user in the target platform using the configured

communication messenger library.

Parameters

Request body example/schema

Response example/schema

[

 {

 "task_name": "myTaskExample",

 "status": "COMPLETE",

 "queue": null,

 "topology": "STAR",

 "definition": "{\"NC\": 3, \"Nmaxiter\": 5, \"POM\": \"1\", \"algorithm_name\": \"Kmeans\",

\"algorithm_type\": \"clustering\", \"data_description\": {\"features\": 11}, \"input_data_description\":

{\"py/b64\":

\"H4sIAKRBL2EC/52SP2vDMBDFv4o3LVmydktLQwulgcY0QwnmHF1kkdMfLlKoG/zda9lkUahDM+n0JP14905n

8f4qHor5fFYIbX0MVWg9Hnvp6yxS2VdiB0H05xbMsC0ZtEWZpBNQHG+Lz+ePVZKWi7f1Smy7WfEnYK1/MHttU

Opokng0QJQKAlY4DVpGrp4cOc5oypFEm0TF0Ka1JtgdBrx3IfTmpw2Sq2vk9v4WS9BUEVoVmgxCzqrBSOM43L

DRAPuqRLyC/MPJIgQdoswD9wTtPg5B71mjlTR0axDs6K6dxm4QWFuV4u8Hdb+9R8arr2T096j5yFjzrWltUKsm5

DFftAbhlPdix692AbyMgG7b/QK7ERZoDwMAAA==\"}, \"owner\": \"test5\", \"preprocessing\":

[{\"description\": \"It used to transform categorical data to numeric data before training\", \"id\": 1001,

\"label\": \"Data to Numeric\", \"name\": \"data2num_transform_workers\", \"properties\": null, \"type\":

\"preprocessing\"}, {\"description\": \"Data normalization; data are transformed to numeric data if needed\",

\"id\": 10002, \"label\": \"Normalization\", \"name\": \"normalizer_fit_transform_workers\", \"properties\":

[{\"description\": \"Type of normalization of the numerical inputs\", \"label\": \"Type\", \"name\":

\"transform_num\", \"options\": [\"global_min_max\", \"global_mean_std\"], \"type\": \"combo\",

 D7.4 Final prototype of the MUSKETEER client connectors 57

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

\"value\": \"global_mean_std\"}, {\"description\": \"Indicates to which type of features we have to apply the

normalization: 'num' = only numerical, 'all' = numerical + binary\", \"label\": \"Which variables\", \"name\":

\"which_variables\", \"options\": [\"all\", \"num\"], \"type\": \"combo\", \"value\": \"all\"}], \"type\":

\"preprocessing\"}], \"quorum\": 1, \"task_description\": \"A FML clustering description.\", \"tolerance\":

0.001}",

 "added": "2021-09-01T09:02:30.218370Z",

 "updated": "2021-09-01T09:09:59.472765Z"

 }

]

MUSKETEER Client Connector RESTful API

API Reference ID #24

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/tasks/joined

Resource description

Get the list with all the joined tasks in the target platform using the configured

communication messenger library.

Parameters

Request body example/schema

Response example/schema

[

 {

 "task_name": "task_example",

 "tstatus": "PENDING",

 "queue": "1ff2b3704aede04eecb51e50ca698efd50a1379b/worker/task_example",

 "status": "CREATED",

 "added": "2021-09-01T13:38:34.360357Z",

 D7.4 Final prototype of the MUSKETEER client connectors 58

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "updated": "2021-09-01T13:38:34.360377Z"

 }

]

MUSKETEER Client Connector RESTful API

API Reference ID #25

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/tasks/assigned

Resource description

Get the list of all the tasks the user is participating in the target platform using the

configured communication messenger library.

Parameters

Request body example/schema

Response example/schema

[

 {

 "task_name": "task_example",

 "tstatus": "PENDING",

 "queue": "1ff2b3704aede04eecb51e50ca698efd50a1379b/worker/task_example",

 "status": "CREATED",

 "added": "2021-09-01T13:38:34.360357Z",

 "updated": "2021-09-01T13:38:34.360377Z"

 }

]

MUSKETEER Client Connector RESTful API

 D7.4 Final prototype of the MUSKETEER client connectors 59

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

API Reference ID #26

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/models

Resource description

Get the list with all the available trained models in the target platform using the configured

communication messenger library.

Parameters

Request body example/schema

Response example/schema

[

 {

 "task_name": "task_1",

 "added": "2021-05-17T14:46:22.790308Z"

 },

 {

 "task_name": "task_2",

 "added": "2021-06-17T09:21:03.729240Z"

 },

 {

 "task_name": "task_3",

 "added": "2021-06-17T09:49:07.843029Z"

 }

]

MUSKETEER Client Connector RESTful API

API Reference ID #27

 D7.4 Final prototype of the MUSKETEER client connectors 60

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/<task_name>?extension

Resource description

Requests a trained model, related to a specified task, in the target platform using the

configured communication messenger library; the object obtained is then downloaded and

saved locally by selecting one of the three extensions (formats) chosen: PKL, PMML, ONNX.

An error message will be sent if a particular extension is not supported by the model.

Parameters

Query parameters:

1) extension (PKL, PMML, ONNX): the format in which to save the

trained model.

Path parameters:

1) task_name: name of the task.

Request body example/schema

Response example/schema

{

 "success": true,

 "message": "The model resulting from task_name is saved in your local file system."

}

MUSKETEER Client Connector RESTful API

API Reference ID #28

Category CLIENT CONNECTOR - COMMUNICATION

Method DELETE

Endpoint /cc/comms/<task_name>

Resource description

 D7.4 Final prototype of the MUSKETEER client connectors 61

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Requests a model deletion from the selected task in the target platform using the

configured communication messenger library.

Parameters

Path parameters:

1) task_name: name of the task.

Request body example/schema

Response example/schema

{

 "success": true

}

MUSKETEER Client Connector RESTful API

API Reference ID #29

Category CLIENT CONNECTOR - COMMUNICATION

Method GET

Endpoint /cc/comms/<task_name>/lineage

Resource description

Requests the model lineage, related to a specified task, in the target platform using the

configured communication messenger library.

Parameters

Path parameters:

1) task_name: name of the task.

Request body example/schema

Response example/schema

{

 "participant": "879034368:4144300032",

 D7.4 Final prototype of the MUSKETEER client connectors 62

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "genre": "INTERIM",

 "external_id": "gAAAAABhL4J4fqbU8ZwArkrDdmLxiQyrepminchsNDypeUiNRkdH0U-jmP1GH1Cre5Y--

xmxqN5JFIFEvPHDLZ4HTFmtsvLCmQdb8f9356689b484d9c4c8184c094f6c9==",

 "xsum":

"a15aba78b492e4eec91c3ce69eab639a80a7d4d02c9e39a4c28b764d93a1ff95c473b64fc50d3722c052c6166

e521278e58b514261d10381b5d0f812b02229f1",

 "added": "2021-09-01T13:39:06.013474Z",

 "updated": "2021-09-01T13:39:06.013493Z",

 "contribution": null,

 "reward": null

}

MUSKETEER Client Connector RESTful API

API Reference ID #30

Category CLIENT CONNECTOR – FEDERATED MACHINE LEARNING

Method POST

Endpoint /cc/fml/aggregate

Resource description

As a task owner, aggregate to a task by entering the information needed to access a

validation and test dataset. Then run the script that will execute the Federated Machine

Learning algorithm as aggregator defined in the task towards the configured and installed

Federated Machine Learning and communication messenger libraries.

Parameters

Request body example/schema

{

 "task_name": "test_task",

 "datasets": {

 "validation": {

 "_id": "608ac2699bc3c510ce454131",

 "name": "my validation dataset",

 D7.4 Final prototype of the MUSKETEER client connectors 63

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

 "added": "2021-04-29T14:27:53.641000",

 "format": "csv",

 "module": "CsvConnector",

 "path": "/input_data/validation.csv",

 "dimension": 13083,

 "header": true

 },

 "test": {

 "_id": "608ac2699bc3c510ce454131",

 "name": "my test dataset",

 "added": "2021-04-29T15:02:20.641000",

 "format": "csv",

 "module": "CsvConnector",

 "path": "/input_data/test.csv",

 "dimension": 7094,

 "header": true

 }

 }

}

Response example/schema

{

 "message": "Task test_task started as aggregator."

}

MUSKETEER Client Connector RESTful API

API Reference ID #31

Category CLIENT CONNECTOR – FEDERATED MACHINE LEARNING

Method POST

Endpoint /cc/fml/participate

Resource description

 D7.4 Final prototype of the MUSKETEER client connectors 64

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

As a participant, join a task by entering at least the information needed to access a training

dataset, and optionally a validation and test dataset. Then run the script that will execute

the Federated Machine Learning algorithm as participant defined in the task towards the

configured and installed Federated Machine Learning and communication messenger

libraries.

Parameters

Request body example/schema

{

 "task_name": "test_task",

 "datasets": {

 "training": {

 "_id": "608ac2699bc3c510ce454131",

 "name": "my training dataset",

 "added": "2021-04-29T14:27:53.641000",

 "format": "csv",

 "module": "CsvConnector",

 "path": "/input_data/training.csv",

 "dimension": 13083,

 "header": true

 }

 }

}

Response example/schema

{

 "message": "Task test_task started as participant."

}

 D7.4 Final prototype of the MUSKETEER client connectors 65

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

4 Unit Testing and Integration Testing

Software testing is the investigation conducted over a software artefact or product in order

to provide useful insights concerning the quality of the software artefact or product under

test. Within the context of software testing, a broad list of activities that can be performed

depending on the phase of the software development lifecycle and their aim and purpose.

There are two major categories of activities in software testing which are considered as the

core and required activities on every software development project, namely the unit testing

and the integration testing.

The main difference between those activities is the context of their execution within the

software development lifecycle. In a nutshell, unit testing the software testing method that is

performed on each individual unit or module that is developed in order to ensure and verify

their functionality, while integration testing is the method where all components, composed

by multiple units or modules, are combined and tested as a group. Hence, on each integration

cycle, unit testing is performed first in order to verify that all developed units and modules are

operating as expected on an individual level, while the integration testing is performed after

the unit testing in order to verify the correctness of the interfaces between two or more

components on a group level.

To the aim of client connector testing, an integration testing strategy was formulated and

adopted from the early stages of the development. The strategy dictated for the design and

execution of small and easily executable unit tests that are verifying the functionalities and

the quality of each individual module of the component. The list of unit tests was expanded

as the project evolved, while several existing tests were updated and enhanced in order to

accommodate the new features and functionalities of each module between the platform

releases. For the integration testing aspect, the strategy adopted the Umbrella approach:

within this approach, a mixture of the activities performed on the top-down approach and the

bottom-up approach is performed. In particular, both functional data and the flow of

information are tested. To achieve this, the input for functions are integrated following the

bottom-up approach and the outputs of the functions are then integrated following the top-

down approach.

4.1 Unit Testing

MUSKETEER Client Connector Unit Test

Test Case Reference ID CM-01

Test Case Name Check classpath configuration

Component Name CONFIGURATION MANAGER

 D7.4 Final prototype of the MUSKETEER client connectors 66

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Description of the test case

After the library installation (communication messenger or machine learning library), the

configuration manager checks that the classpath (set by the user during the configuration

steps) exists and it can be correctly imported.

Input of the test case

Name of the classpath to be imported.

Output of the test case

True if the classpath can be correctly imported.

Results of the test case

SUCCESS

MUSKETEER Client Connector Unit Test

Test Case Reference ID CM-02

Test Case Name Check module configuration

Component Name CONFIGURATION MANAGER

Description of the test case

After the library installation (communication messenger or machine learning library), the

configuration manager checks that the import of the module set by the user during the

configuration steps can be correctly imported.

Input of the test case

Name of the module library to be imported.

Output of the test case

True if the module can be correctly imported.

Results of the test case

SUCCESS

 D7.4 Final prototype of the MUSKETEER client connectors 67

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Connector Unit Test

Test Case Reference ID DC-03

Test Case Name Check dataset existence

Component Name DATA CONNECTOR

Description of the test case

During dataset metadata submission, before loading this information to the database, it is

first checked whether the corresponding path contains the dataset.

Input of the test case

Dataset metadata needed by the Data Connector (e.g. file path) to access the target

dataset.

Output of the test case

True if the dataset exists at the specified location.

Results of the test case

SUCCESS

MUSKETEER Client Connector Unit Test

Test Case Reference ID DC-04

Test Case Name Check model existence

Component Name DATA CONNECTOR

Description of the test case

After requesting and downloading the model from the server, it is saved on the user-

configured data volume; a check for the existence of the saved model on the file system is

performed.

Input of the test case

Path where the model is to be saved.

Output of the test case

True if the model has been correctly saved in the defined path.

 D7.4 Final prototype of the MUSKETEER client connectors 68

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Results of the test case

SUCCESS

Table 1 - Unit test results

Test Case Ref ID Test Case Name Component Name Test Case Result

CM-01 Check classpath

configuration

Configuration

Manager

SUCCESS

CM-02 Check module

configuration

Configuration

Manager

SUCCESS

DC-03 Check dataset

existence

Data Connector SUCCESS

DC-04 Check model

existence

Data Connector SUCCESS

4.2 Integration testing

MUSKETEER Client Connector Integration Test

Test Case Reference ID #01

Test Case Name Login

Components Involved CC front-end – CC back-end – pycloudmessenger library –

MUSKETEER platform

Description of the test case

The user can browse through the CC only after logging in with valid credentials.

Input of the test case

Valid and invalid credentials.

Output of the test case

- The user can manage their own resources after entering valid

credentials.

- The user cannot see and manage their own resources entering invalid

credentials.

 D7.4 Final prototype of the MUSKETEER client connectors 69

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Results of the test case

SUCCESS

Test Case Reference ID #02

Test Case Name Delete Task

Components Involved CC front-end – CC back-end – pycloudmessenger library –

MUSKETEER platform

Description of the test case

A user can delete a task only if he is the owner of it.

Input of the test case

- Request for deletion of an own task from UI;

- Request for deletion of a non-proprietary task from UI.

Output of the test case

- User completes deletion of task successfully;

- The user cannot complete the deletion of the task.

Results of the test case

SUCCESS

MUSKETEER Client Connector Integration Test

Test Case Reference ID #03

Test Case Name Libraries setup

Components Involved CC front-end – CC back-end – pycloudmessenger library – MML

library

Description of the test case

The user can use the CC functionalities through the user interface after that he has

configured the communication messenger and FML libraries.

Input of the test case

 D7.4 Final prototype of the MUSKETEER client connectors 70

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

- FML library configuration;

- Communication messenger library configuration.

Output of the test case

- The user can browse through the user interface only after that he has

correctly configured both requested libraries.

Results of the test case

SUCCESS

MUSKETEER Client Connector Integration Test

Test Case Reference ID #04

Test Case Name Result image chart

Components Involved CC front-end – CC back-end – MUSKETEER platform –

pycloudmessenger library – MML library

Description of the test case

The user can see the image representing some evaluation metrics of the resulting model

after the task completion.

Input of the test case

- Create and correctly run a task until completion.

Output of the test case

- Into the results location, initially configured by the user, contains

result images of each completed task.

Results of the test case

SUCCESS

MUSKETEER Client Connector Integration Test

Test Case Reference ID #05

Test Case Name Task aggregation

 D7.4 Final prototype of the MUSKETEER client connectors 71

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

Components Involved CC front-end – CC back-end – pycloudmessenger library –

MUSKETEER platform

Description of the test case

Only the task owner can join to task as aggregator.

Input of the test case

- Aggregate to a task from the user interface as task owner;

- Join to the same task as participant with another user.

Output of the test case

- The user who owns the task correctly joins its task as an aggregator;

a non-owner user can only join as a participant.

Results of the test case

SUCCESS

MUSKETEER Client Connector Integration Test

Test Case Reference ID #06

Test Case Name Task creation

Components Involved CC front-end – CC back-end – pycloudmessenger library –

MUSKETEER platform

Description of the test case

A user creates and publishes a task (aggregator), and another user (participants) sees it in

the list of tasks and join it

Input of the test case

- A user creates a new task through the user interface.

Output of the test case

- A participant can correctly check and consult the created task and

join it through the user interface.

Results of the test case

SUCCESS

 D7.4 Final prototype of the MUSKETEER client connectors 72

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

MUSKETEER Client Connector Integration Test

Test Case Reference ID #07

Test Case Name Registration

Components Involved CC front-end – CC back-end – pycloudmessenger library –

MUSKETEER platform

Description of the test case

User registration to the MUSKETEER platform.

Input of the test case

- Username;

- Organization name;

- Password;

- Confirm of the password;

- A credential file imported during the communication messenger

library configuration.

Output of the test case

- The user can register on the MUSKETEER platform and then using

their own credentials to log in through the user interface.

Results of the test case

SUCCESS

MUSKETEER Client Connector Integration Test

Test Case Reference ID #08

Test Case Name Login - 2

Components Involved CC front-end – CC back-end – httpcloudmessenger library – TRUE

Connector – Producer Data App

Description of the test case

 D7.4 Final prototype of the MUSKETEER client connectors 73

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

A user access the target platform. The server side is simulated using a specific pre-

configured producer Data App to provide the same output specifications as the MUSKETEER

platform.

Input of the test case

- Username;

- Organization name;

- Password;

- Confirm of the password;

- A credential file imported during the communication messenger

library configuration.

Output of the test case

A user access the target platform.

Results of the test case

SUCCESS

MUSKETEER Client Connector Integration Test

Test Case Reference ID #09

Test Case Name Task listing

Components Involved CC front-end – CC back-end – httpcloudmessenger library – TRUE

Connector – Producer Data App

Description of the test case

A logged in user can get the list of tasks store in the target platform. The server side is

simulated using a specific pre-configured producer Data App to provide the same output

specifications as the MUSKETEER platform.

Input of the test case

The user requests the list of tasks.

Output of the test case

The listing tasks successfully shown in the main page of the CC GUI.

Results of the test case

 D7.4 Final prototype of the MUSKETEER client connectors 74

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

SUCCESS

Table 2 - Integration test results

Test Case Ref ID Test Case Name Components involved Test Case Result

#01 Login CC front-end – CC

back-end –

pycloudmessenger

library –

MUSKETEER

platform

SUCCESS

#02 Delete task CC front-end – CC

back-end –

pycloudmessenger

library –

MUSKETEER

platform

SUCCESS

#03 Libraries setup CC front-end – CC

back-end –

pycloudmessenger

library – MML library

SUCCESS

#04 Result image chart CC front-end – CC

back-end –

MUSKETEER

platform –

pycloudmessenger

library – MML library

SUCCESS

#05 Task aggregation CC front-end – CC

back-end –

pycloudmessenger

library – MUSKETEER

platform

SUCCESS

#06 Task creation CC front-end – CC

back-end –

pycloudmessenger

SUCCESS

 D7.4 Final prototype of the MUSKETEER client connectors 75

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

library – MUSKETEER

platform

#07 Registration CC front-end – CC

back-end –

pycloudmessenger

library – MUSKETEER

platform

SUCCESS

#08 Login - 2 CC front-end – CC

back-end –

httpcloudmessenger

library – TRUE

Connector –

Producer Data App

SUCCESS

#09 Task listing CC front-end – CC

back-end –

httpcloudmessenger

library – TRUE

Connector –

Producer Data App

SUCCESS

5 Conclusion

The purpose of this document D7.4 – Final prototype of the MUSKETEER Client connectors, is

to explain the key components and the main user interactions with the final version of the

Client Connector to exploit the MUSKETEER Platform functionalities.

The source code of the final prototype version of the MUSKETEER Client Connector is released

as open source under GNU AGPLv3 license [2][3].

This final release is the result of several iterative executions of the demonstration scenarios,

in accordance with the technical requirements specified in WP2.

As a follow-up, within D7.5 and D7.6 feedbacks on its usage in smart manufacturing and health

domains, are under collection so to evaluate the overall MUSKETEER platform, by means of

the KPIs Evaluation Framework defined and validated in WP2 (described in D2.7).

 D7.4 Final prototype of the MUSKETEER client connectors 76

Machine Learning to Augment Shared Knowledge in

Federated Privacy-Preserving Scenarios (MUSKETEER)

6 References

[1] https://internationaldataspaces.org/wp-content/uploads/IDS-RAM-

3.0-2019.pdf

[2] https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-backend

[3] https://github.com/Engineering-Research-and-

Development/musketeer-client-connector-frontend

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend

	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Document Structure

	2 MUSKETEER Client Connector – Final Release
	2.1 Installation guide
	2.1.1 Installation
	2.1.2 Configuration

	2.2 User registration and login
	2.3 Tasks listing and browsing
	2.4 Data connection
	2.5 Tasks creation
	2.6 Tasks detail
	2.6.1 Execution
	2.6.2 Logs
	2.6.3 Result chart
	2.6.4 Task deletion

	2.7 Models
	2.8 Client Connector settings
	2.8.1 Profile
	2.8.2 Edit libraries configurations

	3 Musketeer Client Connector APIs
	4 Unit Testing and Integration Testing
	4.1 Unit Testing
	4.2 Integration testing

	5 Conclusion
	6 References

